延胡索酸及其钠盐对瘤胃发酵特性及瘤胃细菌菌群的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题以延胡索酸及其钠盐为试验材料,研究了其对瘤胃体外发酵和甲烷产量以及瘤胃细菌区系变化的影响。通过比较延胡索酸及其钠盐对瘤胃发酵参数的影响的差异,初步确定了延胡索酸二钠改善瘤胃发酵的适宜添加水平及其效果;而后以延胡索酸二钠为手段,系统的探讨了不同日粮条件下(粗饲料、全精料和不同精粗比饲料等)添加延胡索酸二钠对瘤胃体外发酵和甲烷产量的作用;在此基础上,以南京本土山羊为试验动物,探讨了延胡索酸二钠对山羊瘤胃代谢、血液生化指标和瘤胃细菌区系结构的影响。试验共分7部分进行:
     1延胡索酸对瘤胃微生物体外发酵影响的研究
     分别以0.6g玉米粉+0.4g稻草片段(2mm)为底物,收集来自于三头装有永久性瘤胃瘘管本地山羊的瘤胃液,在体外厌氧条件下,研究了不同浓度延胡索酸(0、4、8、12mmol·L~(-1))对瘤胃微生物发酵活力的影响。结果表明,与对照组相比,延胡索酸处理显著提高了体外培养体系中总产气量、总挥发性脂肪酸(TVFA)和丙酸产量(P<0.01),降低了pH值和乙丙比值(P<0.01),且对各指标的影响呈线性效应。结果显示,延胡索酸可促进瘤胃微生物发酵,但极显著地降低了发酵体系中的pH值(P<0.01)。
     2延胡索酸及其钠盐对瘤胃微生物体外发酵影响的比较研究
     以玉米、豆粕和黑麦草粉的混合物为底物,体外发酵法比较了延胡索酸及其钠盐(0、4、7和10mmol·L~(-1))对瘤胃微生物体外发酵的影响。结果显示,延胡索酸及其钠盐均可显著提高体外发酵体系中的总产气量、TVFA及丙酸产量(P<0.05),降低了乙丙比(P<0.05);但延胡索酸及其钠盐在对累计产气量、pH值和丁酸浓度的影响程度方面存在差异(P<0.05)。在培养初始及培养结束时,同浓度条件下,各延胡索酸及其钠盐处理间,延胡索酸二钠组的pH值最高,延胡索酸一钠次之,延胡索酸最低,三者之间差异显著(P<0.05)。试验结果表明,延胡索酸及其钠盐皆可促进瘤胃发酵活力,但三者在对一些瘤胃发酵参数的影响方面存在差异,比较而言,延胡索酸二钠作为瘤胃调控剂的作用效果可能最佳。
     3高精料条件下添加延胡索酸二钠对瘤胃发酵的影响
     以混合精料(0.7g玉米粉,0.3g豆粕粉和0.43g高羊茅草粉)、玉米或小麦粉(1g)为底物,研究了延胡索酸二钠(4、7和10mmo·l·L~(-1))对瘤胃微生物体外发酵及动态过程的影响,同时探讨了应用延胡索酸二钠预防急性酸中毒的可行性。混合精料发酵试验结果表明,与对照组相比,延胡索酸二钠处理组的pH值、总产气量、总挥发性脂肪酸浓度(TVFA)、丙酸比例和表观干物质消失率皆显著升高(P<0.05),而乙/丙比显著降低(P<0.05),添加延胡索酸二钠有使乳酸浓度降低的趋势(P<0.10)。动态研究表明,与对照相比,添加延胡索酸二钠显著提高了累计产气量、pH值、TVFA产量、丙酸浓度及CMcase酶活(P<0.05),而乙丙比皆显著降低(P<0.05),但对NH_3-N和乙酸浓度及淀粉酶酶活无显著影响(P>0.05)。除TVFA外,对其他发酵参数,延胡索酸二钠处理与发酵时间之间存在显著的互作效应(P<0.05)。以玉米及小麦为底物时结果表明,延胡索酸二钠显著提高了累计产气量(P<0.01)和pH值(P<0.05);但对其他指标的影响不一致。乳酸大量累积条件下添加延胡索酸二钠对发酵参数的影响的结果表明,延胡索酸二钠处理组的总产气量、pH值、TVFA浓度和丙酸浓度皆显著增加(P<0.05),而乳酸浓度和乙丙比则极显著地降低(P<0.01)。结果显示,在底物为高精料日粮条件下,添加延胡索酸二钠可提高瘤胃微生物的发酵活力,降低发酵液中的乳酸浓度,但对一些发酵参数如挥发性脂肪酸组成及乳酸浓度的影响程度与日粮的天然属性有关。
     4延胡索酸二钠对混合瘤胃微生物、瘤胃纤维降解细菌及瘤胃真菌发酵粗饲料活力的影响
     采用批次培养技术,探讨了延胡索酸二钠对瘤胃微生物发酵黑麦草粉、高羊茅草粉和稻草粉的影响,同时研究了延胡索酸二钠对黄化瘤胃球菌和瘤胃真菌发酵粗饲料活力的影响。结果表明,与对照组相比,延胡索酸二钠处理组的累计产气量显著增加(P<0.01),黑麦草、高羊茅和稻草的底物干物质消失率分别较对照组提高了26.22%(P<0.05)、14.16%(P<0.05)和28.54%(P<0.01);延胡索酸二钠对黄化瘤胃球菌发酵活力的影响的试验结果表明,添加延胡索酸二钠显著提高了该纤维降解菌对黑麦草的降解率(P<0.05),同时发酵液中纤维降解菌的数量也显著增多(P<0.05);延胡索酸二钠对厌氧真菌发酵活力影响的试验结果表明,延胡索酸二钠处理组的总产气量与发酵底物的干物质消失率显著低于对照组(P<0.05)。结果说明,延胡索酸二钠对可提高瘤胃细菌与纤维降解菌发酵底物的能力,但对瘤胃真菌的发酵活力具有抑制效应。
     5日粮精料水平逐渐提高条件下添加延胡索酸二钠对瘤胃微生物生长、甲烷产量及发酵的影响
     采用体外批次培养,以三种日粮(低精料日粮、中等水平精料的日粮和高精料日粮)为底物,比较了不同日粮条件下添加延胡索酸二钠(0、4和7mmol·L~(-1))对山羊瘤胃微生物发酵及甲烷产量的影响。结果表明,较对照相比,添加延胡索酸二钠显著提高了累计产气量、pH值、TVFA产量和微生物蛋白量(P<0.05),降低了甲烷产量(P<0.05),其中低精料日粮组下降幅度最大。结果表明,延胡索酸二钠在降低甲烷产量方面与发酵底物的天然特性有关,其中对低精料日粮的作用效应最为显著。
     6不同类型日粮条件下添加延胡索酸二钠对瘤胃微生物体外发酵活力及瘤胃细菌区系结构的影响
     采用体外批次培养和PCR/DGGE技术,并结合16S rDNA序列分析方法,比较了不同日粮条件下(黑麦草、混合日粮和精料)添加延胡索酸二钠对瘤胃微生物体外发酵活力及瘤胃细菌区系结构的影响。结果表明,对上述三种底物,添加延胡索酸二钠显著提高了累计产气量、pH值和TVFA产量(P<0.05),同时乳酸浓度显著降低(P<0.05)。发酵动力学试验结果显示,添加延胡索酸二钠显著提高了最大产气速率及渐近产气量(P<0.05)。DGGE图谱及相似性分析结果表明,在上述三种底物条件下,添加延胡索酸二钠后瘤胃细菌区系结构发生了显著改变。结果显示,延胡索酸二钠可促进瘤胃微生物发酵,并显著地影响了瘤胃细菌区系结构。
     7高精料日粮添加延胡索酸二钠对山羊瘤胃代谢、血液生化指标及瘤胃细菌区系的影响
     采用4×4拉丁方设计,利用常规分析法及PCR/DGGE技术,研究了延胡索酸二钠(0g·d~(-1)、5g·d~(-1)、10g·d~(-1)、15g·d~(-1))对山羊瘤胃代谢、血液生化指标和瘤胃细菌区系变化的影响。结果表明,添加延胡索酸二钠显著提高了瘤胃液中的pH值(P<0.05),降低了瘤胃中的乳酸浓度(P<0.01),但对乙酸、丙酸、丁酸、TVFA和NH_3-N浓度未产生显著影响(P>0.05)。对血液指标测定结果表明,添加延胡索酸二钠显著降低了血液中的乳酸浓度(P<0.05),但对乳酸脱氢酶(LDH)、血糖、胆固醇、尿素氮及甘油三酯浓度无显著影响(P>0.05)。DGGE图谱分析表明,添加延胡索酸二钠后,DGGE图谱上瘤胃细菌的优势条带数较对照显著增多(P<0.05),同时瘤胃细菌的多样性也显著增加(P<0.05)。基因序列分析表明,DGGE图谱中优势条带的16srDNA基因序列中有4个基因序列与基因数据库登录的相关序列的相似性大于97%,8个基因序列的相似性在88~96%。相似性大于97%的4个克隆中,2个被鉴定为牛链球菌及溶糊精琥珀酸弧菌,另外两个属于未鉴定菌;添加延胡索酸二钠后,溶糊精琥珀酸弧菌、产丁酸菌相似菌、未培养瘤胃细菌、真杆菌相似菌、唾液普雷沃菌相似菌成为优势菌。结果说明,添加延胡索酸二钠可提高瘤胃pH值,降低瘤胃及血液中的乳酸浓度,促进一些瘤胃细菌的增殖,但对动物机体氮代谢无明显影响。
The present research was conducted to investigate the influence of fumarate and itssodium on rumen fermentation and ruminal bacterial communities of goat. By comparingthe effects of fumarate and its sodium (fumarate,sodium fumarate and disodium fumarate)on rumen fermentation, the proper adding levels of fumarate in vitro was established. Byusing different incubation condition (including concentrate, forages and differentconcentrate: forage ratio diets), we evaluated the effects of disodium fumarate on rumenfermentation and methane production in vitro. Furthermore, the effect of disodium fumarateaddition on rumen fermentation, plasma metabolites and ruminal bacterial community invivo was investigated. This dissertation was described in the following seven sections.
     1 Effect of fumarate addition on rumen fermentation in vitro
