苎麻性别决定及相关基因的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苎麻是重要的纤维作物,且苎麻是多年生无性繁殖为主的异花授粉作物,杂种优势明显,杂种优势利用潜力较大。由于苎麻品种高度杂合性,苎麻杂种F_1代性状严重分离;另外由于苎麻是雌雄同株作物,杂种优势利用中需要隔离和去雄,费时费力;这是长期困扰苎麻杂种优势利用的两大难题。再者,由于苎麻的杂合性,种子繁殖会造成后代的严重退化,生产中常用无性繁殖方法,但是无性繁殖成本高,速度慢,且易带病虫,这也是苎麻生产中遇到的问题。苎麻的性别决定是苎麻杂交优势利用及苎麻繁殖方法改进的基础。
     关于苎麻性别决定的研究,前人观察表明苎麻雄花序分化过程中先形成雌雄蕊原始体,然后雌蕊退化形成雄花。而雌花中没有发现雄蕊痕迹。但是并没有给出雌雄蕊决定的准确时间,也没有外部形态标记。GA_3诱导苎麻属全雌性无融合生殖种产生雄花的试验表明,花芽分化至雌蕊原基分化形成之前(花芽长度0.5cm左右)比较容易诱导性转换。但是此试验并没有给出性别决定的确切时间点和外部形态特征标记。外源激素与苎麻性别的关系的研究方面主要集中在性别逆转上。关于苎麻性别决定相关基因方面的研究迄今为止未见报道。
     本研究利用性别表达特异的材料,对其植物学性状、生长动态、花芽分化、内源乙烯、苎麻乙烯合成关键酶(ACC合成酶)基因的克隆及时空表达特性等几个方面进行研究,结果如下:
     1)对性别表现特异的雌株苎麻(GBN-09)和雌雄同株苎麻(GBN-08)进行田间调查,发现GBN-08叶柄微红、托叶合生,茎黄绿色,花蕾绿色,茎斑细小且稀疏,而GBN-09叶柄绿色、托叶分生,茎绿色,花蕾黄白,茎斑大且密集。
     2)对雌株苎麻(GBN-09)和雌雄同株苎麻(GBN-08)进行生长动态调查,发现GBN-08和GBN-09二麻期的株高日生长量呈抛物线,三麻期的株高日生长量逐渐降低;在二麻和三麻期,节位数的日增加量以前期增加较快,后期增加减缓为主;叶长与叶宽生长动态与株高的生长动态相同,而且叶片的伸长与加宽是正相关的。
     3)对雌株苎麻(GBN-09)和雌雄同株苎麻(GBN-08)进行开花特性调查,发现苎麻第一花芽(最先分化的花芽)的性别决定整株的性别,即如第一花芽是雌性,则整株是雌株;如第一花芽是雄性则整株是雌雄同株。
     4)对GBN-08和GBN-09的花芽分化进行显微切片观察,发现第一花芽大小为0.20±0.067cm是雌雄同株苎麻GBN-08的性别决定期,此时总节位为28-30节;第一花芽大小为0.25±0.037cm时是雌株苎麻GBN-09的性别决定期,此时总节位为24-29节。
     5)对不同性别苎麻茎尖乙烯释放速率、不同性别苎麻材料不同节位花芽乙烯释放速率、雌雄同株苎麻的雌花序、雄花序和雌雄混合花序的乙烯释放速率进行测定,同时对外施乙烯抑制剂(AVG和AgNO_3)对苎麻性别的控制进行研究,表明苎麻性别分化与内源乙烯密切相关,高水平乙烯释放速率诱导雌株苎麻或雌花的产生。雌株苎麻在茎尖、叶和花芽中的乙烯含量都大于雌雄同株苎麻。在雌雄同株苎麻中,乙烯在雌花序中的含量高于在混合花序和雄花序中的含量。乙烯抑制剂AVG和AgNO_3可以控制苎麻的性别表现,以乙烯合成抑制剂AVG效果好,且以300mg/L为最佳诱导剂浓度。
     6)通过比较几种RNA提取试剂对雌花,果实,叶片,茎皮的总RNA提取效果,发现RNAplant可以有效地提取苎麻不同组织的RNA且质量很好,可以进行mRNA的抽提,cDNA的合成,RT-PCR等下游实验。
     7)根据已克隆的双子叶植物的ACC合成酶基因序列设计简并引物,以苎麻茎尖总RNA为模板,通过RT-PCR结合NEST-PCR扩增得到615bp的cDNA序列。对得到的cDNA序列在NCBI网站进行BLASTn和BLASTx比对显示此序列是苎麻ACC合成酶基因,编码205个氨基酸。苎麻ACC合成酶基因推导的氨基酸与苹果、拟南芥、大豆、番茄、甘蓝、黄瓜、柑桔、烟草、桃的蛋白结构域的保守性分析显示含有以报道的ACC合成酶基因5个保守区。同源树分析表明,苎麻ACC合成酶基因与大豆ACC合成酶基因的同源性最高。
     8)实时定量PCR分析苎麻ACC合成酶基因的时空表达,发现在苗期以茎尖的表达量较高,叶片和茎杆次之,根中最低。在开花期和结果期,该基因的表达都比较低。当第一花芽大小为0.75cm时(处于花芽分化后期至开花前期之间),雌株苎麻(GBN-09)的茎尖ACC合成酶的表达量是苗期茎尖的26.2倍,雌雄同株苎麻(GBN-08)的茎尖表达量是苗期茎尖的10.1倍;而对于花芽来说,ACC合成酶基因表达量同样以雌株苎麻高于雌雄同株苎麻,它们分别是苗期茎尖的9.36和1.27倍。
     综上所述,本研究在植物学性状,花芽分化,内源乙烯、乙烯合成关键酶(ACC合成酶)基因以及苎麻ACC合成酶基因时空表达特点与苎麻性别的关系等方面取得了显著的新进展,对苎麻性别控制、杂种优势利用和改进苎麻繁殖方法等方面具有重要的理论和实践价值。
Rarnie(Boehmeria nivea (L.) Gaud.) is perennial bast fiber crop. Scince ramie is a cross-pollinatedcultivated plant with complex genetic background, its offspring can be badly segregated. It was moreexpensive that the male flower must be deleted in heterosis and breeding by clone method. To solvethese problem, it is very important to study on sexual determination and related genes to control ramiesexual expression by researching bud morphology and differentiation, physiology and moleculargenetics in sexual special ramie. This research could promote to ulitize the heterosis and improve on thebreeding method.
