黄颡鱼性别相关基因Sox9、Ftz-F1和P450arom的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Sox9是与哺乳动物性别分化形成有关的重要基因之一。本文在脑、精巢和卵巢分离和克隆到了两个黄颡鱼Sox9基因,其中从精巢和脑中分离到的序列一致,通过序列比对分析,称Sox9a1;从卵巢中分离到的称Sox9a2。黄颡鱼Sox9a1 cDNA 1604 bp[不包括poly(A)],包括5′非翻译区70 bp,3′非翻译区142 bp,阅读框1392 bp,编码464个氨基酸,计算的蛋白分子量为50.62 kDa,其中99-176个氨基酸为保守的sox-TCF HMG-box,305-351个氨基酸为富含P/Q的结构域,352-464个氨基酸为TA结构域(transcription activation domain)。黄颡鱼Sox9a2全长cDNA 1843 bp[不包括poly(A)],包括5′非翻译区313 bp,3′非翻译区159 bp,阅读框1371 bp,编码457个氨基酸,计算的蛋白分子量为50.24 kDa。其中111-188个氨基酸为保守的sox-TCF HMG-box,321-358个氨基酸为富含P/Q结构域,359-457个氨基酸为TA结构域。黄颡鱼Sox9a1和Sox9a2核苷酸序列的相似性为64%,但阅读框序列的相似性为71%。黄颡鱼Sox9a1和Sox9a2的氨基酸的相似性为65%,黄颡鱼Sox9a1和其他动物Sox9的相似性平均为73%,其中只有与斑马鱼Sox9a相似性较低为61%;而黄颡鱼Sox9a2与这些动物Sox9的相似性平均为67%,由此可见,黄颡鱼Sox9a1和其他动物的相似性要高于Sox9a2和其他动物的相似性。由系统树可见Sox9明显可分成三支,一支包括两栖类、爬行类、鸟类和人Sox9;另外两支为鱼类Sox9,其中鲤鱼Sox9b、黄颡鱼Sox9a2和斑马鱼Sox9b三个为一支;另一支包括虹鳟、黄鳝、鲻鱼、鲀鱼的两个Sox9以及黄颡鱼Sox9a1和斑马鱼Sox9a,该支又明显地把同一鱼类中分离到的两个Sox9分成两个小支,如黄鳝Sox9a1和黄鳝Sox9a2,而斑马鱼的Sox9a和黄颡鱼的Sox9a1分别属于这两个分支。RT-PCR结果显示Sox9a1在雌雄黄颡鱼前脑、心脏、肝脏、脾脏、肾脏和性腺均能检测到其表达,而在肌肉没检测到其表达;Sox9a2只在卵巢检测到,在其他组织均没检测到。说明Sox9a1和Sox9a2的表达存在着组织表达特异性,它们的调控也肯定存在着一定的差异。
     本文分离了黄颡鱼Ftz-F1同源基因,包括Ad4BP/SF-1和LRH-1。在精巢分离和克隆的黄颡鱼Ad4BP/SF-1 cDNA,Ad4BP/SF-1全长cDNA 1986 bp[不包括poly(A)],包括5′非翻译区79 bp,3′非翻译区461 bp,阅读框1446 bp,编码482个氨基酸,计算的蛋白分子量为53.9 kDa。其中22-88个氨基酸为DBD结构域,89-116个氨基酸为Ftz-F1结构域。在肝脏分离到的黄颡鱼LRH-1,LRH-1全长cDNA 1945 bp[不包括poly(A)],包括5′非翻译区207 bp,3′非翻译区238 bp,阅读框1500 bp,编码500个氨基酸,计算的蛋白分子量为57.19 kDa。其中39-105个氨基酸为保守的DBD结构域,106-132个氨基酸为Ftz-F1结构域。另外,还分离到一个没有活性的不含锌指结构和没有AF-2结构域的黄颡鱼LRH-1′,其全长1663 bp,5′非翻译区283 bp,3′非翻译区330 bp,阅读框1050 bp,编码350个氨基酸,计算的蛋白分子量为39.7 kDa。黄颡鱼LRH-1和Ad4BP/SF-1的氨基酸相似性只有59%。黄颡鱼LRH-1和其他动物的LRH-1相似性为79%-85%,和其他动物的SF-1相似性为59%-66%;黄颡鱼Ad4BP/SF-1和其他动物的SF-1为57%-96%,其中和人SF-1只有57%,其相似性低于黄颡鱼LRH-1和人SF-1的相似性60%。Ftz-F1系统树显示可分成两大分支,其中,鱼类SF-1单独聚为一大支,另外一支又分成人等脊椎动物SF-1和LRH-1,提示鱼类SF-1和LRH-1很早就分化了,但人类SF-1和LRH-1则分化稍晚。RT-PCR结果显示黄颡鱼LRH-1除了在肌肉、心脏没检测到外,在脑、肝、脾、肾和性腺中均有表达;本实验使用RT-PCR法在所取组织均没检测到Ad4BP/SF-1的表达,其原因可能是在成鱼组织中表达量比较少,但也有可能是引物不合适。
     P-450芳香化酶(P450arom)是催化雄激素生物合成雌激素的关键酶。本文首次分离和克隆了黄颡鱼卵巢和脑P450芳香化酶基因P450arom A和P450aromB。黄颡鱼P450arom A cDNA全长1914bp[不包括poly(A)],5′端非翻译区13 bp,3′端362 bp,阅读框(Open reading frame,ORF)1539 bp,翻译成513个氨基酸,计算的蛋白质分子量为58.7kDa。P450aromB cDNA全长2260 bp[不包括poly(A)],5′端非翻译区有205bp,3′端555 bp,阅读框(open reading frame,ORF)1500 bp,编码500个氨基酸,计算的蛋白质分子量为56 kDa。黄颡鱼P450aroma和P450aromB cDNA序列相似性为49%,但两者阅读框的相似性为62%。黄颡鱼P450aromA和P450aromB的相似性只有60%;黄颡鱼P450aroma的氨基酸序列与鱼类卵型的同源性比较高,除了黄鳝60%外,其他均在70%以上,和脑型的则比较低为60%左右;相反,脑型P450aromB则和其他鱼类脑型的相似性较高达70%以上,和卵巢型的相似性也只有60%左右;它们与鸡和人P450arom的相似性稍低均为50%左右。从相似性比较可见黄颡鱼P450aromB和P450aromA均与鲶鱼的相似性最高,体现了两者亲缘关系较近。脑型和性腺型芳香化酶基因在芳香化酶高保守区包括Ⅰ-螺旋区、芳香化酶特异保守区Ⅱ和血红素结合区Ⅲ的相似性很高,以人芳香化酶序列为基准,Ⅰ区性腺型的相似性为70%-73%,脑型的为66%-70%;Ⅱ区则高达73%-86%和78%-82%;Ⅲ区则在73%左右。系统发育分析表明P450arom可分为两支,一支包括软骨鱼类、两栖类、爬行类、鸟类和哺乳类,另外一支为除了软骨鱼类外的其他鱼类,并且该支又明显地分为性腺型和脑型P450arom,黄颡鱼P450aromA与鱼类性腺型P450arom属于同一支,而P450aromB与鱼类脑P450arom同一分支,至于这两支芳香化酶是否与在鱼类进化的长河中早期出现的基因组复制有关,还没有直接证据,但现在普遍接受这一解释。荧光实时定量RT-PCR研究结果显示,P450aromA在性腺发育为Ⅱ期鱼的前脑、下丘脑、脑垂体、精巢、肝脏中没检测到其表达,只在卵巢中表达,这说明P450arom A的表达具有组织特异性,并由此可推测其对卵巢发育起着重要作用;而P450aromB在前脑、下丘脑、垂体、卵巢、精巢均有表达,但肝脏没检测到其表达,脑部表达量高于性腺,但性腺发育处于Ⅱ期的雌雄鱼脑部P450aromB的表达总量没显著差异,卵巢中P450aromA的表达量是P450aromB的18.7倍。
     使用荧光定量RT-PCR法测定了性腺发育处于不同阶段的鱼脑、肝、肾和性腺中Sox9a1、Sox9a2、LRH-1、P450aromB和P450aromA的表达。结果,Sox9a1在雌、雄鱼(性腺Ⅳ、Ⅴ期)的肝、脑以及精巢表达量相对较高,在肾和卵巢表达量明显低,其中,雌雄鱼之间脑、肝和肾的表达水平没显著差异,卵巢和精巢之间有显著差异。以雌鱼脑表达量为1,则肝的表达量平均为雌鱼脑的2倍左右,而肾脏的表达量只有30%左右。Sox9a1在精巢的表达量和性腺发育有关,Ⅳ、Ⅴ期精巢中的表达两大约为雌鱼脑的50%左右,但Ⅱ期精巢的表达量是其4倍左右。Sox9a1在发育早期的精巢和卵巢的表达没显著差异。Sox9a2在卵巢各阶段的表达呈现在Ⅲ和Ⅳ期出现高峰,Ⅳ期和Ⅵ期表达量相对较低。LRH-1在各组织表达量测定揭示该基因在卵巢、雌雄鱼的肝以及脑表达量比较高,在肾的表达量比较低。在不同发育阶段卵巢的表达显示在Ⅲ期和Ⅴ期卵巢表达量明显比其他各期高,和Sox9a2有相似的表达模式。P450aromB在雌鱼脑的表达量较雄鱼脑要高,但差异不显著。在卵巢不同发育期,该基因呈现出在Ⅱ期晚表达量开始上升,在Ⅳ期出现高峰,到Ⅴ期、Ⅵ期表达量则下降,从趋势上Ⅲ期的表达量应该比Ⅱ期晚高,但结果并非如此,有待继续验证。黄颡鱼P450aromB在卵巢不同发育期的表达模式和在金鱼和虹鳟的研究结果基本一致。P450aromA的表达量在Ⅱ期晚期、Ⅲ期表达量明显高于Ⅳ期、Ⅴ期和Ⅵ期,Ⅱ期早期和其他各期均没显著性差异,以Ⅱ期早期该基因的表达量为1,则Ⅱ晚期和Ⅲ期分别是其6倍和5倍左右,而Ⅳ期、Ⅴ期和Ⅵ期值有其表达量的10%以下。
     从Sox9a2、LRH-1和P450aromA的表达模式可见,Sox9a2和LRH-1具有类似的表达模式,说明了他们之间存在着调控关系,这和在哺乳类等的研究结果一致,在Ftz-F1的启动子区存在结合Sox9蛋白的序列。但芳香化酶基因的表达和Sox9、LRH-1没明显的相关性,和现有在芳香化酶基因启动子区域存在Sox9和Ftz-F1结合位点存在着不一致,很可能虽然有结合位点,但并不起主要调节作用,但需要进一步实验证实。
Yellow catfish (Pelteobagrus fulvidraco) is a valuable carnivore.that has good flesh quality.There is a market potential for this fish in China, Japan, Korea and SE Asia. In naturalwater, yellow catfish grows slowly, with a small marketable size, seriously influencing itsmarket development. In term of production, the most effective way to increase the yield andefficiency of yellow catfish consists in utilizing the obvious growth difference betweenmale and female yellow catfish, and to maintain mono-sexual cultures, since males grow30%faster than females. However, studies on the molecular mechanism of yellow catfishsex determination still remain unavailable. Especially studies on the integrative regulationmodel. Here we isolated and cloned Sox9 Ftz-F1 and P450arom cDNA, which played keyfunction in vertebrate sex differentiation and gonad development, using RT-PCR and RACEfrom yellow catfish. And then we analyzed their tissue expression pattern, the expressionlevels response to the gonad development period, and their relationship using fluorescentreal time RT-PCR andβ-actin as internal control. Wish. to reveal their tissue expressionmodel and the function in gonad development through our study.