     Rumen contents from three local male goats with permanent rumen fistulae wereincubated in anaerobic media with substrate consisting of rice straw powder (0.4 g) andcorn (0.6g). The effects of fumarate with final concentrations at 4,8 and 12 mmol·L~(-1) onthe ruminal fermentation were investigated. Results showed that, as compared with thecontrol, total volatile fatty acids(TVFA), propionate production(P%) and total gasproduction for the group treated with fumarate increased (P<0.05), while the ration ofacetate to propionate and pH decreased (P<0.05). The effect of fumarate was moresignificant as its concentration increased, suggesting its dose dependent effect. The resultsindicated that fumarate addition stimulated the fermentation activity of rumen microbesfrom goat, while lowered the pH of the medium (P<0.01).
     2 Comparisons of effects resulting from fumarate and its saltsaddition on fermentation by rumen micro-organisms in vitro
     Rumen contents from three local male goats with permanent rumen fistulae wereincubated in anaerobic media with substrate consisting of cracked corn, soybean meal andryegrass particle. The effects of fumarate, sodium fumarate or disodium fumarate with final concentrations at 4, 7 and 10 mmol·L~(-1) on the in vitro fermentation were compared. Resultsshowed that, as compared with the control, total volatile fatty acids (TVFA), propionateproduction (P%) and total gas production for all treatments increased significantly, while theratio of acetate to propionate and lactic acid production decreased significantly(P<0.05). At0 h or 24 h of incubation, the pH value in the group treated with disodium fumarate washigher than that of fumarate or disodium fumarate treatment. No significant difference wasobserved in other ruminal characteristics among the three treatments. The results showedthat fumarate and its salts addition could stimulate the rumen fermentation, while thedisodium fumarate had a better beneficial effect on the in vitro fermentation by rumenmicroorganisms.
     3 Influence of disodium fumarate addition on the fermentation ofconcentrates by rumen microorganisms in vitro
     Four experiments were conducted to investigate the effects of disodium fumarate onthe in vitro fermentation profiles of concentrate feed. In experiment 1, mixed concentratediets (0.7 g cracked corn, 0.3 g soybean meal and 0.43 g festuca elata, DM basis) werefermented in vitro by rumen microorganisms from local goats. Results showed that ascompared with the control, total volatile fatty acids(TVFA), the percentage of propionate(P%) , total gas production and the dry matter loss for the disodium fumarate treatmentincreased (P<0.05),while the ratio of acetate to propionate and lactate production decreasedsignificantly. In experiment 2, a time course study was conducted to investigate the effect ofdisodium fumarate at 7 mmol·L~(-1) on rumen fermentation in vitro. The results showed thatdisodium fumarate addition increased the cumulative gas production, pH, propionate andTVFA production, and reduced the ratio of acetate to propionate, whereas no treatmenteffect was observed for the NH_3-N concentration and the amylase activity. Disodiumfumarate addition tended to lower the lactate production(P<0.05).With the exception ofTVFA production, there was significant interr-reaction effect between the disodiumfumarate treatment and fermentation time(P<0.05). In experiment 3, influences of disodiumfumaratc addition on fermentation of cracked corn and cracked wheat by rumenmicroorganisms in vitro were investigated. The results showed that during 24 h ofincubations, disodium fumarate addition increased (P<0.05) the gas production and the pHfor the two substrates, but this effect was not observed for other fermentation characteristics.In experiment 4, the effect of disodium fumarate addition on rumen lactic acidosis in vitro was investigated. Lactic acidosis was induced by in vitro fermentation at 39℃for 24 hwith a 25 g·L~(-1) test diet. The result showed disodium fumarate addition decreased lactateconcentration (P<0.01). These results suggest that the addition of disodium fumarate toruminant feed could stimulate the in vitro fermentation of rumen microbes from goat,whereas this effect on changes of ruminal character tics may largely depend on the generalnature of the substrates.