     About the studis on sexual determination of ramie, the gynandrous primordium was formed firstlyduring sex differentiation in male flower. Then the male flower could be shaped by degenerated thegynoecium. But the androecium was not appeared in female flower. When the bud growed to 0.5centimeter before the the gynandrous primordium was formed, the male were easily induced by GA_3among apomixes species. The exact time and maker of external morphology that happened at sexualdetermination date in ramie were not known.The study of relation between the exogenous hormone andsex was mostly focus on reversing sex in ramie.It was not reported about the related genes of sexdetermination in ramie.
     In this paper, the ramie materials with unusual sex was studied on observing in botany character,researching bud differentiation, mensurating endogenesis ethylene content, spraying the ethyleneinhibitor, cloning the ACC synthase and studying spatio-temporal expression.The main result of thispaper are as follows:
     1. The female ramie (GBN-09) and hermaphrodite ramie(GBN-08) were investigated in second crop.
     There are light red leafstalk, connate stipul, kelly stem, green bud and small stem spot in GBN-08.it was different with GBN-09 that have green leafstalk, asunder stipul, white yellow bud and bigstem spot.
     2. The growth trend was obtained by observing the GBN-09 and GBN-O8.The result showed the daygrowth trends of stem highness was parabola on GBN-08 and GBN-09 in the second crops, wasgradually reduced in third crops. The day growth trends of node numebers was faster ininitiat-stage than late-stage. It is the same growth trends between the stem highness and leaf lengthand leaf width, and the growth trends is positive correlation between the leaf length and leaf width.
     3. The characteristic of flowering were studied in female ramie (GBN-09) and hermaphrodite ramie(GBN-08). The result showed that the sex of individual plant of ramie was determined by the fastbud (which was earliest differentiation). If the fast bud was female, that the individual plant oframie was female. But if the the first bud was male, that the individual plant of ramie washermaphrodite.