     Sox9 is one of the important genes related to mammal sex differentiation and determination.Two cDNAs encoding sox9 were derived from brain, testis and ovary of yellow catfishusing reverse transcriptase-polymerase chain reaction (RT-PCR) and RACE. Sequenceanalysis revealed the cDNA from testis is as same as from brain, using Blast analysis wecalled it Sox9a1. The cDNA from ovary called Sox9a2. Yellow catfish Sox9a1 cDNA was 1604 bp with 70 bp 5'UTR, 142 bp 3'UTR(excluding poly[A]), and 1 392 bp ORF, whichencodes 464 amino acids and has a Predicted mol wt of 50.62 kDa. Thereinto the stretchfrom 99 to 176 of residues is the highly conserved sox-TCF_HMG-box, from 305 to 351 isPro-and Gin-rich (P/Q) region, 352 to 464 is TA region. Moreover, the Sox9a2 cDNA was1843bp with 313bp 5'UTR, 159bp 3'UTR[excluding poly(A)], and 1371 bp ORF, whichencodes 457 amino acids and has a predicted mol wt of 50.24 kDa. Thereinto the stretchfrom 111 to 188 of residues is the highly conserved sox-TCF_HMG-box, from 321 to 358is the P/Q rich region which is shorter than in Soxal and without the characteristic Pro-andGin-rich, from 359 to 457 residues is TA region which is shorter than Sox9a1. The whole sequence identity is 64%between Sox9a1 and Sox9a2, but the ORF of Yellow catfishSox9a1 shares 71%sequence identity with Sox9a2. The amino, acids sequence identity is65%between Sox9a1 and Sox9a2. Sox9a1 shares average 73%sequence identity withother fish speciesand animals including rice field eel (M. albus),common carp (C. carpio),medaka (O.latipes),rainbow trout (O.mykiss),zebrafish (D. rerio),red fin east puffer fish(T.rubripes),and X. laevis, A.mississippiensis, chicken (G. gallus), and human (H. sapiens),with the most smallest similarity 61%with zebrafish Sox9a. And Sox9a2 shares 67%sequence identity with above mentioned animals. So the identities between Sox9a1 andother animals were higher than those of Sox9a2 and other animals.
     The phylogenetic tree of Sox9 consists three obvious branches, one of which includingSox9 of amphibian species, reptilian specie, birds and mammals; teleosts Sox9 weredivided into two other.branches, one including common carp Sox9b, yellow catfish Sox9a2and zebrafish Sox9b, the other branch has two smaller branches, which comprised otherfishes Sox9a or Sox9a1 and Sox9b or Sox9a2 including rainbow trout, rice field eel,medaka, pufferfish separated, yellow catfish Sox9a1 and zebrafish Sox9a belong to thesetwo smaller branches respectively. According to the unrooted tree, the farthest distance wasbetween zebrafish Sox9b and other animals Sox9, and thenext is yellow catfish Sox9a2.Yellow catfish Sox9a1 also. had farther distance with Sox9a1 of rainbow trout, medaka andrice field eel which were in the same branch. The yellow catfish Sox9a1 was detected inbrain, heart, liver, spleen and gonad of female and male fish using RT-PCR, but not inmuscle, otherwise Sox9a2 was only detected.in ovary. This indicated that there were tissuesspecific expression pattern of Sox9a1 and Sox9a2 and there were differences in theirregulation mechanism.
     The fushi tarazu factor-1 (FTZ-F1) is a member of the nuclear receptor Superfamily andwas originally found as a regulator of the Drosophila homeobox segmentation gene FTZ.These genes were nominated as a sub-superfamily by nuclear receptor committee in 1999,and this sub-family have be classified two sub-group, one is NR5A1 including SF-1/Ad4BP(steroidogenic factor-1/adrenal 4 binding protein), another is NR5A2 including LRH/FTF(liver receptor hormone/a-fetoprotein transcription factor), which regulates a-fetoproteinexpression and involved in cholesterol metabolism. The mammal SF-1/Ad4BP genes areimportant regulators of steroid biosynthesis by controlling transcription ofmany P450enzymes including P450scc、3β-HSD and P450arom. They are expressed in steroidogenic tissues and are involved in the embryonic development of adrenals and gonads. In adultmammals, LRH-1 expression is confined principally to tissues of endodermal origin, suchas the liver, pancreas and intestine-justifying its functional classification as anenterohepatic NR. Recently, in several species LRH-1 was highly expressed in ovary. Thissuggests LRH-1 and SF-1 are involved in the ovarian steroidogenesis. Here we isolatedyellow catfish Ad4BP/SF-1 cDNA, which is 1 986 bp with 79 bp 5'UTR, 461 bp3'UTR(excluding poly[A]), 1 446 bp ORF, which encodes 482 amino acids and has apredicted mol wt of 53.9 kDa. The conserved DBD domain was in residues from 22 to 88,and Ftz-F1 box was in 89 to 116 residues. Yellow catfish LRH-1 cDNA is 1945 bp with207 bp 5'UTR, 238 bp 3'UTR[excluding poly (A)], 1500 bp ORF, which encodes 500amino acids and has a predicted tool wt of 57.19 kDa. DBD domain was in residues from39 to 105, and Ftz-F1 box was in 106 to 132. At the same time of isolation LRH-1, we alsogot an inactive LRH-1'in which the zinc-finger domain and AF-2 motif is absent. TheLRH-1'is 1663 bp with 283 bp 5'UTR, 330 bp 3'UTR, 1050 bp ORF, which encodes 350amino acids and had a predicted tool wt of 39.7 kDa. Yellow catfish Ad4BP/SF-1shares48%sequence identity with P450aromB, the sequence similarities are 60%in ORE Theamino acid sequence identity is 59%between LRH-1 and Ad4BP/SF-1. The LRH-1 shares79%-85%sequence identity with LRH-1 of other animals, but only 59%-66%identity withthe SF-1. however, yellow catfish Ad4BP/SF-1 shares 57%-96%sequence identity withSF-1 of other animals, and only 57%with human SF-1 which is lower than 60%betweenyellow catfish LRH-1 and human SF-1. RT-PCR analysis indicated yellow catfish LRH-1was detected in almost all tissues except muscle and heart. Unfortunately yellow catfishAd4BP/SF-1 was not detected using RT-PCR in all tissues used in our experiment. Maybethe expression of Ad4BP/SF-1 in adult fish was hardly detected or the primers used inexperiment were not proper.