     4 Influence of disodium fumarate addition on the fermentation offorages by mixed rumen microorganism, Ruminococcus flavefaciensand rumen fungus
     Three experiments were conducted to investigate the effect of disodium fumarate onfermentation of forage by mixed rumen microorganism, Ruminococcus flavefaciens andrumen fungus. In experiment 1, rumen contents from three local male goats with permanentrumen fistulae were incubated in anaerobic media with substrate including rice straw,festuca elara and ryegrass, and effects of disodium fumarate with final concentrations at7mmol·L~(-1) on the in vitro fermentation was investigated. The results showed that disodiumfumarate addition increased the total gas production for all the substrates. As comparedwith the control, the addition of disodium fumarate increased the dry matter loss by 26.22% (P<0.05), 14.16% (P<0.05) and 28.54%(P<0.01), receptively. In experiment 2, theeffect of disodium fumarate on the fermentation activity of Ruminococcus flavefaciens wasinvestigated. Disodium fumarate was added to the incubation bottles to achieve finalconcentrations of 0, 4, 7 and 10 mmol·L~(-1). Results showed that disodium fumarate additionincreased the dry matter loss, TVFA production and the counts of Ruminococcusflavefaciens(P<0.05). In experiment 3, the effect of disodium fumarate on the ryegrass offermentation by the rumen fungus was investigated. The results showed that the disodiumfumarate addition (0, 4, 7 and 10mmol·L~(-1)) reduced the dry matter loss and the cumulativegas production (P<0.01).In conclusions, the diosodium fumarate addition could stimulate.the fermentation activity of the mixed rumen micro-organism and Ruminococcusflavefaciens, whereas reduced the fermentation activity of the rumen fungus.
     5 Effects of disodium fumarate on in vitro methane production andfermentation of diets differing in their forage:concentrate ratio
     Effects of disodium fumarate on CH_4 production and fermentation of three diets differing in their concentrate content by rumen micro-organisms were investigated by batchcultures. Rumen contents were collected from three local goats. Disodium fumarate wasadded to the incubation bottles to achieve final concentrations of 0, 4 and8mmol.L~(-1) -fumarate.Results showed that disodium fumarate addition increased linearly(P<0.001) the final pH, acetate and propionate production, and reduced the amount ofNH_3-N in the cultures. As compared with the control, adding disodium fumarate to batchcultures reduced CH_4 production. Disodium fumarate tended to increase (P<0.05) theMCP(rumen microbial protein) for the high-forage diet, but no differences (P<0.05) wereobserved for the high-concentrate diets. These results indicate that the effects of disodiumfumarate on rumen fermentation mainly depend on the nature of the incubated substrate,with the high-forage diet showing the greatest response.
     6 Influence of disodium fumarate addition on rumen fermentationand ruminal bacterial community in vitro
     Two experiments were conducted to investigate the effect of disodium fumarateaddition on the ruminal fermentation of different kinds of diet (festuca elata, mixed diet andconcentrate diet) in vitro. In experiment 1, effects of disodium fumarate with finalconcentrations at 7mmol.L~(-1), on the in vitro fermentation and the changes of rumen bacteriawas investigated. Results showed that disodium fumarate addition increased (P<0.05) thecumulative gas production, pH and the TVFA production, and reduced the lactic acidproduction (P<0.05). The analysis of DGGE profiles revealed that disodium fumarateaddition affected the composition of the rumen bacteria communality. In experiment 2, gasproduction was monitored and the cumulative values were fitted to a mono-phasic curve.For all substrates, disodium fumarate treatment increased the asymptotic gas production (A)and the max rate of gas production (P<0.05), whereas no treated effects (P>0.10) wereobserved for the half-time C with the exception of mixed diets (5:3:2, DM basis).Collectively, these results suggest that disodium fumarate is effective in increasing the pHand gas production for the diets differing in forage: concentrate ratio in vitro, whereas itseffect on changes of ruminal microbial community may largely depend on the generalnature of the substrate.
     7 Effect of disodium fumarate on ruminal and plasm metabolites andthe ruminal bacterial communities in goats
     Effects of disodium fumarate on ruminal metabolism and changes of rumen microbialcommunity were investigated. Results showed that disodium fumarate treatment increasedthe pH (P<0.05) and reduced the lactate production (P<0.05), whereas did not affect theproduction of acetate, propionate, butyrate and TVFA production significantly (P<0.05).Disodium fumarate addition did not influence the plasma of concentrations of glucose, ureaN, cholesterol and triacylglycerol, but reduced the concentration of lactate. The analysis ofDGGE profile revealed that, as compared with the control, disodium fumarate treatmentshowed a higher degree of bacterial diversity (P<0.05). A clone library was created fromcomplete 16S rDNA. From the library, 12 clones had their V6-V8 regions matchedpredominant bands on the DGGE gel and their 16S rDNA were then sequenced andsubjected to an online similarity search. Four of the clones showed their similarities over97% with database sequences, with two sequences similar to Succinivibrio dextrinosolvensand Streptococcus bovis, with other two were similar to those unidentified rumen bacteria,Others clones had their similarities in the range of 88%~96% with database sequences. Ascompared with the control, Succinivibrio dextrinosolvens, Butyrate-producing bacteriumSL7/1, Uncultured rumen bacteria, Clostridium hathewayi and Prevotella salivae becamethe predominant bands after disodium fumarate addition. Results indicated that disodiumfumarate addition was effective in improving the pH value and lowering the lactate in therumen, and stimulating the growth of some ruminal bacteria.
