RNA干涉技术在烟草抗TMV和PVY病毒育种中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烟草普通花叶病和烟草马铃薯Y病毒病是世界各烟草产区普遍发生的一类主要病害,也是我国北方烟区的主要病毒病害,尤其对我国黄淮烟区和东北烟区的影响较为严重,他们严重影响烟叶的产量和品质,而且在烟株上经常复合侵染,加大病害的防治难度。选育抗病品种是生产中防治病害的主要手段,但存在着抗性资源狭窄、抗病品种选育时间慢等诸多局限,不能有效地控制复合侵染对烟草生产带来的危害。随着分子生物学的发展,RNA干涉技术为病毒病害的防治提供了一条新途径。为了解决TMV和PVY复合侵染对烟草生产带来的危害,本试验以RNAi机制为依据,设计了双基因融合的RNAi靶序列,并成功构建植物双元表达载体系统。农杆菌侵染叶盘,最终获得9株转基因烟草苗。经PCR检测、TMV与PVY病毒验证,3株转基因烟草对TMV和PVY具有免疫级抗性。证实了以RNAi为基础的双基因融合策略在增强植物抵抗两种病毒侵染方面的效果。本试验主要内容如下:
     1.TMV和PVY目的序列的克隆
     分别对TMV和PVY外壳蛋白基因序列进行Blast序列比对,找出TMV、PVY外壳蛋白基因的保守序列,针对各自的保守序列确定进行融合的目的序列,设计TMV与PVY目的序列引物TMV-m/TMV-n;PVY-m/PVY-n。通过重新接种鉴定TMV与PVY病毒致病性后,分别提取TMV和PVY的总RNA,经RT-PCR反应获得TMV与PVY外壳蛋白基因的cDNA序列,应用TMV与PVY目的序列引物进行PCR扩增,产物连接进入pMD18-T Simple Vector,转化到大肠杆菌中扩繁,获得进行融合的TMV、PVY目的序列。
     2.目的基因的融合
     利用限制性内切酶对含有TMV片段的T载体质粒DNA和含有PVY片段的T载体质粒DNA进行双酶切;分别回收含TMV片段的pMD18-T载体质粒大片段和PVY小片段。然后两个DNA片段经T4 DNA Ligase连接,产物转化到大肠杆菌DH5α感受态细胞中扩繁,获得双基因融合的RNAi靶序列。
     3.构建RNAi双元载体系统
     采用酶切后连接方法,根据RNAi载体多克隆位点及目的序列边缘的相同酶切位点,构建含双基因融合序列(TMV-PVY-r)正反向重复结构的中间载体(pUCCRNAi-TMV-PVY-2)和表达载体(pC2300-35S-OCS-TMV-PVY-2)。分别以TMV-m,TMV-n/PVY-m,PVY-n;35S-F/35S-R超强启动子引物进行PCR扩增验证、限制性内切酶酶切验证,证实连接正确后经大肠杆菌扩繁,提取质粒转化农杆菌LBA4404感受态细胞。完成RNAi双元载体系统构的构建。
     4.农杆菌介导法转化烟草
     利用叶盘转化法,将试验获得的RNAi工程农杆菌侵染无菌烟草叶圆片,成功筛选出抗卡那霉素烟草个体86株并将其移栽至温室培养。
     5.分子生物学检测转基因烟草及转基因烟草的抗性验证
     利用改良CTAB法提取转基因烟草DNA,分别以特异引物(TMV-m/TMV-n;PVY-m/PVY-n)与超强启动子引物(35S-F/35S-R)对卡那霉素抗性材料进行PCR鉴定,确定9株转基因烟草苗为阳性。初步证实目的基因已经插入烟草基因组DNA中,利用人工接种TMV和PVY进行转基因烟草的抗病性鉴定。结果表明:转TMV和PVY外壳蛋白基因阳性个体的抗病性明显高于阴性的非转基因烟草,并且有3株达到了免疫级水平。
     6.荧光定量PCR分析双基因融合RNAi效果
     选择免疫级抗性的转基因烟草3株,田间未感染TMV与PVY的正常烟草1株,田间感染TMV与PVY的烟草1株,提取各自总RNA,经荧光定量PCR反应分析证实:三株免疫级抗性转基因烟草的TMV与PVY病毒外壳蛋白基因的mRNA拷贝数均低于接种的对照植株,说明RNAi确实引起了TMV与PVY外壳蛋白基因转录产物mRNA的降解,双基因融合干涉成功。为RNAi在抵抗多种病毒侵染方面提供了理论基础。
     7.得到T0代转基因烟草并获得了T1代转基因材料。
Tobacco mosaic virus and Potato virus Y are two main diseases in the world tobacco production areas and they are also affect he north of our country.The virus affect the jield and quality seriously. It is difficult to control the two virus jointly affect the tobacco. Breeding for disease resistance is used as the important measure in agriculture.But the existing varieties have a narrow resource of resistance and a long time selection.As development of the molecular biology. RNAi technology provides a new way to improve plant resistance. To solution the dangerous of TMV and PVY affect tobacco jointly, the research follow the RNAi medicaments. IT connected the TMV and PVY CP gene as the target and constructed the RNAi expression vector containing 35s promoter.Finally, the expression vector was transformed into Agrobacterium tumefaciens LBA4404. With leaf dish transformation, we got nine trans-formants. They were approved with PCR reaction and virus identification. Three of which are immne resistance.The effect of RNA interference of double gene in improving the plant’s antivirotic capacity were verified primarily in the experiment. The main contents are as follows:
     1. Cloning the target sequence of TMV-coat protein gene and PVY-coat protein gene