     4. Morphological observation of flower bud differentiation were done with GBN-08 and GBN-09 byparaffin section. It was the time of sex determination in hermaphrodite ramie including 28-30 node When the bud was 0.2±0.067 centimeter; And It was the time of sex determination in female ramieincluding 24-29 node When the bud was 0.25±0.037 centimeter.
     5. The ethylene release rate was measured in shoot tip of different sex ramie in different time, the budof same node in female and hermaphrodite ramie in second crops and different sex singleinflorescence in hermaphrodite ramie. The result indicated there was closed relationship betweensexual different ramie and ethylene release rate. The female ramie could be induced by highethylene release rate. the ethylene content in ramie plant with female flower is higher than ramieplant with androgynary in stem apex, leaf and flower. In flower organ, the ethylene content ishigher in female flower than male flower and mixed inflorescence. The sex expression of ramiewas found to be controlled by foliar spray with 2-aminoethoxyvinylglycine(AVG) and AgNO3.AVG at a concentration of 300,100mg/L and AgNO3 at a 100, 300,500mg/L caused increase ofmaleness and inhibition of fe-male flower. AVG at a concentration of 300mg/L were the best.
     6. It is necessary to extract total RNA from plant tissue.A new reagent—RNAplant was screened outto extract RNA from ramie leaf, stern, female flower and fruit by used five different reagents.RNAswere effective extracted and the high quality RNA can be used for cDNA synthesis, RT-PCR andothers downstream experiment.
     7. ACC synthase(ACS) was a key enzyme for ethylene biosynthesis. In this paper, four degenerateoligonucleotide primers were designed, coding for consernative amino acid regions in ACCsynthase protein family of dicotyledon. Reverse transcription PCR and Nest PCR were performedon total RNA extracted from shoot tip of ramie, and produced 615bp fragment. By using theprogram of BLASTn and BLASTx on NCBI GenBank database, the fragment was ACC synthasegene, coded 205 amino acids. Domain of deduced ACS amino acids in ramie was aligned withACS amino acids of twenty plant. The result showed that there are five conserve domain in ACSamino acids of ramie.The ramie have higher similar with soybean by phylogeny.
     8. To study the differential expression of ACS gene at different development stage and in differenttissues of ramie,relatively quantitative analysis was performed by Realtime-PCR. The expressionlevel of ACS gene in stem apex was higher than leaf, stem and lowest in root in seedling. Theexpression level of ACS gene was lower in anthesis and fruiting period. The expression level ofACS gene in stem apex or bud of GBN-09 was higher than that of GBN-08 when size of the firstbud was 0.75 centimeter.
     So, the new progress about the sex determination of ramie was obtained in botany character,researching bud differentiation, mensurating endogenesis ethylene content, spraying the ethyleneinhibitor, cloning the ACC synthase and studying spatio-temporal expression.. The results provided aexprerimental and theoretical basis for controling the sex of ramie, utilizing the hybrid vigor andimproving the breeding methods.
引文
1.蔡亮,田晓晨,李明,黄伟达.RAPD技术在罗汉松性别辨别中的应用.复旦学报(自然科学版),2002,41(6):635-640.
    2.陈惠明,卢向阳,许亮,易克,田云.黄瓜性别决定相关基因和性别表达机制.植物生理学通讯 2005,41(1):7-13.
    3.陈惠明.黄瓜性别决定基因遗传规律、分子标记及应用.[博士学位论文].长沙:湖南农业大学,2006.
    4.陈建荣.苎麻木质素合成关键酶CCoAOMT基因分离及遗传转化的研究.[博士学位论文].长沙,湖南农业大学,2005.
    5.陈其军,韩玉珍.高等植物性别表达的单激素调控模型.生命科学,1999,11(sup):84-87.
    6.陈万秋,李思光,罗玉萍.分子标记技术在猕猴桃属植物中的研究进展.江西科学,2001,19(3):162-165.
    7.陈学好,陈艳萍,金银根.黄瓜性器官败育的细胞学研究.扬州大学学报(农业与生命科学版),2002,24(2):68-71.
    8.程超华,赵立宁,臧巩固等.一种提取悬铃叶苎麻(B.tricuspis(Hance)Marino)花序RNA的方法.中国麻作,2006,28(2):76-78.