     Aromatase cytochrome p450 (P450arom; the product of the CYP19 gene) is therate-limiting enzyme which catalyzes the conversion of androgens to estrogens. Here wereport the cloning of two types of cDNA encoding P450arom derived.from yellow catfish(Pelteobagrus fulvidraco) brain, and ovary, using RT-PCR, and RACE. The brain-derivedcDNA Was 2260 bp with 205 bp 5'UTR, 555 bp 3'UTR[exclUding poly(A)] and 1500 bpORF, which encodes 500 amino acids and has a predicted mol wt of 56 kDa. Moreover, theovarian cDNA was 1914 bp with 13 bp 5'UTR, 362 bp 3'UTR[excluding poly(A)] and1539bp ORF, which encodes 513 amino acids and has a predicted mol wt of 58.7 kDa. Yellow catfish P450aromA shares 49%sequence identity with P450aromB, the sequencesimilarities are 62%and 3%in ORF and 3'UTR respectively. The amino acid sequenceidentity is 60%between P450aromA and P450aromB. The P450aromA shares 61%-90%sequence identity with ovarian aromatases of other fish species, but only 60%identity withthe homologous P450aromB, 51%and 52%with chicken ovarian and human beingplacenta aromatases. And P450aromB shares 59%-85%sequence identity withbrain-derived aromatases of other fish species, about 50%with human being placenta andchicken ovarian aromatases. But the percentage of identity/similarity was higher in theregions of high homology, including theⅠ-helix, an aromatase-specific conserved regionⅡ,and the heme-binding regionⅢ, vs. human P450arom, which were 67%~96%, 78%~86%and 78%~100%respectively. Phylogenetic tree of the P450arom shows two main branches,one of them clusters all teleosts (bonny fishes) leaving apart the elasmobranches(cartilaginous fishes) and the other branch includes the tetrapods and the elasmobranches.The teleosts group bifurcates into two clear branches, one of them containing the brainvariants of aromatase and the other one the ovarian variants. It is acceptable thatduplication of an ancestral gene early in the teleostean lineage results in the fishP450aromB and A paralogs though there is no directive evidence. The yellow catfishP450arom are the closest with channel catfish. This result is consistent with theresult ofcontradiction classification. The fluorescent real-time quantity RT-PCR was developed toanalyze tissue-specific expression of P450arom B and P450arom A in adult yellow catfish,and measure mRNA relative expression leveIs withβ-actin as internal standard. B-isoformwas preferentially expressed in brain of both males and females but also present at muchlower levels in ovary, testis, however, A-isoform expression was restricted to ovary, andthere was no expression either A-or B-isoform in liver. The high to low order of P450aromB relatively, expression level in tissues was female fish hypothermia, male fishhypothalamus, female fish pituitary, male fish pituitary, male fish fore-brain, female fishfore-brain, ovary, testis. However, there was no significant difference of the totalexpression level in brain between male fish and female fish. The comparison of P450aromA and P450arom B expression in ovary indicated the P450arom A was 18.7 times ofP450arom B.
     We detected the expression levels of Sox9a1、Sox9a2、LRH-1、P450aromB and P450aromAin brain, liver, kidney and gonad of yellow catfish which was at different developed phases of gonad with the approaches of fluorescent quantitative RT-PCR. Comparison the Sox9a1levels between female and male yellow catfish with the gonad development of phaseⅣandⅤshowed that Sox9a1 was high in the liver, brain and testis, but low in kidney andovaries. There is no significant difference between male and female yellow catfish brain.The Sox9a1 expression level of testis at phaseⅡwas higher than phaseⅣandⅤ. Thisindicated that Sox9a1 played important role in the early development of testis. Expressionlevel of Sox9a2 had two peaks in ovary with phaseⅢandⅤ, and low in phaseⅣandⅥ.The expression levels of LRH-1 in different organs revealed that LRH-1 expressed highquantity in ovary, liver and brain, but low in kidney. The levels were significantly higher inthe ovary with phaseⅢandⅤthan in ovary with other development phases. Thisexpression pattern was consistent with Sox9a2. The expression level of P450aromB in maleyellow catfish brain was higher than in female fish, however, the difference was no distinct.During the different developing phases of ovary, expression of this gene ascended in thelate phaseⅡand peak appeared in phaseⅣ, then the level decreased in phaseⅤand phaseⅥ. The trend is that expression in phaseⅢshould be higher than that in late phaseⅡ,however, the result didn't accord to this trend, which needed to be identify in future. Thisexpression pattern of P450aromB is the same with the result of goldfish.and rainbow trout.The expression levels of P450aromA in ovary with lateⅡandⅢphase were higher thanthe ovary withⅣ,Ⅴ, andⅥphases. There was no significant difference between earlyⅡphase ovary and ovary with other development phases. The expression levels ofP450aromA in ovary with lateⅡandⅢphase were 6 and 5 times, of earlyⅡphase ovaryrespectively, however, the expression level was below 10%inⅣ,Ⅴ, andⅥphases.
     It was observed from the expression pattern of Sox9a2、LRH-1 and P450aromA, Sox9a2and LRH-1 had the similar expression pattern; it indicated that regulatory relationship waspresent between them. The similar results were found in mammals. There are bindingsequences of Sox9 protein in the region of Ftz-F1 promoter. However, there is no distinctcorrelation in the expression of aromatic enzyme, Sox9 and LRH-1.
引文
Aesoy R, Mellgren G, Morohashi K & Lund J. Activation of cAMP-dependent protein kinase increases the protein level of steroidogenic factor-1 [J]. Endocrinology, 2002,143:295—303.
    Afonso LO, Wassermann GJ, Terezinha de Oliveira R. Sex reversal in Nile tilapia (Oreochromis niloticus) using a nonsteroidal aromatase inhibitor[J]. J Exp Zool, 2001,290(2): 177—181.
    Almeida-Toledo LF, Foresti F. Morphologically differentiated sex chromosomes in neotropical freshwater fish[J]. Genetica, 2001,111:91—100.
    Amores A, Force A, Yan YL, Wang, YL, Fritz A, Amemiya C, Lynch M, Prince V, Ho R, Ekker M, and Postlethwait J. Zebrafish hox clusters and vertebrate genome evolution[J]. Science, 1998, 282: 1711-1714.
    Anderson E, Borg B, Lambert JGD. Aromatase activity in brain and pituitary of immature and mature Atlantic salmon (Salmo salar L.) parr[J]. Gen Comp Endocrinol, 1988, 72: 394-401.
    Arango NA, Lovell-Badge R, Behringer RR. Targeted mutagenesis of the endogenous mouse Mis gene promotor: in vivo definition of genetic pathways of vertebrate sexual development[J]. Cell, 1999, 99(4):409—419.
    Argentaro A, Sim H, Kelly S. A Sox9 Defect of calmodulin-dependent nuclear import in campomelic dysplasia/autosomal sex reversal[J]. J Biol Chem, 2003, 287(36):33839—33847.
    Bakke M and Lund J. Mutually exclusive interactions of two nuclear orphan receptors determine activity of a cyclic adenosine 3',5'-monophosphate-responsive sequence in the bovine CYP17 gene[J]. Mol Endocrinol, 1995, 9:327—339.
    Baroiller J F, Chourrout D, Fostier A. Temperature and sex chromosomes govern sex ratios of the mouthbro ding cichlid fish Oreochroomis niloticus[J]. J Exp Zool, 1995, 273:216—233.
    Bassett MH, Zhang Y, Clyne C, White PC and Rainey WE. Differential regulation of aldosterone synthase and 11beta-hydroxylase transcription by steroidogenic factor-1[J]. J Mol Endocrinol, 2002, 28:125-135.
    Becker-Andre M. Identification of nuclear receptor mRNAs by RT-PCR amplification of conserved zinc-finger motif sequences[J]. Biochem Biophys Res Commun, 1993,194:1371—1379
    Bilinska B, Schmalz-Fraczek B, Sadowska BJ. Immunolocalization of cytochrome P450 aromatase and oestrogen receptors in bank vole testicular cells [J]. Acta Histochem, 2000, 102: 167—181.
    Bland ML, Jamieson CA, Akana SF, Bornstein SR, Eisenhofer G, Dallman MF and Ingraham HA: Haploinsufficiency of steroidogenic factor-1 in mice disrupts adrenal development leading to an impaired stress response [J]. Proc Natl Acad Sci USA, 2000, 97:14488—14493.
    Boerboom D, Pilon N, Behdjani R, Silversides DW, Sirois J. Expression and regulation of transcripts encoding two members of the NR5A nuclear receptor subfamily of orphan nuclear receptors, steroidogenic factor-1 and NR5A2, in equine ovarian cells during the ovulatory process[J]. Endocrinology, 2000, 141: 4647—4656.
    Bohan A, Chen WS, Denson LA, Held MA, and Boyer JL. Tumor necrosis factor a-dependent upregulation of Lrh-1 and Mrp3(Abcc3) reduces liver injury in obstructive cholestasis [J]. J Biol Chem, 2003,278: 36688—36698
    Borg B, Timmers RJM, Lambert JGD. Aromatase activity in the brain of the three-spined stickleback, Gasterosteus aculeatus: 1. Distribution and effects of season and photoperiod [J]. J Exp Biol, 1987, 47:63-68.
    Bull JJ. 1983. Evolution of Sex Determining Mechanisms. Benjamin/ Cummings, Menlo Park, CA.
    Bulun SE, Sebastian S, Takayama K, Suzuki T, Sasano H, Shozu M. The human CYP19 (aromatase P450) gene: update on physiologic roles and genomic organization of promoters [J]. Journal of Steroid Biochemistry & Molecular Biology, 2003, 86:219—224.
    Cai yan-zhi, Cai ye-qiang, He chang-ren. The study on the biology of yellow catfish (Pelteobagrus fulvidraco).2003,http://www.bjfisheries.net/bjfish/view fish_detail.php?id=1073962380&mn=20036.
    Callard GV, Peter Z, Ryan KJ. Estrogen synthesis in vitro and in vivo in the brain of a marine teleost {Myoxocephalus) [J]. Gen Comp Endocrinol, 1981,29: 14—20.
    Callard GV, Peter Z. Brain estrogen biosynthesis and estrogen conjugating system in the sculpin {Myoxocephalus) [J]. Bull Mt Desert Isl Biol Lab Rep, 1982, 22:41—43.
    Callard GV, Pudney JA, Mak P, et al. Stage-dependent changes in steroidogenic enzymes and estrogen receptors during spermatogenesis in the testis of dogfish, Squalus acanthias[J]. Endocrinology, 1985,117(4): 1328-1335.
    Callard GV, Tchoudakova AV, Kishida M, Wood E. Differential tissue distribution, developmental programming, estrogen regulation and promoter characteristics of cyp19 genes in teleost fish[J]. Journal of Steroid Biochemistry & Molecular Biology, 2001, 79: 305-314
    Callard GV. Autocrine and paracrine role of steroids during spermatogenesis: studies in Squalus acanthias and Necturus maculosus[J]. J Exp Zool, 1992, 261: 132—142.
    Carlone DL and Richards JS. Functional interactions, phosphorylation, and levels of 3',5'-cyclic adenosine monophosphateregulatory element binding protein and steroidogenic factor-1 mediate hormone-regulated and constitutive expression of aromatase in gonadal cells[J]. Mol Endocrinol 1997,11: 292—304.