     TMV-coat protein gene and PVY-coat protein gene were multiple sequence alignmented by BlastP on NCBI website respectively.The TMV and PVY’high homologous sequences were connected as the target sequence for RNA interference, according to which the primer pairs(TMV-m/TMV-n;PVY-m/PVY-n)of the target sequence were designed. After the TMV and PVY total RNA were extracted, the cDNA were gotten by the RT-PCR reaction. The TMV and PVY target sequences were obtained by PCR reaction using the cDNA as template with the primer pair (TMV-m/TMV-n;PVY-m/PVY-n). PCR products were linked to pMD18-T Vector respectively and replicated in E. f DH 5αrespectively.
     2. Connected TMV coat protein and PVY coat protein
     The pMD18-T-TMV and pMD18-T-PVY vector were digested restrictively by double-endonuclease respectively.Then we connected the PVY sequence and pMD18-T vector which contains TMV sequence. Finally the target gene was digested restrictively by double-endonuclease .So far the fusion gene was constructed.
     3. Constructing RNA interference double-plasmid expression vector
     After purifying the digested product, the double gene was inserted into pUCCRNAi vector by the counter-repeat way. Then the pUCCRNAi vector was inserted into expression vector. Finally,the recombination plasmid was transferred into Agrobacterium tumefaciens which only contained assistant plasmid. With restriction endonuclease digestion, the double-plasmid expression vector was constructed successfully.
     4. Tissue -cultured tobacco was infected by engineering-Agrobacterium tumefaciens.
     The tissue-cultured tobacco was infected by Agrobacterium tumefaciens with leaf-dish transformation.Based on tissue–culturing in kanamycin selective medium, the kanamycin resistance tobaccos were planted in greenhouse.
     5. Molecular biological examination and diseases resistance identification for transgenic tobacco
     After the transgenic tobacco’RNA were extracted, We selecteded the kanamycin resistance plants with PCR reaction of TMV-m/TMV-n ; PVY-m/PVY-n and 35S-F/35S-R primers respectively. All the transgenic tobaccos were investigated and compare with the negative plants through manual vaccinating TMV and PVY. Three of the transgenic tobacco reached the immune resistance. Comparing with negative plant, the antiviral property positive of tobacco was increased significantly in transgenic tobacco.
     6.Analyze the effect of double gene RNA interference by Fluorescent Quantitative PCR reaction
     We extracted the DNA of three transgenic tobacco which reached the immune resistance、one normal tobacco and one plant that was infected TMV and PVY.With Fluorescent quantitative PCR reaction, we got the real-time PCR curve of samples and standard curre (TMV and PVY).The result indicated that the mRNA copies of three transgenic tobaccos were less than the infected plant.These demonstrated that the RNAi cause the decrease of viral mRNA.The RNA interference of TMC-cp and PVY-cp double gene has succeeded.The approach provide a foundation in multiple infect with RNAi.