引文
1. Amann R I, Ludwig W and Schleifer K H. Phylogenetic identification and in situ detection of Individual microbial cells without cultivation [J]. Microbiological Reviews, 1995, 59(1): 143-169
    2. Asanuma N, Iwamoto M and Hino T. Effect of the addition of fumarate on methane production by ruminal microorganisms in vitro[J]. Journal of Dairy Science, 1999, 82:780-787
    3. Asanuma N and Hino T. Regulation of fermentation in a ruminal bacterium, Streptococcus boris, with special reference to rumen acidosis[J]. Animal Science Journal, 2002, 73:313-325
    4. Bauchop T and Mountfort D O. Cellulose fermentation by a tureen anaerobic fungus in both the absence and the presence of tureen methanogens [J]. Applied and Environmental Microbiology, 1981, 42:1103-1110
    5. Bayaru E, Kanda S, Kamada T, et al. Effect of fumaric acid on methane production, rumen fermentation and digestibility of cattle fed roughage alone [J]. Animal Science Journal, 2001, 72: 139-146.
    6. Beharka A A, Nagaraja T G and Morrill J L. Performance and ruminal function development of young calves fed diets with Aspergillus oryzae fermentation extract [J]. Journal of Dairy Science, 1991,74: 4326-4336.
    7. Blank R O and Sauer W C. Effect of fumaric acid and dietary buffering capacity on ileal and fecal amino acid digestibilities in early-weaned Pigs [J]. Journal of Animal Science, 1999, 77:2974-2984
    8. Braune A, Gutschow M, Engst W, et al. Degradation of quercetin and luteolin by Eubacteriurn ramulus [J]. Applied and Environmental Microbiology, 2001, 67(12): 5558-5567.
    9. Caldwel D R, Keeney M, Barton J S, et al. Sodium and Other Inorganic Growth Requirements of Bacteroides amylophilus [J]. Journal of Bacteriology, 1973, 114:782-789
    10. Caldwell D R and Bryant M P. Medium without rumen fluid for non-selective enumeration and isolation of tureen bacteria [J]. Applied Microbiology, 1966, 14:794—801
    11. Callaway T R and Martin S A. Effects of organic acid and monensin treatment on in vitro mixed ruminal microorganism fermentation of cracked corn [J]. Journal of Animal Science, 1996, 74: 1982-1989
    12. Callaway E S and Martin S A. Effects of cellobiose and monensin on in vitro fermentation of organic acids by mixed ruminal bacteria [J]. Journal of Dairy Science, 1997, 80:1126-1135
    13. Cann I KO, Kobayashi Y, Onada A, et al. Effects of some ionophore antibiotics and polyoxins on the growth of anaerobic rumen fungi [J]. Journal of Applied Bacteriology, 1993, 74: 127-133.
    14. Carro M D and Ranilla M J. Influence of different concentrations of disodium fumarate on methane production and fermentation of concentrate feeds by tureen microorganisms in vitro [J]. British Journal of Nutrition, 2003, 90, 617-623.
    15. Castillo C, Benedito J L, Mendezb J, et al. Organic acids as a substitute for monensin in diets for beef cattle [J]. Animal Feed Science and Technology, 2004,115:101-116
    16. Chaucheyras F G, Fonty G, Bertin J M, et al. Effects of a strain of Saccharomyces cerevisiae (Levucell SC1), a microbial additive for ruminant, on lactate metabolism in vitro[J]. Canadian Journal of Microbiology, 1995,42: 927-933
    17. Counotte G H M, Prins R A, Jansen R H, et al. Role of Megasphaera elsdenii in the fermentation of DL-[2-13]lactate in the rumen of dairy cattle[J]. Applied and Environmental Microbiology, 1983(b), 42: 649-655.
    18. Counotte G H M, Lankhorst A and Prins R A. Role of DL DL-lactic acid as an intermediate in rumen metabolism of dairy cows [J]. Journal of Animal Science, 1983(a), 56: 1222-1235.
    19. Davies D R. Growth and survival of anaerobic fungi in batch culture and in the digestive tract of ruminants [M]. Ph.D. Thesis, University of Manchester, UK, 1991
    20. Dawson KA, Rasmussen M A and Allison M J. Digestive disorders and nutritional toxicity [M]. In: Hobson PN. Stewart CS (eds), The Rumen Microbial Ecosystem, 2nd ed. pp.633-660. Blackie Academic and Professional, London, 1997.
    21. Demeyer D I and Henderickx M K. Competitive inhibition of in vitro methane production by mixed rumen bacteria [J]. Arch Intentional Physiology Biochemistry, 1967, 75: 157-159.
    22. Dennis S M, Nagaraja T G and Bartley E E. Effects of lasalocid or monensin on lactate producing or using rumen bacteria [J]. Journal of Animal Science, 1981, 52:418-426.
    23. Dinius D A, Simpson M E and Marsh P B. Effect of monensin fed with forage on digestion and the ruminal ecosystem of steers [J]. Journal of Animal Science, 1976, 42:229-234
    24. Edwards J E, McEwan N R. McKain N, et al. Influence of flavomycin on ruminal fermentation and microbial populations in sheep [J]. Microbiology, 2005, 151: 717-725
    25. Eichner C A, Erb R W, Timmis K N, et al. Thermal gradient gel electrophoresis analysis of bioprotection from pollutant shocks in the activated sludge microbial community [J]. Applied and Environmental Microbiology, 1999, 65: 102-109.
    26. Engvall A. Alpha-Amylase activity in rumen fluid of cows producing milk of low and normal fat content [J]. Journal of Dairy Science, 1980, 63(12): 2012-2019
    27. Evans J D and Martin S A. Factors affecting lactate and malate utilization by Selenomonas ruminantium [J]. Applied and Environmental Microbiology, 1997,63:4853-4858.
    28. Ferris M J, Muyzer G and Ward D M. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community [J]. Applied and Environmental Microbiology, 1996, 62: 340-346.
    29. Fischer S G and Lerman L S. DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory [J]. Proceedings of the National Academy of Sciences, 1983, 80:1579-1583
    30. Forsberg C W, Cheng K J and White B A. Establishment of rumen microbial gene pools and their manipulation to benefit fiber digestion by domestic animals [J]. Proceeding Ⅶ of World conference for animal, 1993: 281-316.
    31. Forsberg C W, Forano E and Chesson A. Microbial adherence to the plant cell wall and enzymatic hydrolysis. In: Cronje P B, ed. Ruminant Physiology: Digestion, Metabolism, Growth and Reproduction[M].CAB International, 2000
    32. Ghorbani G R, Morgavi D P, Beauchemin K A, et at. Effects of bacterial direct-fed microbial on ruminal fermentation, blood variables, and the microbial populations of feedlot cattle [J]. Journal of Animal Science, 2002, 80: 1977-1986.
    33. Glass T L, Bryant M P and Wotin M J. Partial purification of ferredoxin from Ruminococcus albus and its role in pyruvate metabolism and reduction of nicotinamide adenine dinucleotide by H_2 [J]. Journal of Bacteriology, 1997,131:463-472
    34. Gomes N C, Fagbola O, Costa R, et al. Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics [J]. Applied and Environmental Microbiology, 2003, 69: 3758-3766.