    Carreau S, Biluska B, Levallet J. Male germ cells: a new source of estrogens in the mammalian testis[J]. Annales d'Endocrinologie, 1998, 59 (2): 79—92.
    Chang XT, Kobayashi D. Isolation and characterization of the cDNA encoding the tilapia (Oreochromis niloticus) cytochrome P450 aromatase (P450arom): changes in P450arom mRNA protein and enzyme activity in ovarian follicles during oogenesis[J]. J Mol Endocrinol, 1997,189(1): 57—66.
    Chen SA, Besman MJ, Sparkes RS, Zollman S, Klisak I, Mohandes T, Hall PF, Shively JE. Human aromatase: cDNA cloning, southern blot analysis and assignment of the gene to chromosome 15[J]. DNA, 1988,7(1): 27-38.
    ChenW, Owsley E, Yang Y, Stroup D, Chiang John YL. Nuclear receptor-mediated repression of human cholesterol 7a-hydroxylase gene transcription by bile acids[J]. J Lipid Res, 2001, 42: 1402—1412.
    Chiang EF, Pai C, Wyatt M, Yan YL, Postlethwait J, and Chung B. Two Sox9 Genes on Duplicated Zebrafish Chromosomes: Expression of Similar Transcription Activators in Distinct Sites[J]. Developmental Biology, 2001, 231: 149—163.
    Clemens JW, Lala DS, Parler KL, Richards JS. Steroidogenic factor-1 binding and transcriptional activity of the cholesterol side-chain cleavage promoter in rat granulose cells[J]. Endocrinology, 1994, 134: 1499—1508.
    Clyne CD, Speed CJ, Zhou J, and Simpson ER. Liver receptor homologue-1 (LRH-1) regulates expression of aromatase in preadipocytes[J]. J Biol Chem, 2002, 277: 20591—20597.
    Collignon J, Sockanathan S, Hacker A. A comparison of the properties of Sox-3 with Sry and two related genes, Sox-1 and Sox2 [J]. Development, 1996, 122: 509—520.
    Colvin JS, Green RP, Schmahl J. Male-to-female sex reversal in mice lacking fibroblast growthfactor 9[J]. Cell, 2001,104 (6): 875-889.
    
    Conover DO, Kynard BE. Environmental sex determination: interaction of temperature and genotype in a fish [J]. Science, 1981, 213: 577-579.
    Corbin JC, Graham-Lorence S, McPhaul MJ. Isolation of a full-length cDNA insert encoding human aromatase system cytochrome P450 and its expression in non-steroidogenic cells[J]. Proc Natl Acad Sci USA, 1988, 85: 8948-8953.
    Coriat AME, Valleley WJM. Chromosomal and temperature dependent sex determination: the search for a conserved mechanism [J]. Journal of Experimental Zoology, 1994, 270: 1112—1116.
    Crawford PA, Sadovsky Y and Milbrandt J: Nuclear receptor steroidogenic factor 1 directs embryonic stem cells toward the steroidogenic lineage [J]. Mol Cell Biol, 1997, 17: 3997—4006.
    De Martino S. Yan Y L, Jowett T, el al. Expression of Soxll gene duplicates in zebrafish suggests the reciprocal loss of an cestral gene expression patterns in development[J]. Dev Dyn, 2000, 217(3): 279—292.
    De Santa Barbara P, Bonneaud N, Boizet B, Desclozeaux M, Moniot B, Sudbeck P, Scherer G, Poulat F and Berta P. Direct interaction of SRY-related protein SOX9 and steroidogenic factor 1 regulates transcription of the human anti-Mullerian hormone gene [J]. Mol Cell Biol, 1998, 18: 6653—65.
    De Santa Barbara P, Moniot B, Poulat F, Berta P. Expression and subcellular localization of SF-1, SOX9, WT1, and AMH proteins during early human testicular development [J]. Dev Dyn, 2000, 217: 293-298.
    Diano S, Horvath TL, Mor G, Register T, Adams M, Harada N, Naftolin F. Aromatase and estrogen receptor immunoreactivity in the coronory arteries of monkeys and human subjects [J]. Menopause, 1999,6(1)21-28.
    Donaldson EM, Hunter GA. Sex control in fish with particular reference to salmonids [J]. Can. J. Fish. Aquat. Sci. 1982, 39, 99—110.
    
    Doody KJ, Carr BR. Aromatase in human fetal tissues [J]. Am J Obstet Gynecol, 1984, 10: 241—244.
    Ellinger-Ziegelbauer H, Hihi AK, Laudet V, Keller H, Wahli W, Dreyer C. FTZ-Fl-related orphan receptors in Xenopus laevis: transcriptional regulators differentially expressed during early embryogenesis [J]. Mol Cell Biol, 1994,14: 2786—2797.
    Ellinger-Ziegelbauer H, Glaser B, Dreyer C. A naturally occurring short variant of the FTZ-Fl-related nuclear orphan receptor xFF1rA and interactions between domains of xFFIRa [J]. Mol Endocrinol, 1995,9:872—886.
    Falender AE, Lanz R, Malenfant D, Belanger L, Richards JS. Differential expression of steroidogenic factor-1 and FTF/LRH-1 in the rodent ovary[J]. Endocrinology, 2003, 144: 3598—3610.
    Ford CE, Jones KW, Miller OJ, Mittwoch U, Penrose LS., Ridler M, and Shapiro A. The chromosomes in a patient showing both mongolism and the Klinefelter syndrome[J]. Lancet, 1959, 1: 709—710.
    Fournet-Dulguerov N, MacLusky NJ, Leranth CZ, Todd R, Mendelson CR, Simpson ER, Naftolin FF. Immunohistochemical localization of aromatase cytochrome P450 and estradiol dehydrogenase in the syncytiotrophoblast of the human placenta[J]. J Clin Endocrinol Metabol, 1987, 65 : 757—764.
    Fowkes RC and Burrin JM. New perspectives on endocrine signalling Steroidogenic factor-1: a key regulator of gonadotroph gene expression[J]. Journal of Endocrinology, 2003, 177: 345—350.
    Fowkes RC, Burch J & Burrin JM. Stimulation of extracellular signal-regulated kinase by pituitary adenylate cyclase-activating polypeptide in T3-1 gonadotrophs[J]. Journal of Endocrinology, 2001,171: R5-R10.
    Fukada S, Tanaka M, Matsuyama M. Characterization and expression of cDNA encoding the medaka (Oryzias latipes) ovarian follicle cytochrome P450 aromatase[J]. Mol Reprod Dev, 1996, 45(3): 285-290.
    Galarneau L, Drouin R, Belanger L. Assignment of the fetoprotein transcription factor gene (FTF) to human chromosome band 1q32.11 by in situ hybridization[J]. Cytogenet Cell Genet, 1998, 82: 269-270.
    Galarneau L, Pare J-F, Allard D, Hamel D, Levesque L, Tugwood JD, Green S, Belanger L, The a1-fetoprotein locus is activated by a nuclear receptor of the drosophilia FTZ-F1 family[J]. Mol Cell Biol, 1996,16: 3853-3856.
    Gallad GV, Petro Z, Ryan KJ. Phylogenetic distribution of aromatase and other androgen-coverting enzymes in the central nervous system [J]. Endocrinology, 1978,103: 2283—2290.
    Gelinas D, Pitoc GA, Callard GV. Isolation of goldfish brain cytochrome P450 aromatase cDNA: mRNA expression during the seasonal cycle and after steroid treatment [J]. Mol Cell Endocrinol, 1998, 138: 81-93.
    
    Gilbert S, Galarneau L, Lamontagne A. The hepatitis B virus core promoter is strongly activated by the . liver nuclear receptor fetoprotein transcription factor or by ectopically expressed steroidogenic factor 1[J]. J Virol, 2000, 74: 5032-5039
    Gizard F, El-Alfy M, Duguay Y, Lavallee B, DeWitte F, Staels B, Beatty BG and Hum DW. Function of the transcriptional regulating protein of 132 kDa (TReP-132) on human P450scc gene expression[J]. Endocr Res 2002, 28:559—74.
    Gonzalez A, Pifferrer F. Aromatse activity in the European sea bass (Dicentrarchus labrax L.) brain. Distribution and changes in relation to age, sex, and the annual reproductive cycle[J]. Gen Comp Endocrinol, 2003,132: 223—230.
    Grodin JM, Siiteri PK, MacDonald PC. Source of estrogen production in postmenopausal women[J]. J. Clin. Endocrinol Metabol, 1973, 36: 207—214.
    Gubbay J, Collignon J, Koopman R. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes[J]. Nature, 1990, 346:245-250.
    Guiguen Y, Baroiller JF, Ricordel MJ. Involvement of estrogens in the process of sex differentiation in two fish species: The rainbow trout (Oncorhynchus mykiss) and a tilapia (Oreochromis niloticus) [J]. Mol Reprod, 1999, 54(2): 154-162.
    Habert R, Lejeune H, Saez JM. Origin, diferentiation and regulation of fetal and adult Leydig cells[J]. Mol Cell Endocrinol, 2001, 179: 47—74.
    Haisenleder DJ, Yasin M, Dalkin AC, Gilrain J & Marshall JC. GnRH regulates steroidogenic factor-1 (SF-1) gene expression in the rat pituitary [J]. Endocrinology, 1996, 137: 5719—5722,
    Hammer GD and Ingraham HA. Steroidogenic factor-1: its role in endocrine organ development and differentiation [J]. Front Neuroendocrinol 1999, 20:199—223.
    Hanley NA, Rainey WE, Wilson DI, Ball SG and Parker KL. Expression profiles of SF-1, DAX1, and CYP17 in the human fetal adrenal gland: potential interactions in gene regulation[J]. Mol Endocrinol, 2001,15: 57—68.