    9.胡建芳,贺海洋.AVG(2-aminoethoxyvinylglycine)处理对‘巨峰’葡萄坐果的影响.中国农业大学学报,2001,6(1):7-11.
    10.黄森,张继澍,张院民.赤霉素处理对采后柿果实乙烯生物合成的影响.中国农学通报,2006,22(2):88-90.
    11.黄先忠,蒋才富,廖立力,傅向东.赤霉素作用机理的分子基础与调控模式研究进展.植物学通报,2006,23(5):499-510.
    12.J.萨姆布鲁克,E.F弗里奇,T.曼尼阿蒂斯.分子克隆实验指南第2版(金冬雁,黎孟枫译).北京:科学出版社1992,343-344.
    13.金勇丰 张耀洲.桃果实ACC合成酶cDNA的克隆.园艺学报,2000,27(4):257-26.
    14.金志强,李瑞珍,徐碧玉和郑学勤.香蕉果实特异性ACC合成酶基因的克隆及反义载体的构建.农业生物技术学报,2002,10(3):305-306.
    15.孔祥海.植物性别及其决定的分子生物学研究进展.龙岩师专学报,2002,20(3):40-42.
    16.李大力.一种从富含次生物质的植物中提取RNA的方法.南京理工大学学报,2001,25(5):547-549.
    17.李德红,骆炳山,屈映兰.光敏核不育水稻幼穗的乙烯生成与育性转换.植物生理学报,1996,22(3):320-326.
    18.李富军,张新华,王相友.AVG对肥城桃采收品质和采后乙烯合成的影响.农业机械学报,2006,37(2):76-79.
    19.李宏,王新力,彭学贤,黄秀梨.香蕉不同组织中总RNA的有效分离.植物生理学通讯,1999,35(5):384-388.
    20.李敏,李焕秀,李靖.植物基因克隆技术研究进展.生命科学研究,2004,8(2):116-120.
    21.李曙轩,傅炳通.黄瓜及瓠瓜的性别表现与激素控制.植物生理学报,1979,5(1):83-9.
    22.李同华,姜静,陈建名,范士波.种子植物性别的多态.东北林业大学学报,2004,32(5):48-52.
    23.李正理,张新英.植物解剖学.北京:高等教育出版社,1983.
    24.李宗道,胡久清.麻类形态学.北京:科学出版社.1987.
    25.李宗道,彭淡和.苎麻阶段发育的分析.农业学报,1957:8(3):347-360
    26.李宗道,彭淡和.苎麻年循环光照阶段的分析.农业学报,1955,6(4):407-413.
    27.李宗道编著.麻作的理论与技术.上海:上海科学出版社,1980.
    28.林鸣,曹宗巽.黄瓜(Cucumis sativus L.)性别表达与ACC含量,EFE活性,及内源激素的变化.北京大学学报(自然科学版),1997,33(2):222-229.
    29.林晓东,吴定尧.胚珠发育与荔枝花型的关系.园艺学报,1999,26:397-399.
    30.刘飞虎,梁雪妮.对苎麻光周期反应特性的新看法.中国麻作,1994,16(2):34-35,42.
    31.刘恒蔚,周瑞阳.苎麻光周期反应与性型多样性及其利用价值.湖北农业科学,2005,1:45-48.
    32.刘宏伟,张改生,王军卫,王小利,方振武.GENESIS诱导小麦雄性不育与幼穗中乙烯含量的关系.西北农林科技大学学报,2003,31(3):39-42.
    33.刘志勇,沈春章,傅廷栋,董元彦.化杀灵诱导油菜雄性不育与乙烯释放量的关系.华中农业大学学报,2006,25(2):120-122.
    34.娄群峰,余纪柱,陈劲枫,庄飞云.植物性别分化的遗传基础与标记物研究.植物学通报,2002,19(6):684~691.
    35.娄群峰.黄瓜全雌性基因分子标记及ACC合成酶基因克隆与表达研究.[博士学位论文].南京:南京农业大学,2004.
    36.吕柳新,陈景渌.荔枝雌雄性器官发育的相互消长.中国果树,1990(1):9-12
    37.马铁华.植物的性别决定.农业与技术,2001,21(2):52-54.