     7. Gotten the tobacco transformants of T0 and transgenic plant of T1.
引文
[1]陈瑞泰.世界烟草病害形势[J].中国烟草科学, 1989, 3: 5-15
    [2]邱并生,王敏植物病毒学的研究进展[J]中国病毒学,2004 19 (3):309-312
    [3] Zamore P D. ATP requirements and small interfering RNA structure in the RNA interference pathway [J].Cell, 2001, 107(3): 309-321
    [4] Guo M., et al. The Drosophila microRNA mir-14suppresses cell death and is required for normal fat me-tabolism [J]. Curr Biol, 2003, 13: 790-800
    [5] Van Regenmortel., et al. Tobacco viruses. In Handbook of Plant Virus Infections and Comparative Diagnosis[J]. 1981, 541-565
    [6] Culver J N., Dawson W O., Plonk K., Stubbs G Site-directed mutagenesis confirms the involvement of carboxylate groups in the disassembly of tobacco mosaic virus[J]. Virology, 1995, 206: 724-735
    [7] Ui-Tei K., Saigo K. Short-interfering-RNA-mediated gene silencing in mammalian cells requires Dicer and eIF2C translation initiation factors[J].Curr Biol,2003, 13: 41-50
    [8] Hsieh C S., et al. Development of TH1 CD4+ T cells through IL-12 produced arenewedsense of self. Science[J].2002, 296: 301-515
    [9]陈瑞泰,朱贤朝,王智发等.全国16个主产烟省(区)烟草侵染性病害调研报告[J].中国烟草科学, 1997, 4: 1-9
    [10]孔凡玉,朱贤朝,石金开等.我国烟草侵染性病害发生趋势原因及防治对策[J].中国烟草科学, 1995, 1: 31-34
    [11]汪继玲,张仲凯等.TMV接种后烟株中病毒相对含量研究[J].烟草科技, 2003, (12): 36-38
    [12] Tuschl T A. uniform system for microRNA annotation RNA[J].2003, 9: 277-279
    [13] Kwong S M., et al. Mol Microbiol[J].2004, 51: 497-509
    [14]王世伟.烟草普通花叶病的发生和防治[J].农村实用技术, 2003, 10: 22-25
    [15]杨德谦,王凤龙等.我国烟草病毒病的防治研究策略[J].中国烟草科学, 2001, 22 (1): 46-50
    [16] Phillip A., Sharp. RNA interference[J].Genes&Development, Vol. 2001, 15, No. 5: 485-490
    [17] Van den Boogaart T F J Wen., J W Davies, et al. Replicase-derived resistance against Pea early browning virus in Nicotiana benthamiana is an unstable resistance based upon post-transcriptional gene silencing[J]. MPMI, 2001, 14(2): 196-200
    [18] Hassairi A., Masmoudi K., Albouy J., et al. Transformation of two potato cultivars‘Spunta' and‘Claustar' (Solanum tuberosum) with lettuce mosaic virus coat protein gene and heterologous immunity to potato virus Y[J].Plant Science,1998, 136(1): 31-42
    [19] Gargouri-Bouzid R,Jaoua L,Mansour R B,et al.PVY resistant transgenic potato plants expressing the viral coat protein[J].Journal of Plant Biotechnology,2005,7(3):143-150.
    [20] Provvidenti R,TricoliD M.Inheritance of resistance to squash mosaic virus in a squash transformed with the coat protein gene of pathotype 1[J].HortScience,2002,3(3):575-580.
    [21] Lu B.Stubbs G,Culver JN.Coat protein interactions involved in tobacco mosaic tobamovirus cross-protection[J].Virology,1998,248:188-200.
    [22] Bancroft JB.Plant virus structure[J].Adv Virus Res,1970,16:99-135.
    [23] Culver J N.Tobacco mosaic virus assembly and disassembly: determinants in pathogenicity and resistance[J].Annu Rev Phytopathol,2002,40:287-310.
    [24] Schuster TM,Scheele RB,Adams ML,et al.Studies on the mechanism of assembly of tobacco mosaic virus[J].Biophys,1980,32:313-330.