    35. Groot J C J, Cone J W, Williams B A, et al. Multiphasic analysis of gas production kinetics for in vitro fermentation of ruminant feeds [J]. Animal Feed Science and Technology, 1996, 64: 77-89.
    36. Hassan E I, Newbold SM and Wallace C J. The effect of yeast in the rumen and the requirement for viable yeast cells [J], Animal Proceeding, 1993,54:504-524
    37. Heuer H, Krsek M, Baker P, et al. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients [J]. Applied and Environmental Microbiology, 2003, 69:7248-7256
    38. Hobson P N and Stewart C S. The tureen microbial ecosystem [M]. Academic press, New York, 1997, 719
    39. Hoover W H. Chemical factors involved in ruminal fiber digestion [J]. Journal of Dairy Science, 1986, 69(10): 2755-2766
    40. Hungate R E. The rumen and its microbes [M]. Academic press Inc.: London.1966
    41. Ipharraguerre I R and Clark J H. Usefulness of ionophores for lactating dairy cows: a review [J]. Animat Feed Science and Technology, 2003, 106:39-57
    42. Iwamoto M, Asanuma N and Hino T. Effect of nitrate combined with fumarate on methanogenesis, fermentation, and cellulose digestion by mixed ruminal microbes in vitro [J]. Animal Science Journal, 1999,70: 471-478
    43. Iwamoto M, Asanuma N and Hino T. Effects of energy substrates on Nitrate reduction and Nitrate reductase activity in a ruminal bacterium, Selenomonas ruminantium[J]. Anaerobe, 2001, 7:315-321
    44. Iwamoto M, Asanuma N and Hino T. Ability of Selenomonas ruminantium,Veillonella parvula,and Wolinella succinogenes to reduce nitrate and nitrite with special reference to the suppression of ruminal methanogenesis [J].Anaerobe, 2002, 8: 209-215
    45. Johnson K A and Johnson D E. Methane emissions from cattle [J]. Journal of Animal Science, 1995, 73: 2483-2492.
    46. Keohavong P and Thilly W G. Fidelity of DNA polymerases in DNA amplification [J]. Proceedings of the National Academy of Sciences, 1989, 86: 9253-9257.
    47. Keunen J E, Plaizier J C and Kyriazakis. Effects of a subacute ruminal acidosis model on the diet selection of dairy cows [J]. Journal of Dairy Science, 1987, 85:3304-3313
    48. Klieve A V and Swain R A. Estimating ruminal bacteriophage numbers using pulsed field gel electrophoresis and laser densitometry [J]. Applied and Environmental Microbiology, 1993, 59, 2299-2303
    49. Kocherginskaya S A, Aminov R I and White B A. Analysis of the rumen bacterial diversity under two different diet conditions using denaturing gradient gel electrophoresis, random sequencing, and statistically ecology approaches [J]. Anaerobe, 2001, 7: 119-134.
    50. Koike S, Pan J, Kobayashi Y, et al. Kinetics of in sacco fiber-attachment of representative ruminal cellulolytic bacteria monitored by competitive PCR [J]. Journal of Dairy Science, 2003, 86: 1429-1435
    51. Kowalchuk G A, Stephe J R, Boer De W J, et al. Analysis of ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments [J]. Applied and Environmental Microbiology, 1997, 63: 1489-1497.
    52. Krumholz L and Bryant R. Eubacterium oxidoreducens sp. nov. requiring H_2 or formate to degrade gallate, pyrogallol, phloroglucinol and quercitin [J]. Arch Microbiology, 1986, 144: 8-14.
    53. Kung L, Hession J A, Tung R S, et al. Effect of Propionibacterium shermanii on ruminal fermentations [C]. Proc.21st Biennial Conf. on Rumen Function. Chicago, IL, 1991, 31-45
    54. Lanigan G W, Payne A L and Peterson J E. Antimethanogenic drugs and Heliotropium europaeum poisoning in penned sheep [J]. Austrian Journal of Agricultural Resarch, 1978,29, 1281-1291
    55. Lerman L S, Fischer S, Hurley G, et al. Sequence-determined DNA separations. Annual Review of Biophysilogy, 1984, 13: 399-423.
    56. Li J and Heath B I. The phylogenetic relationships of the anaerobic chytridiomycetous gut fungi (Neocallimasticaceae) and the Chytridiotnycota. I. Cladistic analysis of ribosomal RNA sequences[J]. Canadian Journal of Botany, 1992,70:1738-1746
    57. Lin C Raskin L and Stahl D A. Microbial community structure in gastrointestinal tracts of domestic animals: comparative analyses using rRNA-targed oligonucleotides probes[J].FEMS microbiology Ecology, 1997, 22:281-294
    58. Lineha B. Nutritional requirements of Selenoraonas ruminatium for growth on lactate,glycerol, or glucose[J]. Applied and Environmental Microbiology, 1978, 35:317-322
    59. Lloyd D, Williams A G, Amann R, et al. Intracellular prokaryotion by confocal lasers in rumen ciliate protozoa detection by confocal laser scanning microscopy after in situ hybridication with fluorescent 16SrRNA probes [J]. European journal of protistology, 1996, 32:523-531
    60. Longland A, Theodorou M K, Sanderson R, et al. Non-starch polysaccharide composition and in vitro ferment ability of tropical forage legumes varying in phenolic content[J].Animal Feed Science and Technology, 1995, 55:161-177
    61. Lo'pez S, Valde's C, Newbold C J, et al. Influence of sodium fumarate addition on rumen fermentation in vitro[J]. British Journal of Nutrition, 1999, 81: 59-64.
    62. Lowe S E, Theodorou M K and Trinci A P J. Cellulases and xylanase of anaerobic rurnen fungus grown on wheat straw, wheat straw holocellulose, cellulose, and xylan [J]. Applied and Environmental Microbiology, 1987, 53: 1216-1223.
    63. Ma W K, Siciliano S D and Germida J J. A PCR-DGGE method for detecting arbuscular mycorrhizal fungi in cultivated soils [J]. Soil Biology and Biochemistry, 2005, 37:1589-1597
    64. Mackie R I, Aminov R I, White B A, et al. Molecular ecology and diversity in gut microbial ecosystems[C]. In "Ruminant Physiology: Digestive, Metabolism, Growth and Reproduction" (Cronje PB, ed), CAB International, London, UK, 2000
    65. Mackie R I, Aminov R I, Hu W-P, et al. Ecology of Uncultivated Osciltospira Species in the Rumen of Cattle, Sheep, and Reindeer as Assessed by Microscopy and Molecular Approach [J]. Applied and Environmental Microbiology, 2003, 69:6808-6815
    66. Makkar H P S, Shavma O P, Dawra R K, et at. A Simple determination of microbial protein in rumen liquor [J]. Journal of Dairy Science, 1982, 65:2170-2173
    67. Martin S A and Streeter M N. Effect of malate on in vitro mixed ruminal microorganism fermentation [J]. Journal of Animal Science, 1995,73, 2141-2145.