    38.孟金陵.植物生殖生物学.北京:科学出版社,1995.
    39.任吉君,王艳.黄瓜性别决定解剖学研究.北方园艺,1994,4:46.
    40.邵宏波,初立业.高每植物的性别研究意义及其特点.生命科学,1994,6(1):11-14.
    41.汤福强,刘愚.植物乙烯生物合成研究进展.植物生理学通讯,1994,30(1):3-10.
    42.田长恩,梁承邺,黄毓文等.乙烯与水稻细胞质雄性不育的关系.作物学报,1999,25(1):116-119.
    43.汪俏梅,曾广文.雌雄同株植物性别分化离体试验研究.植物生理学通讯,1996,32(5):385-389.
    44.汪俏梅,曾广文.高等植物性别分化的诱导信号.植物生理学通讯,1997,33(2):147-151.
    45.王爱勤,王自章,杨丽涛,韦宇拓,李杨瑞.乙烯生物合成途径中的两个关键酶基因的研究进展.广西农业生物科学,2004,23(20):164-169.
    46.王丙武,王雅清,莫华,罗立新,李惫学,崔克明.杜仲雌雄株细胞学、顶芽及叶含胶量的比较.植物学报,1999,41(1):11-15
    47.王玉成,杨传平,姜静.木本植物组织总RNA提取的要点与原理.东北林业大学学报,2002,30(2):1-4.
    48.魏敏,熊建华,李阳生,傅彬英.实时PCR定量分析干旱胁迫下水稻糖原合成酶激酶基因表达差异.中国水稻科学,2006,20(6):567-571.
    49.许智宏,刘春明主编.植物发育的分子机理.北京:科学出版社,1999,46.
    50.叶波平,吉成均,杨玲玲.杨中汉.曹宗巽.不同性别表型黄瓜基因组中雌性系特异的ACC合成酶基因.植物学报,2000,42(2):164-168.
    51.尹立辉,詹亚光,李彩华,孙亚峰,郭聃.植物雌雄株性别鉴定研究方法的评价.植物研究,2003,23(1):123-128.
    52.余叔文.植物生理和分子生物学.北京:科学出版社,1999.
    53.喻春明.苎麻性别特异材料的研究.[硕士学位论文].北京:中国农业科学院研究生院,2001.
    54.臧巩固,赵立宁.中国苎麻属无融合种综发现初报.中国麻作,1996,18(1):19.
    55.张鹏,傅爱根,王爱国.AgNO_3在植物离体培养中的作用及可能的机制.植物生理学通讯,1997,33(2):376-379.
    56.赵德刚,韩玉珍,傅永福,国凤利,孟繁静.玉米雌、雄穗与叶片内几种激素含量的比较.植物生理学报,1999,25(1):57-65.
    57.赵德刚,孟繁静.玉米性别决定研究现状.中国农学通报,1996,12(5):19-21.
    58.赵立宁,减巩固.苎麻属全雌型无融合生殖种雄花诱导研究.中国麻作,1997,19(2):5-8.
    59.赵立宁,臧巩固,陈建华.中国苎麻属植物性别表现及其演化.中国麻业,2003,25(5):209-212.
    60.赵云云,田汝零,刘捷平.杜仲雌雄株树皮和叶片中氨基酸及其含量的研究.氨基酸和生物资源,1996,18(2):5-9.
    61.赵竹青,王运华,吴礼树.缺硼对棉花、黄瓜和油菜乙烯释放的影响.植物学通报,1998,15(2):63-66.
    62.郑昭英,孙小镭,刘世琦,高俊凤.乙烯在黄瓜体内分布及周年变化动态研究初报,山东农业科学,2003,(4):15-17.
    63. Ainsworth C.C., Crossley S., Buchanan-Wollaston V., Thangavelu M., Parker J..Male and female flowers of the dioecious plant sorrel show different patterns of MADS box gene expression. Plant Cell, 1995, 7: 1583-1598.
    64. Alonso, J. M., Hirayama, T., Roman, G., Nourizadeh, S., and Ecker, J. R.. EIN2, a bi-functional transducer of ethylene and stress responses in Arabidopsis.Science, 1999, 284: 2148-2152.