    [25] Bazzini AA,Asurmendi S,Hopp HE,et al.Tobacco mosaic virus and potato virus coat proteins confer heterologous interference to PVX and TMV infection respectively[J].Gen Virol,2006,87:1005-1015.
    [26] Bendahmane M,Chen I,Asurmendi S,et al..Coat protein-mediated resistance to TMV infection of Nicotiana tabacum involves multiple modes of interference by coat protein [J]. Virology,2007,366:107-116.
    [27] Asurmendi S,Berga RH,Smitha T J,et al.Aggregation of TMV CP plays a role in CP functions and in coat-protein-mediated resistance[J].Virology,2007,336:98-110.
    [28] Golemboski DB.Plants transformed with a tobacco mosaic virus nonstructural gene sequence are resistant to the virus[J].Proc Natl Acad Sci USA,1990,87:6311-6320.
    [29] Carr J P, Galdna, et al.Resplicase-mediated resistance to cucumber mosaic virus in transgenic plants involves suppression of both virus replication in the inoculated leaves and long distance movement[J].Virology,1994, 199:439-450.
    [30] Ehrenfeld NrOMANO e,Serrano C.Rep licasemediated resistance against potato leafroll virus in potato desiree plants[J].Biological Research,2004,37:71-85.
    [31] Praveen S,Mishra AK,Dasgup ta A.Antisense suppression of replicase gene expression recovers tomato plants from leaf curl virus infection[J].Plant Science,2005,168:1011-1016.
    [32]郭兴启,吕士恩,朱常香等.利用RNA介导的抗病性获得高度抗马铃薯Y病毒的转基因烟草[J].植物病理学报, 2001, 31 (4): 349-360.
    [33]郭兴启,温孚江,朱常香.转基因植物中RNA介导的病毒抗性研究进展[J].生命科学, 2000, 12 (4): 166-170.
    [34]鲁瑞芳,吕鹏飞,彭学贤.马铃薯Y病毒NIb复制酶基因在转录水平上介导的相对广谱抗病性[J].病毒学报2000, 16 (2): 162-170.
    [35]项瑜,杨兰英,周雪平等.表达马铃薯Y病毒外壳蛋白的转基因烟草的抗病性研究[J].病毒学报, 1995, 11 (2): 158-165.
    [36] Rudolph C,Schreie PH,Uhrig JF.Peptide-mediated broadspectrum plant resistance to tospoviruses[J].Proc Natl Acad Sci USA,2003,100:4429-4436.
    [37] Uhrig JF.Response to Prints:broad virus resistance in transgenic plants[J].Trends Biotechol,2003,21:376-380.
    [38] Lopez-Ochoa L,Ramirez-Prado J,Hanley-Bowdoin L.Peptide aptames that bind to a geminivirus replication protein interfere with viral replication in plant cells. [J]. Virol, 2006, 80: 5841-5855.
    [39] Sanchez Al., varado A., Newmark P A. Double-stranded RNA specifically disrupts gene expression during planarian regeneration [J]. Proceedings of the National Academy of Sciences, 1999, 96: 5049-5055.
    [40] Dougherty W G., Lindbo J A., Smith H A., et al. RNA-mediated virus resistance in transgenic plants[J]. In: exploitation of a cellular pathway possibly involved in RNA degradation. Mol Plant Microbe Interact, 1994, 7(5): 544-555.
    [41] Kim M., Canio W., Wessler S., et al. Developmental changes due to long-distance movement of a homeobox fusion transcript in tomato[J].Science, 2001, 293 (5528): 287-293.
    [42] Marx J . Interfering with gene expression [J] . Science , 2000 ,288 :1370 -1375.
    [43] Fire A , Xu S , Montgomery M K ,et al . Potent and specific genetic interference by double -stranded RNA in caenorhabditis elegans [J] .Nature ,1998 ,391 :806 -811.
    [44] Guo S ,Kemphues K. Par - 1 ,a gene required for establishing polarity in C. elegans embryos ,encodes a putative ser/thr kinase that is asymmetrically distributed [J].Cell ,1995 ,81 :611– 620.
    [45]牛颜冰等.RNA沉默机制及其抗病毒应用[J].中国生物工程杂志, 2004, 24(2): 76-85.