    Harada N, Yamada K, Saito K, Kibe N, Dohmae S, Takagi Y. Structural characterization of the human estrogen synthetase (aromatase) gene[J], Biochem Biophys Res Commun, 1990, 166: 365—372.
    Harris AN and Mellon PL. The basic helix-loop-helix, leucine zipper transcription factor, USF (upstream stimulatory factor), is a key regulator of SF-1 (steroidogenic factor-1) gene expression in pituitary gonadotrope and steroidogenic cells [J]. Mol Endocrinol, 1998, 12:714—26.
    Hinshelwood MM, Repa JJ, Shelton JM, Richardson JA, Mangelsdorf DJ, Mendelson CR. Expression of LRH-1 and SF-1 in the mouse ovary: localization in different cell types correlates with differing function[J]. Mol. Cell. Endocrinol, 2003, 207: 39—45.
    Hu MC, Hsu NC, Pai CI, Wang CK and Chung B. Functions of the upstream and proximal steroidogenic factor 1 (SF-l)-binding sites in the CYP11A1 promoter in basal transcription and hormonal response [J]. Mol Endocrinol, 2001, 15: 812—818.
    Hua Su, Chris Lau YF. Identification of the trscriptional unit,structural organization and promotor sequence of the human sex determining region Y (SRY)gene using reverse genetic approach[J]. AMJ Hum Genet, 1993, 52(132):24-30
    Huang B, Wang S, Ning Y. Autosomal XX sex reversal caused by duplication of SOX9[J]. Am J Med Genet, 1999, 87(4): 349-353.
    Hunter GA, Donaldson EM. 1983. Hormonal sex control and its application to fish culture. In: Hoar WS, Randall DJ, Donaldson EM. (Eds.), Fish Physiology, IXB. Academic Press, New York, NY, pp. 223-303.
    Ijiri S, Berard C, Trant JM. Characterization of gonadal and extra-gonadal forms of the cDNA encoding the Atlantic stingray (Dasyatis sabina) cytochrome P450 aromatase (CYP19)[J]. Mol Cell Endocrinol, 2001,164(1-2): 169-181.
    Ijiri S, Kazeto Y, Lokman PM. Characterization of a cDNA encoding P-450 aromatase (CYP19) from Japanese eel ovary and its expression in ovarian follicles during induced ovarian development[J]. Gen Comp Endocrinol, 2003,130:190—203.
    Ijiri S, Kazeto Y, Takeda N. Changes in serum steroid hormones and steroidogenic ability of ovarian follicles during artificial maturation of cultivated Japanese eel, Anguilla Japonica[J]. Aquaculture, 1995, 135(1-3): 3-16.
    Ikeda Y, Lala DS, Luo X, Kim E, Moisan MP and Parker KL. Characterization of the mouse FTZ-F1 gene, which encodes a key regulator of steroid hydroxylase gene expression [J]. Mol Endocrinol, 1993, 7: 852-60.
    Ikeda Y, Shen WH, Ingraham HA and Parker KL. Developmental expression of mouse steroidogenic factor-1, an essential regulator of the steroid hydroxylases [J]. Mol Endocrinol, 1994, 8:654—662.
    Inokuchi A, Hinoshita E, Iwamoto Y, Kohno K, Kuwano M, Uchiumi T. Enhanced expression of the human multidrug resistance protein 3 by bile salt in human enterocytes. A transcriptional control of a plausible bile acid transporter [J]. J Biol Chem, 2001, 276: 46822—46829.
    Jacob AL and Lund J. Mutations in the activation function-2 core domain of steroidogenic factor-1 dominantly suppresses PKA-dependent transactivation of the bovine CYP17 gene[J]. J Biol Chem, 1998,273:13391 — 13394.
    Jacobs PA, and Ross A. Structural abnormalities of the Y chromosome in man[J]. Nature, 1966, 210: 352-354.
    Jacobs PA, and Strong JA. A case of human intersexuality having a possible XXY sex determining mechanism [J]. Nature, 1959, 183: 302—303.
    
    Janulis L, Bahr JM, Hess RA. Rat testicular germ cells and epididymal sperm contain active P450 aromatase [J]. J Androl, 1998, 19: 65—71.
    Kao YC, Cam LL, Laughton CA, Zhou D, Chen S. Binding characteristics of seven inhibitors of human aromatase: a site-directed mutagenesis study. Cancer Res, 1996, 56: 3451—3460.
    Kawano KI, Miura I, Morohashi K, Takase M, and Nakamura M. Molecular cloning and expression of the SF-l/Ad4BP gene in the frog, Rana rugosa [J]. Gene, 1998, 222: 169—176
    Kent J, Wheatley SC, Andrews JE, Sinclair AH, Koopman P. A male-specific role for SOX9 in vertebrate sex determination [J]. Development, 1996, 122: 2813—2822.
    Kishida M and Callard GV. Distinct cytochromome P450 aromatase isoforms in zebrafish (Danio rerio) brain and ovary are differertially programmed and estrogen regulated during early development [J]. Endocrinology, 2001, 142(2): 740-750.
    Kitano T, Takamune K, Kobayashi T, Nagahama Y, Abe SI. Suppression of P450 aromatase gene expression in sex-reversed males produced by rearing genetically female larvae at a high water temperature during a period of sex differentiation in the Japanese flounder (Paralichthys olivaceus) [J]. J Mol Endocrinol, 1999, 23(2): 167-176.
    Koopman P, Gubbay J, Vivian N, Goodfellow P, Lovell-Badge R. Male development of chromosomally female mice transgenic for Sry [J]. Nature, 1991, 351:117—121.
    Koopman P, Munsterberg A and Capel B. Expression of a candidate sex determining gene during mouse testis differentiation [J]. Nature,. 1990, 348:450-452.
    Kudo T and Sutou S. Molecular cloning of chicken FTZ-F1-related orphan receptors [J]. Gene, 1997,197: 261-268
    Kwon. JY, McAndrew BJ, Penman DJ. Cloning of brain aromatase gene and expression of brain and ovarian aromatase genes during sexual differentiation in genetic male and female Nile tilapia Oreochromis niloticus [J]. Mol Reprod Dev, 2001, 59(4): 359—370.
    Lahn BT, Pearson NM, Jegalian K. The human Y chromosome, in the light of evolution [J]. Nature Reviews Genetics, 2001,2: 207—216.
    Lambert JGD, Van Den Hurk R. Localization of aromatase activity in the brain of the rainbow trout (Salmo gairdneri) In: Ridher CJJ, Goos HJT, eds. Reproductive physiology of fish[M]. Pudoc Wageningen, 1982, p57.
    Lanoux MJ, Cleland WH, Mendelson CR, Carr BR, Simpson ER. Factors affecting the conversion of androstenedione to estrogens by human fetal hepatocytes in primary monolayer culture [J]. Endocrinology, 1985, 117: 361-368.
    Lavorgna G, Ueda H, Clos J, Wu C. FTZ-F1, a steroid hormone receptor-like protein implicated in the activation of fushi tarazu [J]. Science, 1991, 252: 848—851.
    Le T and Schimmer BP. The regulation of MAPKs in Y1 mouse adrenocortical tumor cells [J]. Endocrinology, 2002,142: 4284—4287.
    Lee YH, Yueh WS, Du JL. Aromatase inhibitors block natural sex change and induce male function in the protandrous black porgy, Acanthopagrus schlegeli Bleeker: Possible mechanism of natural sex change[J]. Biol Reprod, 2002, 66(6): 1749- 1754.
    Leers-Sucheta S, Morohashi K, Mason J, Melner M. Synergistic activation of the human type 3b-hydroxysteroid dehydrogenase/D5-D4 isomerase promoter by the transcription factor steroidogenic factor-1/adrenal 4-binding protein and phorbol ester [J]. J Biol Chem, 1997, 272: 7960-7967.
    
    Lephart ED. A review of brain aromatase cytochrome P450 [J]. Brain Res Reviews, 1996, 22: 1—26.
    Levallet J, Bilinska B, Mittre H. Expression arid immunolocalization of functional cytochrome P450 aromatase in mature rat testicular cells [J]. Biol reprod, 1998, 58:919-926.
    Li M, Xie YH, Kong Y, Wu X, Zhu L and Wang Y. Cloning and characterization of a novel human hepatocyte transcription factor, hBlF, which binds and activates enhancer II of hepatitis B virus [J]. J Biol Chem, 1998,273:29022-29031.
    Lin W, Wang HW, Sum C, Liu D, Hew CL, Chung B. Zebrafish ftz-fl gene has two promoters, is alternatively spliced, and is expressed in digestive organs [J]. Biochem, 2000,348: 439—446.
    Liu D, Le Drean Y, Ekker M, Xiong F and Hew CL. Teleost FTZ-F1 homolog and its splicing variant determine the expression of the salmon gonadotropin IIb subunit gene [J]. Mol Endocrinol, 1997,11: 877—890.
    Liu DL, Liu WZ, Li QL, Wang HM, Qian D, Treuter E, Zhu C. Expression and functional analysis of liver receptor homologue 1 as a potential steroidogenic factor in rat ovary [J]. Biol Reprod, 2003, 69:508-517.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method [J]. Methods, 2001, 25:402—408.
    Luo X, Ikeda Y and Parker KL. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation [J]. Cell, 1994,77:481—90.
    Lynch PJ, Lala SD, Peluso JJ, Luo W, Parker LK, White AB. Steroidogenic factor 1, an orphan nuclear receptor, regulates the expression of the rat aromatase gene in gonadal tissues [J]. Mol Endocrinol, 1993, 7: 776-786.
    Majdic G, Young M, Gomez-Sanchez E, Anderson P, Szczepaniak LS, Dobbins RL, McGarry JD and Parker KL. Knockout mice lacking steroidogenic factor 1 are a novel genetic model of hypothalamic obesity [J]. Endocrinology, 2002, 143:607—614.