    68. Martin S A, Park C M. Effect of extracellular hydrogen on organic acid utilization by the ruminal bacterium Selenomonas ruminantium[J]. Current. Microbiology, 1996, 32: 327-331.
    69. Martin S A. Manipulation of ruminal fermentation with organic acids[J]. Journal of Animal Science, 1998, 76: 3123-3132
    70. Marvin-Sikkema F D, Richdson A J, Stewart C S, et al. Influence of hydrogen-consuming bacteria on cellulose degradation by anaerobic fungi [J]. Applied and Environmental Microbiology, 1990, 56: 3793-3797
    71. Mathers J C and Miller E L. Some effects of choral hydrate on rumen fermentation and digestion in sheep [J]. Journal of Agricultural Science, 1982, 99: 215-224
    72. McEwan N R, Abecia L, Regensbogenov M, et al. Rumen microbial population dynamics in response to photoperiod [J]. Letter in Applied and Microbiology, 2005, 41: 97-101.
    73. Menke K H, Raab L, Salewski A, et al. 1979. The estimation of the digestibility and metabolizable energy content of ruminant feedstuffs from the gas production when they are incubated with rumen liquor in vitro[J]. Journal of Agricultural Science, 93: 2171-2172.
    74. Montano M F, Chai W, Zinn-Ware T E, et al. Influence of malic acid supplementation on ruminal pH, lactic acid utilization, and digestive function in steers fed high-concentrate finishing diets [J]. Journal of Animal Science, 1999, 77: 780-784.
    75. Morgavi D P, Sakurada M, Mizokami M, et al. Presence in rumen bacterial and protozoa populations of enzymes capable of degrading fungal cell walls [J]. Microbiology, 1994, 140: 631-636
    76. Moss A R, Jouany J P and Newbold J. Methane production by ruminants: its contribution to global warming [J]. Annual of Zootechnology, 2000, 49: 231-253
    77. Mountfort D O, Asher R A and Bauchop T. Fermentation of cellulose to methane and carbon dioxide by a rumen anaerobic fungus in a triculture with Methanobrevibacter sp. strain RA1 and Methanosarcina barken [J]. Applied and Environmental Microbiology, 1982, 44: 128-134.
    78. Mourin F, Akkarawongsa R and Weimer P J. Initial pH as a determinant of cellulose digestion rate by mixed ruminal microorganisms in vitro [J]. Journal of dairy science, 2001, 84: 848-859
    79. Myers R M, Fischer S G, Lerman L S, et al. Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis [J]. Nucleic Acids Research, 1985(a), 13: 3131-3145.
    80. Myers R M, Fischer S G, Maniatis T, et al. Modification of the melting properties of duplex DNA by attachment of a GC-rich DNA sequence as determined by denaturing gradient gel electrophoresis [J]. Nucleic Acids Research, 1985(b), 13: 3111-3129.
    81. Muyzer G, Waal E C de and Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J], Applied and Environmental Microbiology, 1993, 59: 695-700.
    82. Muyzer G and Smalla K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel etectrophoresis (TGGE) in microbial ecology [J]. Antonie Van Leeuwenhoek, 1998, 73: 127-141.
    83. Nagaraja T G, Newbold C J, Van Nevel C J, et al. Manipulation of ruminal fermentation[C]. In "The Rumen Microbial Ecosystem" (eds: PN Hobson and CS Stewart), 1997, 523-632.
    84. Newbold C J, Williams P E V, McKain N, et al. The effects of yeast culture on yeast numbers and fermentation in the rumen of sheep [J]. Proceeding Nutrition. Society, 1990, 49:47-51
    85. Newbold C J, Wallace R J, Chen X B, et at. Different strains ofSaccharorayces cerevisiae differ in their effects on ruminal bacterial numbers in vitro and in sheep[J]. Journat of Animal Science, 1995, 75:1811-1818
    86. Newbold C J, Wallace R J and Mclntosh F M. Mode of action of the yeast Saccharorayces cerevisiae as a feed additive for ruminants [J]. British Journal of Nutrition, 1996, 76:249-261
    87. Newbold C J, Ouda JO, Lop'ez S, et al. Propionate precursors as possible alternative electron acceptors to methane in ruminal fermentation[C]. In Greenhouse Gases and Animal Agriculture, Proceedings, 2002, 151-154
    88. Newbold C J, Lo'pez S, Nelson N, et al. Propionate precursors and other metabolic intermediates as possible alternative electron acceptors to methanogenesis in ruminal fermentation in vitro[J], British Journal of Nutrition, 2005, 94, 27-35
    89. Nisbet D J and Martin S A. Effect of dicarboxylic acids and Aspergillus oryzae fermentation extract on lactate uptake by the ruminal bacterium Selenomonas ruminantium[J]. Applied and Environmental Microbiology, 1990, 56, 3515-3518.
    90. Nisbet D J and Martin S A. The effect of saccharomyces cerevisiae culture on lactate utilization by the ruminat bacterium Selenoraons ruminantiura[J].Journal of Animal Science,1991, 69:4628-4634
    91. Nisbet D J and Martin S A. Factors affecting L-lactate utilization by Selenoraonas ruminantium[J]. Journal of Anim Science, 1994,72: 1355-1361.