    [46]牛颜冰.烟草抗病毒基因工程研究[D].浙江:浙江大学, 2003
    [47] Paul Ahlquist. RNA-Dependent RNA Polymerases, Viruses, and RNA Silencing [J]. Science, 2002, 296(17): 1270-1275.
    [48] PARRISH S., et al. Functional anatomy of a dsRNA trigger: differential requirement for the two trigger strands in RNA interference [J]. Molecular Cell, 2000, 6: 1077-1089.
    [49]朱俊华,竺晓平,温孚江,白庆荣等.马铃薯Y病毒衣壳蛋白基因片段长度对RNA介导抗病性影响[J].中国科学C辑:生命科学, 2004, 34(1): 23-35.
    [50] ELBASHIR S M., HARBORTH J., LENDECKEL W., et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells[J]. Nature, 2001, 411(6836): 494-500.
    [51] Elbashir S M., Lendeckel W., Tuschl T. RNA interference is mediated by 21-and 22-nucleotide RNAs [J].Genes Dev, 2001, 15(2): 188-205
    [52] Tenllado F., Diaz-Ruiz J R. Double-stranded RNA-mediated interference with plant virus infection [J].Virol, 2001, 75(24): 122-130.
    [53] Sijen T., Wellink J, et al. RNA-mediated virus resistance: role of repeated transgenes and delineation of targeted regions.[J].Plant Cell, 1996 8: 2277–2295.
    [54] Timmons L., Fire A.Specific interference by ingested dsRNA [J].Nature,1998, 395(6) :705-855.
    [55] Thomas C L., Jones L., Baulcombe D C, et al. Size constraints for targeting post-transcriptional gene silencing and for RNA-directed methylation in Nicotiana benthamiana using a potato virus X vector.[J].Plant J., 2001, 25(4) : 417-430.
    [56] Mlotshwa S., Voinnet O., et al. RNA silencing and the mobile silencing signal Plant.[J]. Cell, 2002, 9: 102-105.
    [57] Carmo-Fonseca M., Custodio N., and Calado A. Intranuclear trafficking of messenger RNA, Crit. Rev. Eukaryot.[J].Gene Expr, 1999, 9: 215.
    [58] Palauqui J C., Vaucheret H. Transgenes are dispensable for the RNA degradation step of cosuppression. Proc [J].Natl. Acad. Sci, USA, 1998, 95: 9675-9682.
    [59] Palauqui J C., Elmayan T., et al. Transgene-specific posttranscriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions[J].EMBO J, 1997, 16: 4738–4747.
    [60] Jorgensen R A., et al. an RNA-based information superhighway in plants.[J].Science, 1998, 279: 1486-1488.
    [61] Lucas W J., Yoo B C., Kragler F. RNA as a long-distance information macromolecule in plants[J].Nat Rev Mol Cell Biol, 2001, 2 (11): 849-860.
    [62] Jones L., Ratcliff F., Baulcombe D C., RNA-directed transcriptional gene silencing in plants can be inherited independently of the RNA trigger and requires Met1 for maintenance. [J].Curr. Biol., 2001, 11: 747-758.
    [63] Tavernarakis N., Wang S L., et al. Heritable and controllable interference by dsRNA. [J].Nature Genetics, 2000, 24: 180-185.
    [64] Kennerdell J. R., and Carthrew R. W. Use of dsRNA-mediated genetic interference to demonstrate that fizzied and fizzied2 act in the wingless pathway.[J].Cell, 1998, 95: 1017 -1028.
    [65] Ruiz-Medrano R., Xoconostle-Cázares B., Lucas W J. Phloem long distance transport of CmNACP mRNA: implications for supracellular regulation in plants[J].Development, 1999, 126 (20): 4405-4420.
    [66] Cogoni C., Macino G. Post-transcriptional gene silencing across kingdoms[J].Current Opinion in Genetics & Development, 2000, 10(6): 638-645.
    [67] WaterhouseP.M.and HelliwellCA,2002,Exploring plant genomes by RNA induced genesilencing Nat Rev [J].Genet,4:29-38.
    [68] SerioF.D.,Schob H.,Iglesias A.,Tarina C.,Bouldoir-os E.,and Meins F.J.,2001,Sense and antisense mediated gene silencing in tobacco is inhibited by the same riral suppressors and is associated with accumulation of small RNAs[J].silencing in plants,plant J.,98(11):6506-6515.