    Malyka GB, Lynda L, Constantinos CM, Adelino VMC, Silvia Z, Glen ES. Analysis of the Sox gene family in the European sea bass (Dicentrarchus labrax) []]. Comparative Biochemistry and Physiology Part B, 2004,137: 279—284.
    Nakamoto M, Suzuki A, Matsuda M, Nagahama Y, Shibata N. Testicular type Sox9 is not involved in sex determination but might be in the development of testicular structures in the medaka, Oryzias latipes [J]. Biochemical and Biophysical Research Communications, 2005, 333: 729—736.
    Mascaro C, Nadal A, Hegardt FG, Marrero PF and Haro D. Contribution of steroidogenic factor 1 to the regulation of cholesterol synthesis[J]. Biochem J, 2000, 350:785—790.
    Mayer GA, Borg B, Berglund I. Effects of castration and androgen treatment on aromatase activity in the brain of mature Atlantic salmon (Salmo salar L) parr[J]. Gen Comp Endocrinol, 1991, 82: 86—92.
    McCann SM, Haens G, Mastronardi C, Walczewska A, Karanth S, Rettori V and Yu WH. The Role of Nitric Oxide (NO) in Control of LHRH Release that Mediates Gonadotropin Release and Sexual Behavior[J]. Curr Pharm Des, 2003, 9:381 — 390.
    McDowall S, Argentaro A, Ranganathan S, Weller P, Mertin S, Mansour S, Tolmie J, and Harley V. Functional and structural studies of wild type SOX9 and mutations causing campomelic dysplasia[J]. J Biol Chem, 1999, 274: 24023—24030.
    McNatty KP, Baird DT, Bolton A, Chambers P, Corker CS, McLean H. Concentration of oestrogens and androgens in human ovarian venous plasma and follicular fluid throughout the menstrual cycle[J]. J Endocrinol, 1976, 71 (1): 77—85.
    Means GD, Mahendroo MS, Corbin JC, Mathis JM, Powell FE, Mendelson CR, Simpson ER. Structural analysis of the gene encoding human aromatase cytochrome P-450, the enzyme responsible for estrogen biosynthesis[J]. J Biol Chem, 1989, 264: 19385—19391.
    Michael MD, Kilgore MW, Morohashi K and Simpson ER. Ad4BP/SF-l regulates cyclic AMP-induced transcription from the proximal promoter (PII) of the human aromatase P450 (CYP19) gene in the ovary [J]. J Biol Chem, 1995, 270:13561-13566.
    
    Miller WL. Molecular biology of steroid hormone synthesis[J]. Endocr Rev, 1988, 9: 295—318.
    Morais da Silva S, Hacker A, Harley V, Goodfellow P, Swain A, Lovell-Badge R. Sox9 expression during gonadal development implies a conserved role for the gene in testis differentiation in mammals and birds [J]. Nat Genet, 1996,14: 62—68.
    Moreno Mendoza N, Harley VR, and Merchant Larios H. Differential expression of SOX9 in gonads of the sea turtle Lepidochelys olivacea at male- or female-promoting temperatures [J]. J Exp Zool, 1999, 284: 705-710.
    Morohashi K and Omura T. Ad4BP/SF-l, a transcription factor essential for the transcription of steroidogenic cytochrome P450 genes and for the establishment of reproductive function [J]. FASEB J, 1996,10:1569-1577.
    Morohashi K, Honda S, Inom.ata Y, Handa H and Omura T. A common trans-acting factor, Ad4-binding protein, to the promoters of steroidogenic P-450s [J]. J Biol Chem, 1992, 267: 17913—17919.
    Morrish BC, Sinclair AH. Vertebrate sex determination: many means to an end [J]. Reproduction, 2002,124: 447—457.
    Murdock C, Wibbels T. Cloning and expression of aromatase in a turtle with temperature-dependent sex determination [J]. Gen Comp Endocrinol, 2003,130(2): 109—119.
    Nachtigal MW, Hirokawa Y, Enyeart-VanHouten DL, Flanagan JN, Hammer GD and Ingraham HA. Wilms' tumor 1 and Dax-1 modulate the orphan nuclear receptor SF-1 in sex-specific gene expression [J]. Cell, 1998, 93:445-54.
    Naftolin F, Ryan KJ, Davies IJ, Reddy VV, Flores F, Petro Z, Kuhn M, White RJ, Takaoka Y, Wolin L. The formation of estrogens by central neuroendocrine tissues [J]. Recent Prog Hormone Res, 1975, 31:295-319.
    Nakajima T, et al. Two isoforms of FTZ-F1 messenger RNA: molecular cloning and their expression in the frog testis[J]. Gene, 2000, 248: 203—212.
    Nakamoto M, Suzuki A , Matsuda M, Nagahama Y, Shibata N. Testicular type Sox9 is not involved in sex determination but might be in the development of testicular structures in the medaka, Oryzias latipes [J]. Biochemical and Biophysical Research Communications, 2005, 333:729—736.
    Naor Z, Benard O & Seger R. Activation of MAPK cascades by G-protein-coupled receptors: the case of gonadotropin-releasing hormone receptor [J]. Trends in Endocrinology and Metabolism, 2000, 11: 91-99.
    Ng LJ, Wheatley S, Muscat GE, Conway Campbell J, Bowles J, Wright E, Bell DM, Tarn PP, Cheah KS, and Koopman P. SOX9 binds DNA, activates transcription, and coexpresses with type II collagen during chondrogenesis in the mouse [J]. Dev Biol, 1997, 183: 108—121.
    Ninomiya Y, Okada M, Kotomura N, Suzuki K, Tsukiyama T and Niwa O. Genomic organization and isoforms of the mouse ELP gene [J]. J Biochem (Tokyo), 1995, 118:380—289.
    Nitta H, Bunick D, Hess RA. Germ cells of the mouse testis express P450 aromatase [J]. Endocrinology, 1993,132: 1396-1401.
    Nitta M, Ku S, Brown C, Okamoto AY and Shan B. CPF: an orphan nuclear receptor that regulates liver-specific expression of the human cholesterol 7a-hydroxylase gene [J]. Proc Natl Acad Sci USA 1999, 96: 6660-6665.
    Nomura M, Bartsch S, Nawata H, Omura T and Morohashi K. An E box element is required for the expression of the ad4bp gene, a mammalian homologue of ftz-f1 gene, which is essential for adrenal and gonadal development [J]. J Biol Chem, 1995, 270:7453—7461.
    Nomura M, Nawata H and Morohashi K. Autoregulatory loop in the regulation of the mammalian ftz-f1 gene[J]. J Biol Chem, 1996, 271:8243-8249.
    Oba K, Yanase T, Ichino I, Goto K, Takayanagi R and Nawata H. Transcriptional regulation of the human FTZ-F1 gene encoding Ad4BP/SF-l[J]. J Biochem (Tokyo), 2000,128:517—528.
    Oba K, Yanase T, Nomura M, Morohashi K, Takayanagi R, Nawata H. Structural characterization of human ad4bp (SF-1) gene[J]. Biochem Biophys Res Commun, 1996, 226: 261—267.
    Olivereal M, Callard GV. Distribution of cell types and aromatase activity in the sculpin (Myoxocephalus) pituitary [J]. Gen Comp Endocrinol,1985,58:280—290.
    
    Page DC, Bieker K, Brown LG, Hinton S, Leppert M, Lalouel JM, Lathrop M. Linkage, physical mapping, and DNA sequence analysis of pseudoautosomal loci on the human X and Y chromosomes [J]. Genomics, 1987, 1:243—256.
    Pare JF. The mouse fetoprotein transcription factor (FTF) gene promoter is regulated by three GATA elements with tandem E box and Nkx motifs, and FTF in turn activates the Hnf3b, Hnf4a, and Hnfla gene promoters [J]. J Biol Chem, 2001, 276,13136—13144.
    Parker KL and Schimmer BP. Steroidogenic factor 1: a key determinant of endocrine development and function [J]. Endocr Rev, 1997, 18: 361—377.
    Pask AJ, Harry JL, Graves JA, O_Neill RJ, Layfield SL, Shaw G, Renfree MB. SOX9 has both conserved and novel roles in marsupial sexual differentiation [J]. Genesis, 2002, 33: 131—139.
    Pask AJ, Graves JA. Sex chromosomes and sex—determining genes: insights from marsupials and monotremes[J]. Cell Mol Life Sci, 1999,55:864—875.
    Pasmanik M, Callard GV. Aromatase and 5α -reductase in the teleost brain, spinal cord and pituity gland [J]. Gen Comp Endocrinol. 1985, 60: 244—251.
    Pasmanik M, Callard GV. Changes in brain aromatase and 5 alpha-reductase activities correlate significantly with seasonal reproductive cycles in goldfish (Carassius auratus) [J]. Endocrinololy, 1988,122: 1349-1356.
    Pasmanik M, Schinger BA, Callard GV. In vovo steroid regulation of aromatase and 5α -reductase in goldfish brain and pituity [J]. Gen Comp Endocrinol, 1988, 71:175—182.
    PatinoR, Davis KB, SehoreJE. Sex differentiation of channel catfish gonads:normal development an deffects of temperature [J]. J Exp Zool, 1996, 276: 209—218.
    Pfeifer SM, Furth EE, Ohba T, Chang YJ, Rennert H, Sakuragi N, Billheimer JT and Strauss JF. Sterol carrier protein 2: a role in steroid hormone synthesis [J]. J Steroid Biochem Mol Biol, 1993, 47:167-172.
    Pierre V, Lefrancois-Martinez AM, Veyssiere G and Martine A. SF-1 a key player in the development and differentiation of steroidogenic tissues [J]. Nuclear Receptor, 2003, 1:8—15.