    65. Ando S., Sato Y., Kamachi S., Sakai S..Isolation of a MADS-box gene (ERAF17) and correlation of its expression with the induction of fomation of female flower by ethylene in cucumber plants (cucumis sativus L). Planta, 2001, 213:943-952.
    66. Apple F.S., Wu A.H., Jaffe A.S..European society of cardiology and American college of cardiology guide lines for redefinition of myocardial infarction: How to use existing assays clinically and for clinical trials. Am Heart J, 2002, 144(6): 981-986.
    67. Atsmon D, Tabbak C..Comparative effects of gibberellin, silver nitrate, and aminoethoxyvinyl glycine on sexual tendency and ethylene evolution in the cucumber plant (Cucumis sativus L.). Plant Cell Physiol, 1979, 20: 1547-1555.
    68. Barton N.H. and Charlesworth B.. Why Sex and Recombination? Science, 1998, 281: 1986-1990.
    69. Bernard P.S. and Wittwer C.T.. Homogeneous amplification and variant detection by fluorescent hybridization probes. Clin. Chem., 2000,46:147-148.
    70. Beth Savidge,Steven D.Rounsley,and Martin F.Yanofsky..Temporal Relationship between the Transcription of Two Arabidopsis MADS Box Genes and the Floral Organ Identity Genes.The Plant Cell,1995,7(7) :721-733.
    71. Blázquez M.,Koornneef M.,Putterill J..Flowering on time:genes that regulate the floral transition:Workshop on the molecular basis of flowering time control.EMBO Rep,2001,2(12) :1078-1082.
    72. Bleecker A.B..Ethylene:A gas signal molecule in plants.Annu Rev Cell Dev Biol,2000,16:1-18.
    73. Boissay E.,Delaigue M.,Sallaud C.,Esnault R.,Kahlem G...Predominant expression of a peroxidase gene in staminate flowers of Mercurialis annua.PhysiolPlant,1996,96(2) :251-257.
    74. Bustin,S.A.Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays.J.Mol.Endocrinol.,2000,25:169-193.
    75. Catherine Delichere,Jacky Veuskens,Michel Hernould,Nicolas Barbacar,Arnnand Mouras,loan Negrutiu and Francois Moneger.S1Y1,the first active gene cloned from a plant Y chromosome,encodes a WD-protein.The EMBO Journal,1999,18(15) :4169-4179.
    76. Charles Ainsworth,Susan Crossley,Vicky Buchanan-Wollaston,Madan Thangavelu and John Parker.Male and Female Flowers of the Dioecious Plant Sorrel Show Different Patterns of MADS Box Gene Expression.The Plant Cell,1995,7(10) :1583-1598
    77. Cristina Juarez and Jo Ann Banks.Sex determination in plants.Current Opinion in Plant Biology 1998,1:68-72.
    78. Da-Zhong Zhao,Guan-Fang Wang,Brooke Speal and Hong Ma.The EXCESS MICROSPOROCYTES1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther.Genes&Development,2002,16:2021-2031.
    79. Deiph L.F..Sexual dimorphism in gender plasticity and its consequences for breeding system evolution.Evol Dev,2003,5(1) :34-39.
    80. Dong J.G..Cloning of a cDNA encoding 1-aminocyclopropane-1-carboxylate synthase and expression of its mRNA in ripening apple fruit.Planta,1991,185:38-45.
    81. Fillpecki M.K.,Samer H.,Malepszy S..The MADS-box gene CUS1 is expressed during cucumber saratic embryryogenesis.Plant Sci.,1997,125:63-74.
    82. Fujimoto S.Y.,Ohta M.,Usui A.,Shinshi H.,Ohme-Takagi M..Arabidopsis ethylene-responsive element binding factors actas transcriptional activators or repressors of GCC box-mediated gene expression.Plant Cell,2000,12:393-404.
    83. Gentle A.,Anastasopoulos F.and McBrien N.A..High-resolution semi-quantitative real-time PCR without the use of a standard curve.BioTechniques,2001,31:502-508.
    84. Gerco C.Angenent,Marco Busscher,John Franken,Joseph N.M.Mollb and Arjen J.van Tunen..Differential Expression of Two MADS Box Genes in Wild-Type and Mutant Petunia Flowers.The Plant Cell,1992,4(8) :983-993.