    [69] Chuang C.F. and Meyerowitz E.M., 2000 Specific and heritable genetic interference by double-stranded RNA in ARABIDOPSIS Thaliana[J].Proc.Natl.Acad.Sci., USA,97(9):4985-4990
    [70] SmithN.A., SmithS.P.,Wang M.B.,Stoutjesdijk P.,Green A.,and Waterhouse P.M., 2000, Total silencing by intronspliced hairpin RNAs[J].Nature,407(6802):319-322.
    [71] Waterhouse P.M., Wang M.B., and Lough T., 2001, Gene silencing as an adaptive defence against viruses[J].Nature, 411(6839):834-845.
    [72] Helliwell C, and Waterhouse P., 2003, Constructs and methods of high throughput gene silencing in plants [J].Methods, 30(4):289-298.
    [73] Ogita S.,Uefuji H.,Yamaguchi Y.,et al.Producing decaffeinated coffeeplants [J] .Nature, 2003(423):825.
    [74] Kusaba M,Miyahara K,Lida S,et al.Low glutenin content 1:a dominant mutation that suppresses the glutenin multigene family via RNA silencing in rice[J].The plant cell,2003(15):1455-1468.
    [75] Masahiro Nishihara.Expression of the glucuronidase gene in pollen of lily; Tobacco, Nicotiana-rustia,and Peony by particle bombardment[J].Plant Physiol,1993 (102) :357-365.
    [76]颜培强,李丽杰,康宏等.应用RNAi技术培育抗2种病毒病的转基因烟草[J].中国生物工程杂志, 2007, 27(11): 27~33.
    [77] AI S.X.,Quan H.Y.,Ri H.P.,Xian L.,Pei L.H.,et al.Different effects on ACC oxidase gene silencing triggered by RNA interference in transgenic tomato Plant[J]. Cell,2005(23):639-648.
    [78] FedorovY, Anderson EM, Birmingham A, et al. RNA interference [J].,2006, 12 (7): 1188 ~1120.
    [79] Marjori Matzke, Antonius J M., Matzke Jan, et al. RNA: Guiding Gene Silencing [J]. RNA, 2001, 293(10): 1081~1085.
    [80]赫然,刘秋云.RNA干涉与功能基因组[J].生物技术通讯, 2002.3: 202-204
    [81]陈谷,叶长明,李宝健.植物抗病毒基因工程的研究进展[J].生物技术通讯, 1999, 6: 17-24.
    [82]方丽云.世界植物抗病毒基因工程研究进展[J].河南科技, 2000, 9: 18-20.
    [83]程海鹏,朱睦元,金伟等.植物转基因沉默研究进展[J].生物工程进展, 2001, 6: 47-50.
    [84]刘敏,曹毅,蒋彦.利用RNAi技术大规模分析基因功能的研究[J].植物学通报, 2002, 19(4): 491-497.
    [85]陈章良.植物基因工程[M].长春:吉林省科学技术出版社,1994:67-70.
    [86] Bonnet G, Tyagi S, Libchaber A. Thermodynamic basis of the enhanced specificity of structures DNA probes [J].PNAS, 1999, 96:6171-6180.
    [87]邓凡,罗深秋.dsRNA介导的RNA干扰[J].生命的化学, 2001, 4: 268-270
    [88]郭兴启,朱常香,宋云枝.RNA沉默与植物病毒[J].生命科学, 2002, 01: 9-15.
    [89] Nykanen A,Haley B,Zamore P D.ATP requirements and small interfering RNA structure in the RNA interference pathway[J].Cell,2001,107(3):309-325.
    [90] Bernstein E,Caudy A A,Hammond SM,et al.Role for a bidentate ribonuclease in the inititation step of RNA interference[J].Nature,2001,409(6818):363-369.
    [91] Lipidi C,Wei Q,Paterson B M.RNAi as random degradative PCR:siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNA[J].Cell,2001(3),107:297-307.
    [92] Wesley S V., Helliwell C A., Smith N A., et al. Construct design for efficient,effective and high-throughput gene silencing in plants[J].Plant Journal,2001,27(6): 581-593.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700