    92. Nocek J E. Bovine acidosis: Implications on laminitis [J]. Journal of Dairy Science, 1997, 80: 1005-1028
    93. Nubel U, Engelen B, Felske A,et al. Sequence heterogeneities of genes encoding I6S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis[J]. Journal of Bacteriology, 1996, 178:5636-5643
    94. O'Kelly J C and Spiers W G. Effect of monensin and heat production of steers fed tegume hay [J]. Austrian Journal of Agricultural Research, 1992, 1789-1793
    95. Okose E, Thomas B J, Davies D R, et al. Cyllamyces aberensis gen. nov. sp. nov., a new anaerobic gut fungus with branched sporangiophores isolated from cattle [J]. Canadian Journal of Botany, 2001, 79: 666-673
    96. Opatpatanakit Y, Kellaway R C, Lean I J, et al. Microbial fermentation of cereal grains in vitro[J].Australian Journal of Agricultural Research ,1994, 45(6): 1247 -1263
    97. Orpin C G. Studies on the rumen flagellate Neocallimastix frontalis [J]. Journal of General Microbiology, 1975, 91: 249-262
    98. Orpin C G and Joblin K N. The rumen anaerobic fungi. In: Hobson P N and Stewart C S. The Rumen Microbial Ecosystem [C]. London, U K: Blackie Academic & Professional, 1997, 140-196
    99. Oshio S I,Tahata S and Minato H. Effects of diets differing in ratios of roughage to concentrate on microflora in the rumen of heifers [J]. Journal of General Microbiology, 1987,33: 99-100
    100. Ouwerkerk D, Klieve A V and Forster R.J. Enumeration of Megasphaera elsdenii in rumen contents by real-time Taq nuclease assay [J]. Journal of Applied Microbiology, 2002, 92, 753-758
    101. Owens F N, Secrist D S, Hill W J, et al. Acidosis in cattle: a review [J]. Journal of Animal Science, 1998, 76: 275-286
    102. Phillips MW and Gordon G L R. Fungistatic and fungicidal effects of the ionophores monesin and tetronasin on the rumen fungus Neocallimastix sp. LM1 [J]. Letters in Applied Microbiology, 1992, 15: 116-119.
    103. Richardson A J and Stewart C S. Hydrogen transfer between Neocallimastix frontalis and Selenomonas ruminantium grown in mixed culture[C]. In Microbiology and Biochemistry of Strict Anaerobes Involved in Interspecies transfer.(Belaich, J.-P.,Ed.) Plenum,New York, 1990, 463-465.
    104. Robinson J A, Smolenski W J, Greening R C, et al. Prevention of acute acidosis and enhancement of feed intake in the bovine by Megasphaera elsdenii 407A[J]. Journal of Animal Science, 1992, (Suppl. 1): 310
    105. Ross F, Diluccla A, Vincenti D, et al. Effects of peptidic fractions from Saccharomyces cerevisiae culture on growth and metabolism of the ruminal bacteria Megasphaera elsdenii [J].Animal Research, 2004,53:177-186
    106. Rumsey T S, Putnam P A, Bond J, et al. Influence of level and type of diet on ruminal pH and VFA respiratory rate and EKG patterns of steers [J]. Journal of Animal Science, 1970, 31:608-616.
    107. Russell J B and Strobel H J. Effect of ionophores on ruminal fermentation [J]. Applied and Environmental Microbiology, 1989, 55: 1-6
    108. Russell J B and Wilson D. B. Why are ruminal cellulolytic bacteria unable to digest cellulose at low pH? [J]. Journal of dairy science, 1996, 79: 1503-1509
    109. Russell J B and Wallace R J. Energy-yielding and energy consuming reactions. In: Hobson PN, Stewart CS (eds), The Rumen Microbial Ecosystem, 2rid edn. 1997,246-282. Blackie Academic and Professional, London.
    110. Russella J B and Houlihanb A J. Ionophore resistance of ruminal bacteria and its potential impact on human health [J]. FEMS Microbiology Reviews, 2003, 27:65-74
    111. Salama A A K, Caja G. Gafin D, et at. Effects of adding a mixture of malate and yeast culture (Saccharomyces cerevisiae) on milk production of Murciano-Granadina dairy goats [J]. Animal. Research,2002, 51: 295-303.
    112. Sanguinetti C J, Neto E D and Simpson A J. Rapid silver staining and recovery of PCR products separated on polyacrylamide gels [J]. Biotechniques, 1994, 17:914-921.
    113. Santegoeds C M, Nold S C and Ward D M. Denaturing gradient gel electrophoresis used to monitor the enrichment culture of aerobic chemoorganotrophic bacteria from a hot spring cyanobacterial mat [J]. Applied and Environmental Microbiology, 1996,62:3922-3928.
    114. Schofield P, Pitt R E and Pell A N. Kinetics of fiber digestion from in vitro gas production [J]. Journal of Animal Science, 1994, 72:2980-2991
    115. Sekiguchi H, Tomioka N, Nakahara T, et al. A single band does not always represent single bacterial strains in denaturing gradient gel electrophoresis analysis [J]. Biotechnology Letters, 2001, 23: 1205-1208.
    116. Sekiguchi H, Watanabe M, Nakahara T, et al. Succession of bacterial community structure along the changjiang River determined by denaturing gradient gel electrophoresis aad clone library analysis [J]. Applied and Environmental Microbiology, 2002, 68: 5142-5150.
    117. Shannon C E and Weaver W. The mathematical theory of communication [C]. Urbana: University of Illinois Press, 1963, 45-55
    118. Simpson J M, McCracken V J, White B A, et al. Application of denaturant gradient gel electrophoresis for the analysis of the porcine gastrointestinal microbiota[J]. Journal of Microbiology Methods, 1999, 36:167-179
    119. Simpon J M, Kocherginskaya S A, Aminov R I, et al. Comparative microbial diversity in the gastrointestinal tracts of food animal species [J]. Integrative and Comparative Biology, 2002, 42: 327-331
    120. Smalla K, Wieland G, Buchner A, et al. Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed [J]. Applied and Environmental Microbiology, 200I, 67: 4742-4751.
    121. Stackebrandt E and Goebel B M. Taxonomic note:a place for DNA-DNA re-association and 16SrRNA sequence analysis in the present species definition in bacteriology[J]. International journal of systematic Bacteriology, 1994, 44: 846-849
    122. Stein D R, Allen D T, Perry E B, et al. Effects of feeding propionibacteria to dairy cows on milk yield, milk components, and reproduction[J]. Journal of Dairy Science, 2006, 89(1): 111-125
    123. Stewart C S and Bryant M P. The rumen bacteria[C]. In The Rumen Microbial Ecosystem ed. Hobson, P.N. London: Elsevier, 1988, 21-75.
    124. Streeter M N, Nisbet D J, Martin S A, et al. Effect of malate on ruminal metabolism and performance of steers fed a high concentrate diet [J]. Journal of Animal Science, 1994,72 (Suppl. 1), 384-390.
    125. Sung H G, BaeH D, Lee J H, et al. Application of LDH enzyme and viable LDH-producing bacteria to prevent lactate accumulation during in vitro rumen fermentation [J]. Animal Feed Science and Technology, 2004,117: 235-243
    126. Swain R A, Nolan J V and Klieve A V. Natural variability and diurnal fluctuations within the bacteriophage population of the rumen [J]. Applied and Environmental Microbiology, 1996, 62: 994-997
    127. Tajima K, Aminov R I, Nagamine T, et al. Rumen bacterial diversity as determined by sequence analysis of 16S rDNA libraries [J]. FEMS Microbiol Ecology, 1999, 29: 159-169
    128. Tajima K, Arai S, Ogate K, et al. Rumen bacterial community transition during adaptation to high-grain diet [J]. Anaerobe, 2000, 6: 273-284.