    85. Graham GC..A method for extraction of total RNA from Pinus radia and other conifers.Plant MolBiol Reptr,1993,11:32-37.
    86. Heid C.A., Stevens J., Livak K.J. and Williams P.M.. Real time quantitative PCR. Genome Res, 1996,.6:.986-994.
    87. Higuchi R., Fockler C., Dollinger G. and Watson R..Kinetic PCR analysis: real-time monitoring of D NA amplification reac-tions. Biotechnology (NY), 1993, 11:1026-1030.
    88. Hird D.L., Worrall D., Hodge R., Smartt,S., Paul W. and Scott R..The anther-specific protein encoded by the Brassica napus and Arabidopsis thaliana A6 gene displays similarity to beta-1,3-glucanases. Plant J, 1993,4: 1023-1033.
    89. Holdsworth M.J., Bird C.R., Ray J., Schuch W., Grierson D.. Structure and expression of an ethylene-related mRNA from tomato. Nucleic Acids Res., 1987, 15(2): 731-739
    90. Hu Chun-gen, Chikako H., Masayuki K., Zhang Zi-lian, Tomomi T. and Takaya Moriguchi. A Simple Protocol for RNA Isolation from Fruit Trees Containing High Levels of Polysaccharides and Polyphenol Compounds. Plant Molecular Biology Reporter, 2002, 20: 69a-69g.
    91. HuaiWang, Leonardo V. Caruso, Bruce Downie A., and Sharyn E. Perrya. The Embryo MADS Domain Protein AGAMOUS-Like 15 Directly Regulates Expression of a Gene Encoding an Enzyme Involved in Gibberellin Metabolism.The Plant Cell, 2004, 16(5): 1206-1219.
    92. Jeannette M., Arteca Richard N.. A multi-responsive gene encoding 1- aminocyclopropane -1- carboxylate synthase (ACS6) in mature Arabidopsis leaves. Plant Mol Biol, 1999, 39: 209-219.
    93. Jean-Paul Louis, Christofer Augur, and Gerard Teller. Cytokinins and Differentiation Processes in Mercurialis annua Genetic Regulation, Relations with Auxins, Indoleacetic Acid Oxidases, and Sexual Expression Patterns. Plant Physiol, 1990, 94: 1535-1541.
    94. Jin Y.F., Zhu Li-Cheng, Zhang Y.Z.. cloning and differential expression of 1-aminocyclopropane-1-carboxylate synthase cDNA from peach. Acta Botanica Sinica, 2002, 44 (10) : 1182-1187.
    95. Johnson P.R., Ecker J.R.. The Ethylene Gas Signal Transduction Pathway: A Molecular Perspective. Annu Rev Genet, 1998, 32 : 227-254.
    96. Kamachi S., Sekimoto H., Kondo N., Kondo N., Sakai S..Cloning of a cDNA for a 1-aminocyclopropane-1-carboxylate synthase that is expressed during development of female flowers at the apices of Cucumis sativus L. Plant Cell Physiol,1997,38; 1197-1206
    97. Kater M.M., Colombo L., Franken J., Busscher M., Masiero S., Van Lookeren Campagne MM., Angenent G.C..Mulltiple AGAMOUS homologs from cucumber and petunia differ in their ability to induce reproductive organ fate.Plant Cell, 1998,10:171-18.
    98. Kende H.. Ethylene biosynthesis. Annu Rev Plant Physiol Plant Mol Bio1,1993,44:283-307.
    99. Kimitsune Ishizaki, Yuu Shimizu-Ueda, Sachiko Okada, Masayuki Yamamoto, Masaki Fujisawa, Katsuyuki T. Yamato, Hideya Fukuzawa and Kanji Ohyama. Multicopy genes uniquely amplified in the Y chromosome-specific repeats of the liverwort Marchantia polymorpha . Nucleic Acids Research, 2002, 30(21): 4675-4681.
    100. Lashbrook C.C., Teman D.M., Klee H.J.. Differential regulation of the tomato ETR gene family throughout plant development .Plant J, 1998,15:243-252.