    Piferrer F, Zanuy S, Carrillo M, Solar II, Devlin RH, Donaldson EM. Brief treatment with an aromatase inhibitor during sex differentiation causes chromosomally female salmon to develop as normal, functional males [J]. J Exp Zool, 1994, 270: 255—262.
    Piferrer F. Endocrine sex control strategies for the feminization of teleost fish [J]. Aquaculture, 2001, 197: 229—281.
    Postlethwait JH, Yan YL, Gates MA, Home S, Amores A, Brownlie A, Donovan A, Egan ES, Force A, Gong Z, Goutel C, Fritz A, Kelsh R, Knapik E, Liao E, Paw B, Ransom D, Singer A, Thomson M, Abduljabbar TS, Yelick P, Beier D, Joly JS, Larhammar, D, Talbot WS. Vertebrate genome evolution and the zebrafish gene map [J]. Nature Genet, 1998, 18: 345—349.
    Prince VE, Pickett FB. Splitting pairs: the diverging fates of duplicated genes [J]. Nat Rev Genet, 2002, 3: 827-837.
    Rice DA, Mouw AR, Bogerd AM and Parker KL. A shared promoter element regulates the expression of three steroidogenic enzymes [J]. Mol Endocrinol, 1991, 5:1552—1561.
    Robinson-Rechavi M, Marchand O, Escriva E, Laudet V. An ancestral whole-genome duplication may not have been responsible for the abundance of duplicated fish genes [J]. Curr Biol, 2001,11: R458-459.
    Romer U, Beisenherz W. Environmental determination of sex in Apistogramma (Cichlidae) and two freshwater fishes (Teleostei) [J]. Journal of fish biology, 1996, 48:714—725.
    Rose TM, Schultz ER, Henikoff JG, Pietrokovski S, McCallum CM, Henikoff S. Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly-related sequences. Nucleic Acids Research, 1998, 26(7): 1628—1635. http://bioinformatics.weizmann.ac.il/blocks/codehop.html.
    Rowe DK, Thorpe JE, Shanks AM. Role of fat stores in the maturation of male Atlantic salmon (Salmon salar) parr[J]. Can J Fish Aquat Sci, 1991, 48: 405—413.
    Rubin DA. Effect of pH on sex determination in cichlids and a poeciliid (Teleostei) [J]. Copeia, 1985, 8: 233—235.
    Sadovsky Y, Crawford PA, Woodson KG, Polish JA, Clements MA, Tourtellotte LM, Simburger K, Milbrandt J. Mice deficient in the orphan receptor steroidogenic factor 1 lack adrenal glands and gonads but express P450 side-chain-cleavage enzyme in the placenta and have normal embryonic serum levels of corticosteroids [J]. Proc Natl Acad Sci USA, 1995, 92: 10939—10943.
    Sampath KR, Ijiri S, Trant JM. Changes in the expression of genes encoding steroidogenic enzymes in the channel catfish (Ictalurus punctatus) ovary throughout a reproductive cycle [J]. Bio Reprod, 2000, 63(6): 1676-1682.
    Scherrer SP, Rice DA and Heckert LL. Expression of steroidogenic factor 1 in the testis requires an interactive array of elements within its proximal promoter [J]. Biol Reprod, 2002, 67:1509—1521.
    Schoonjans K, Annicotte JS, Huby T, Botrugno OA, Fayard E, Ueda Y, Chapman J. Liver receptor homolog 1 controls the expression of the scavenger receptor class B type I [J]. EMBO Rep, 2002, 3: 1181 — 1187.
    Seralin GE, Moslemi S. Aromatase inhibitors: past, present and future [J]. Mol Cell Endocrinal, 2001, 178: 117-131.
    Sewer MB and Waterman MR. Transcriptional complexes at the CYP17 CRS [J]. Endocr Res, 2002, 28:551—558.
    Shen JH and Ingraham HA: Regulation of the orphan nuclear receptor steroidogenic factor 1 by Sox proteins [J]. Mol Endocrinol, 2002,16:529—540.
    
    Shen P, Campagnoni CW, Kampf K. Isolation and characterization of a zebra finch aromatase cDNA: in situ hybridization reveals high aromatase expression in brain [J]. Mol Brain Res, 1994, 24: 227— 237.
    Shen WH, Moore CC, Ikeda Y, Parker KL and Ingraham HA. Nuclear receptor steroidogenic factor 1 regulates the mullerian inhibiting substance gene: a link to the sex determination cascade [J]. Cell, 1994, 77:651-661.
    Shinoda K, Lei H, Yoshii H, Nomura M, Nagano M, Shiba H, Sasaki H, Osawa Y, Ninomiya Y and Niwa O. Developmental defects of the ventromedial hypothalamic nucleus and pituitary gonadotroph in the Ftz-Fl disrupted mice [J]. Dev Dyn, 1995, 204:22—29.
    Siiteri PK. Reviews on the studies of estrogen biosyntheis in human [J]. Cancer Res, 1982, 42:3269— 3273.
    Simpson ER, Ackerman GE, Smith ME, Mendelson CR. Estrogen formation in stromal cells of adipose tissue of women: induction by glucocorticoids [J]. Proc Natl Acad Sci USA, 1981,78: 5690—5694.
    Simpson ER, Mahendroo MS, Means GD, Kilgore MW, Hinshelwood MM, Graham-Lorence S, Amarneh B, Ito Y, Fisher CR, Michael MD. Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis [J]. Endocrine Rev, 1994,15 (3): 342—355.
    Simpson ER, Zhao Y, Agarwal VR, Michael MD, Bulun SE, Hinshelwood MM, Graham-Lorence S, Sun T, Fisher CR, Qin K, Mendelson CR. Aromatase expression in health and disease [J]. Rec Prog Hormone Res, 1997, 52: 185-214.
    Sirianni R. Liver receptor homologue-1 is expressed in human steroidogenic tissues and activates transcription of genes encoding steroidogenic enzymes [J]. J Endocrinol, 2002, 174: R13-R17.
    Sirianni R, Seely JB, Attia G, Stocco DM, Carr BR, Pezzi V, Rainey WE. Liver receptor homologue-1 is expressed in human steroidogenic tissues and activates transcription of genes encoding steroidogenic enzymes [J]. J Endocrinol, 2002,174: R13—R17.
    Smith CA, Smith MJ, and Sinclair AH. Expression of chicken steroidogenic factor-1 during gonadal sex differentiation [J]. Gen Comp Endocrinol, 1999, 113: 187—196.
    Steinkampf MP, Mendelson CR, Simpson ER. Regulation by FSH of the synthesis of aromatase cytochrome P-450 (P450arom) in human granulosa cells [J]. Mol Endocrinol, 1987,1: 465—471.
    Stocco DM. Intramitochondrial cholesterol transfer [J]. Biochim Biophys Acta, 2000, 1486:184—197.
    Sudbeck P, Schmitz ML, Baeuerle PA, and Scherer G. Sex reversal by loss of the C-terminal transactivation domain of human SOX9 [J]. Nature Genet, 1996,13: 230—232.
    Takamatsu N, Kanda H, Ito M, Yamashita A, Yamashita S, Shiba T. Rainbow trout SOX9: cDNA cloning, gene structure and expression [J]. Gene, 1997, 202: 167—170.
    Tamura M, Kanno Y, Chuma S, Saito T and Nakatsuji N. Pod-1/Capsulin shows a sex- and stage-dependent expression pattern in the mouse gonad development and represses expression of Ad4BP/SF-l[J]. Mech Dev, 2001, 102:135—144.
    Tanaka H, Tsuchihashi Y and Kuromiya Y. Induction of sex reversal in the sevenband grouper, Epinephelus Septemfasciatus. In: Proceeding of the 6th International Symposium on the Reproductive Physiology of Fish. vol. 6 (Bergen, Norway : University of Bergen, Department of Fisheries and Marine Biology), 1999, p423.
    Tanaka M, Telecky TM, Fukada S. Cloning and sequence analysis of the cDNA encoding P-450 aromatase (P450arom) from a rainbow trout {Oncorhynchus mykiss) ovary; relationship between the amount of P450arom mRNA and the production of oestradilo-17β in the ovary[J]. J Mol Endocrinol, 1992, 8(1): 53—61.
    Taylor JS, Van de Peer Y, Meyer A. Revisiting recent challenges to the ancient fish-specific genome duplication hypothesis [J]. Curr Biol, 2001,11, R1005—1008.
    Tchoudakova A, and Callard GV. Identification of multiple CYP19 genes encoding different cytochrome P450 aromatase isozymes in brain and ovary [J]. Endocrinology, 1996, 139(4):2179-2189.
    Tilmann C, Capel B. Mesonephric cell migration induces testis cord formation and Sertoli cell differentiation in the mammalian gonad [J]. Development, 1999, 126(13): 2883—2890.
    Timmers RJM. Location of aromatase in the brain of the male African catfish, Clarias gariepinus, by microdissection and biochemical identification [J]. J Comp Neural, 1987, 258: 368—377.
    Toda K, Simpson ER, Mendelson CR, Shizuta Y, Kilgore MW. Expression of the gene encoding aromatase cytochrome P450 (CYP19) in fetal tissues [J]. Mol Endocrinol, 1994, 8: 210—217.
    Toda K, Terashima M, Kawamoto T, Sumimoto H, Yokoyama Y, Kuribayashi I, Mitsuuchi Y, Maeda T, Yamamoto Y, Sagara Y, Ikeda H, Shizuta Y. Structural and functional characterization of human aromatase P450 gene [J]. Eur J Biochem, 1990,193: 559—565.
    Tong SK, Chiang EF, Hsiao PH. Phylogeny, expression and enzymen activity of zebrafish cyp19 (P450 aromatase) genes [J]. J Steroid Biochem Mol Biol, 2001, 79(1-5): 299—303.