    129. Tajima K. Aminov R I, Nagamine T, et al. Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR [J]. Applied and Environmental Microbiology,2001, 67: 2766-2774
    130. Tejido M L, Ranilla M J, Garcia-Martinez R? et al. In vitro microbial growth and rumen fermentation of different substrates as affected by the addition of disodium malate[J]. Animal Science, 2005, 81: 31-38
    131. Teske A, Wawer C, Muyzer G, et al. Distribution of sulfate-reducing bacteria in a stratified fjord (Manager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments [J]. Applied and Environmental Microbiology, 1996, 62:1405-1415.
    132. Theodorou M K, Williams B A, Dhanoam S, et al. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds [J]. Animal Feed Science and Technology, 1994, 48: 185-197.
    133. Theodorou M K, ZhuWY, Rickers A, et al. Biochemistry and ecology of anaerobic fungi. In: Howard D H and Miller J D. The Mycota: Ⅵ Human and Animal Relationship [C]. New York: Springer-Verlag, 1996, 265-295.
    134. Tokura M,Chagan I,Ushida K, et al. Phytogenetic study of methanogens associated with tureen ciliates[J].Current Microbiology, 1999, 39:123-128
    135. Waldrip H M and Martin S A. Effects of an Aspergillus oryzae fermentation extract and other factors on lactate utilization by the ruminal bacterium Megasphaera elsdenii[J]. Journal of Animal Science, 1993, 71: 2770-2776
    136. Ward D M, Santegoeds C M, Nold S C, et al. Biodiversity within hot spring microbial mat communities: molecular monitoring of enrichment cultures [J]. Antonie Van Leeuwenhoek, 1997, 71: 143-150.
    137. Watanabe K, Teramoto M, Futamata H, et al. Molecular detection, isolation, and physiological characterization of functionally dominant phenol-degrading bacteria in activated sludge [J]. Applied and Environmental Microbiology, 1998, 64: 4396-4402.
    138. Weatherburn M W. Phenol-hypochiorite reaction for determination of ammonia [J]. Analytical Chemistry, 1967, 39: 971-974.
    139. Wheeler W E. Gastrointestinal tract pH environment and the influence of buffering materials on the performance of ruminants [J]. Journal of Animal Science, 1980, 51:224-235
    140. Whitman W B, Coleman D C and Wiebe W J,Prokaryotes: The unseen majority [J]. Proceedings of the National Academy of Sciences, 1998, 95: 6578-6583.
    141. Wiedmeier R D, Arambe M J l and Waiters J L. Effect of yeast culture and Aspergiltus oryzae fermentation extract on ruminal characteristics and nutrient digestibility [J]. Journal of Dairy Science, 1987, 70: 2063-2068.
    142. Williams A G. Withers S E and Joblin K N. The effect of cultivation with hydrogen-consuming bacteria on xylanolysis by Ruminococcus flavefaciens[J].Current Microbiology,1994. 29:133-138.
    143. Williams A G. Joblin K N and Fonty G. Interactions between the tureen chytrid fungi and other microorganisms[C]. In "Ananerobic Fungi: Biology, Ecology and Function" (eds: DO Mounffort and CG Orpin), Marcel Dekker, Inc. New York.,1994
    144. Williams A G and Coleman G S. The tureen protozoa. In: Hobson PN and Stewart C S. The Rumen Microbial Ecosystem [C]. London, U K. Blackie Academic and Professional, 1997, 73-139.
    145. Wolin M J. Interactions between the bacterial specials of the tureen[C]. In: digestion and Metabolism in the Ruminant, I. W. McDonald and A. C. I. Warner, Eds. Nuevo New English Publishing Unit, Armidale, NSW, Australia. 1975. P.134.
    146. Zhu W-Y. Dilution rate increases production of plant cell-wall degrading enzymes by anaerobic fungi in continuous-flow culture [J]. Anaerobe, 1997, 3:49-59
    147. Zoetendal E G, Akkermans A D and De Vos W. M. Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria [J]. Applied and Environmental Microbiology, 1998, 64: 3854-3859.
    148.陈洁.瘤胃真菌与细菌互作关系的探讨(硕士论文).2004
    149.赫恩.埃氏巨球菌的分离及其应用.中国专利(专利号:1681522A),2005
    150.胡伟莲.皂甙对瘤胃发酵与甲烷产量及动物生产性能影响的研究(博士论文)[M].2005,7—24
    151.凌关庭.食品添加剂手册.化学工业出版社,北京,1989,263.
    152.刘庆华,杨善军,梁学武,等。棕榈酸对牛瘤胃内环境的影响[J]。福建农林大学学报(自然版),2003,32(3):357-359
    153.刘延贺和胡现生.延胡索酸与动物营养[J].郑州牧专学报,1994,14(3):30-39
    154.秦为琳.应用气相色谱法测定挥发性脂肪酸的改进[J].南京农学院学报,1982,5:110-116
    155.孙云章,毛胜勇,姚文,等.不同精粗比底物下瘤胃真菌和纤维降解细菌共培养发酵特性及菌群变化[J].微生物学报,2006,46(3):422~426
    156.汤少勋,姜海林,周传社,等.不同牧草品种对体外发酵产气特性的影响[J].草业学报,2005,14:72-77.
    157.王丽风.日粮中添加甲烷抑制剂对绵羊瘤胃中甲烷产量影响的研究(硕土论文),2001,2-16
    158.姚文,朱伟云,韩正康,等.应用变性梯度凝胶电泳和16S rDNA序列分析对山羊瘤胃细菌多样性的研究[J].中国农业科学,2004,37(9):1374-1378
    159.姚文,朱伟云,毛胜勇.16S rDNA技术研究新生腹泻仔猪粪样细菌区系的多样性变化.微生物学报.2006,46(1):150-153
    160.张龙翔,张庭芳,李令媛主编.生化实验方法和技术(第二版)[M].教育出版社,1997,422-428
    161.朱崇淼,毛胜勇,孙云章,等.产木聚糖酶厌氧真菌菌株筛选及产酶培养条件研究[J]..微生物学通报,2004,31(3).11-15
    162.朱伟云,毛胜勇,王全军,等.厌氧真菌体外筛选技术的研究[J].南京农业大学学报,2001,24:44-48.
    163.朱伟云,姚文,毛胜勇.变性梯度凝胶电泳法研究断奶仔猪粪样细菌区系变化[J].微生物学报,2003,43:503—508.
    164.朱伟云.瘤胃微生物.见:冯仰廉.反刍动物营养学[C].北京:科学出版社,2004,1-130.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700