    Tong SK, Chung BC. Analysis of zebrafish cyp19 promoters [J]. Journal of Steroid Biochemistry & Molecular Biology, 2003, 86: 381—386
    Trant JM, Gavasso S, Ackers J. Developmental expression of cytochrome P450 aromatase genes (CYP19a and CYP19b) in zebrafish fry {Danio rerio) [J]. J Exp Zool, 2001, 290(5): 475-483.
    Trant JM, Lehrter J, Gregory T, Nunez S, Wunder J. Expression of cytochrome P450 aromatase in the channel catfish, Ictalurus punctatus[J]. J Steroid Biochem Mol Biol, 1997, 61(3-6): 393—397.
    Trant JM. Isolation and characterization of the cDNA encoding the channel catfish (Ictalurus punctatus) form of cytochrome P450arom [J]. Gen Comp Endocrinol, 1994, 95(2): 155—168.
    Tremblay JJ and Viger RS. GATA factors differentially activate multiple gonadal promoters through conserved GATA regulatory elements [J]. Endocrinology, 2001,142:977—986.
    Tremblay JJ and Viger RS. Transcription factor GATA-4 enhances Mullerian inhibiting substance gene transcription through a direct interaction with the nuclear receptor SF-1[J]. Mol Endocrinol, 1999,13:1388-1401.
    Tsukiyama T, Ueda H, Hirose S, Niwa O. Embryonal long terminal repeat-binding protein is a murine homolog of FTZ-F1, a member of the steroid receptor superfamily [J]. Mol Cell Biol, 1992, 12:1286—1291.
    Ueda H, Sonoda S, Brown JL, Scott MP, Wu C. A sequence-specific DNA-binding protein that activates fushi tarazu segmentation gene expression [J]. Genes Dev, 1990, 4: 624—635.
    Uwanogho D, Rex M, Cartwright EJ, Pearl G, Healy C, Scotting PJ and Sharpe PT. Embryonic expression of the chicken Sox2, Sox3 and Sox11 genes suggests an interactive role in neuronal development [J]. Mech Dev, 1995, 49(1-2):23-36.
    Val P, Lefrancois-Martinez AM, Veyssiere G, Martinez A. SF-1 a key player in the development and differentiation of steroidogenic tissues [J]. Nucl Recept, 2003, 1:8—18.
    Valle LD, Ramina A, Vianello S, et al. Cloning of two mRNA variants of brain aromatse cytochrome P-450 in rainbow trout (Oncorhynchus mykiss Walbaum) [J]. J Ster Biochem Mol Bio, 2002, 82: 19-32.
    van de Wetering M, Oosterwegel M, van Norren K and Clevers H. Sox-4, an Sry-like HMG-box protein, is a transcriptional activator in lymphocytes[J]. EMBO J, 1993, 12:3847—3854.
    Venkatesh B, Tan CH, Lam TJ. Progestins and cortisol delay while estradio-17β induces early parturition in the guppy, Poeciila reticulate[J]. Gen Comp Endocrinal, 1991, 83: 297—305.
    Vidal VP, Chabissier MC, Rooij DG. Sox9 induces testis development in XX transgenic mice[J]. Natl Genet, 2001, 28(3): 216-217.
    Wagner T, Wirth J, Meyer J, Zabel B, Held M, Zimmer J, Pasantes J, Bricarelli FD, Kentel J, Hustert, E, Wolf U, Tommerup N, Schempp W, and Scherer G. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX 9[J]. Cell, 1994, 79: 1111-1120.
    Wang XL, Bassett M, Zhang Y, Yin S, Clyne C, White PC and Rainey WE. Transcriptional regulation of human llbeta-hydroxylase (hCYP11B1) [J]. Endocrinology, 2000, 141:3587—3594.
    Wang ZN, Bassett M, Rainey WE. Liver receptor homologue-1 is expressed in the adrenal and can regulate transcription of 11 β -hydroxylase [J]. J. Mol. Endocrinol, 2001, 27,255—258.
    Watanabe M, Tanaka M, Kobayashi D, Yoshiura Y, oba Y, Nagahama Y. Medaka (Oryzias latipes) FTZ-F1 potentially regulates the transcription of P450 aromatase in ovarian follicles: cDNA cloning and functional characterization [J]. Mol Cell Endocrinol, 1999, 149: 221—228.
    Waterman MR. Biochemical diversity of cAMP-dependent transcription of steroid hydroxylase genes in the adrenal cortex [J]. J Biol Chem, 1994, 269: 27783-27786.
    Wchiits E. Hormonal regulation of development in lower vertebrates [J]. Symp Quant Biol, 1942, 10:145-151.
    Wegner M. From head to toes: The multiple facets of Sox proteins [J]. Nucleic Acids Res, 1999, 27(6): 1 409—1 420.
    Wei X, Sasaki M, Huang H, Dawson VL and Dawson TM. The orphan nuclear receptor, steroidogenic factor 1, regulates neuronal nitric oxide synthase gene expression in pituitary gonadotropes [J]. Mol Endocrinol, 2002, 16:2828—2839.
    Wilson M, Koopman P. Matching SOX: Partner proteins and co-factors of the sox family of transcriptional regulators [J].Curr Opin Genet Dev, 2002, 12(4): 441—446.
    Wilson TE, Fahrner TJ and Milbrandt J. The orphan receptors NGFI-B and steroidogenic factor 1 establish monomer binding as a third paradigm of nuclear receptor-DNA interaction [J]. Mol Cell Biol, 1993, 13: 5794—804.
    Woodson KG, Crawford PA, Sadovsky Y and Milbrandt J. Characterization of the promoter of SF-1, an orphan nuclear receptor required for adrenal and gonadal development [J]. Mol Endocrinol, 1997, 11:117—126.
    Wright EM, Sopek B and Koopman P. Seven new members of the Sox gene family expressed during mouse development [J]. Nucleic Acids Res, 1993, 21: 744~744.
    Yamamoto T. Sex differentiation. In: Hoar, W.S., Randall, D.J. (Eds.), Fish Physiology, Ⅲ [M]. Academic Press, New York, NY, 1969.
    Yang Y, Zhang M, Eggertsen G, Chiang, John YL. On the mechanism of bite acid inhibition of rat sterol 12a-hydroxylase gene (CYP8B1) transcription: roles of a-fetoprotein transcription factor and hepatocyte nuclear factor 4a [J]. Biochim Biophys Acta, 2002, 1583: 63~73.
    Yokoi H, Kobayashi T, Tanaka M, Nagahama Y, Wakamatsu Y, Takeda H, Araki K, Morohashi K, Ozato K. Sox9 in a teleost fish, medaka (Oryzias latipes): evidence for diversified function of Sox9 in gonad differentiation [J]. Mol Reprod Dev, 2002, 63: 5~16.
    Yong G, Kagawa H, Nagahama Y. Evidence for a decrease in aromatase activity in the ovarian granulose cell of amago salmon (Oncorhynchusrhodurus) associated with final oocyte maturation[J]. Biol Reprod, 1983, 29(2): 310~315.
    Zhang CK, Lin W, Cai YN, Xu PL, Dong H, Li M, Kong YY, Fu G, Xie YH, Huang GM and Wang Y. Characterization of the genomic structure and tissue-specific promoter of the human nuclear receptor NR5A2 (hBIF) gene [J]. Gene, 2001, 273, 239~249.
    Zhang W, Li X, Zhang Y, Zhang L, Tian J, Ma G. cDNA cloning and mRNA expression of a FTZ-F1 homologue from the pituitary of the orange-spotted grouper, Epinephelus coioides [J]. J Exp Zoolog A Comp Exp Biol, 2004, 301(8): 691~699.
    Zhao Y, Nichols JE, Bulun SE, Mendelson CR, Simpson ER. Aromatase P450 gene expression in human adipose tissue. Role of a Jak/STAT pathway in regulation of adipose-specific promoter activity [J]. J Biol Chem, 1995, 270: 16449~16457.
    Zhou R, Cheng H, Zhang Q, Guo Y, Cooper RK, Tiersch TR. SRY-related genes in the genome of the rice field eel (Monopterus albus) [J]. Genet Sel Evol, 2002, 34: 129~137.
    Zhou R, Liu L, Guo Y, Yu H, Cheng H, Huang X, Tiersch TR, Berta P. Similar gene structure of two Sox9a genes and their expression patterns during gonadal differentiation in a teleost fish, rice field eel (Monopterus albus) [J]. Mol Reprod Dev, 2003, 66: 211~217.
    Zumpe D, Bonsall RW, Michael RP. Effects of the non-steroidal aromatase inhibitor, fadrozole, on the sexual behavior of male cynomolgus monkeys (Macaca fascicularis) [J]. Horm Behav, 1993, 27: 200~215.
    常重杰,周荣家,余其兴.大鳞副泥鳅中Sox9基因保守区的序列分析[J].遗传学报,2000,27 (2):121~126.
    陈冬生,程双怀,聂刘旺Sox基因家族的特点及其功能[J].蚌埠医学院学报,2005,01:92-93.
    吕枚,方佩华,何红鹏.以肌动蛋白为标准化参数在甲状腺乳头状癌中c-fos表达的研究[J].天津医科大学学报2002,2:17~10.
    聂刘旺,单祥年,旺鸣.中华鳖7种组织Sox基因表达的RT-PCR分析[J].动物学报,2001a,47(6):718~720.
    汪锐,程汉华,郭一清.脊椎动物Sox基因家族的系统发生分析[J].遗传学报,2002,29(11):990~994。
    俞菊华,吴婷婷,李建林,曹丽萍,夏德全.黄鳝P-450芳香化酶基因的克隆及序列分析[J1.水生生物学报,2005,29(5):550~555.
    周荣家.参与发育的基因家族[J].遗传,2001,23(1):86~88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700