    101. Lebel-Hardenack, S., Ye, D., Koutnikova, H., Saedler, H., and Grant, S.R.. Conserved expression of a TASSELSEED2 homolog in the tapetum of the dioecious Silene latifolia and Arabidopsis thaliana. Plant J, 1997,12: 515-526.
    102. Leslie E. Sieburth, Mark P. Running, and Elliot M. Meyerowitz. Genetic Separation of Third and Fourth Whorl Functions of AGAMOU.The Plant Cell, 1995,7(8):1249-1258.
    103. Liang X., Abel S., Keller J.A., Shen N.F., Theologis A..The 1-aminocyclopropane-1-carboxylate synthase gene family of Arabidopsis thaliana .Proc Nail Acad Sci USA,1992,89:11046-11050.
    104. Li F., Stormo G.D.. Selection of optimal DNA oligos for gene expression arryso Biominformatics, 2001, 17(11):1067-1076.
    105. Liu, W. and Saint D.A.. A new quantitative method of real time reverse transcription polymerase chain reaction assay based on simulation of polymerase chain reaction kinetics. Anal. Biochem., 2002. 302:52-59.
    106. Livak K.J. and Schmittgen T.D.. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001, 25:402-408.
    107. Lorraine A. Sheppard, Amy M. Brenner, Konstantin V. Krutovskii, William H. Rottmann, Jeffrey S. Skinner, Sheila S. Vollmer, and Steven H. Strauss. A DEFICIENS Homolog from the Dioecious Tree Black Cottonwood Is Expressed in Female and Male Floral Meristems of the Two-Whorled, Unisexual Flowers. Plant Physiology, 2000,124(10): 627-639.
    108. Lucia Colombo, John Franken, Emmo Koetje, Jacques van Went, Hans J. M. Dons,Gerco C. Angenent and Arjen J. van Tunenai. The Petunia MADS Box Gene FBPI7 Determines Ovule Identity.The Plant Cell, 1995,7(11):1859-1868.
    109. Malinen, E., Kassinen A., Rinttila T., and Palva A..Comparison of real-time PCR with SYBR Green Ⅰ or 5'-nuclease assays and dot-blot hybridization with rDNA-targeted oligonucleotide probes in quantification of selected faecal bacteria. Microbiology. 2003,149:269-277.
    110. Mandolino G..,Carboni A.,Forapani S.,Faeti V.,Ranalli P..Identification of DNA markers linked to the male sex in diocioushemp(Cannabis sativa L.)Theor Appl Genet, 1999,98(1):86-92.
    111. Martin M. Kater, Lucia Colombo, John Franken, Marco Busscher, Simona Masiero, Michiel M. Van Lookeren Campagne and Gerco C. Angenent. Multiple AGAMOUS Homologs from Cucumber and Petunia Differ in Their Ability to Induce Reproductive Organ Fate.The Plant Cell, 1998,10(2): 171-182.
    112. Medard N.G. and Martin F. Yanofsky. Activation of the Arabidopsis B Class Homeotic Genes by APETALA1.The Plant Cell, 2001,13(4): 739-753.
    113. Michiel Vandenbussche, Jan Zethof, Stefan Royaert, KoenWeterings, and Tom Geratsa. The Duplicated B-Class HeterodimerModel:Whorl-Specific Effects and Complex Genetic Interactions in Petunia hybrida Flower Development.The Plant Cell, 2004,16(3): 741-754.
    114. Michiel Vandenbussche, Jan Zethof, Erik Souer, Ronald Koes, Giovanni B. Tornielli, Mario Pezzotti, Silvia Ferrario, Gerco C. Angenent and Tom Great Toward. The Analysis of the Petunia MADS Box Gene Family by Reverse and Forward Transposon Insertion Mutagenesis Approaches: B, C, and D Floral Organ Identity Functions Require SEPALLATALike MADS Box Genes in Petunia.The Plant Cell,2003,15(11) :2680-2693.
    115. Mika Kotilainen,Paula Elomaa,Anne Uimari,Victor A.Albert,Deyue Yu,and Teemu H.Teeri.GRCD1,an AGL2-like MADS Box Gene,Participates in the C Function during Stamen Development in Gerbera hybrida The Plant CeU,2000,12(10) :1893-1902.
    116. orrison T.B.,Weis J.J.and Wittwer C.T..Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification.BioTechniques,1998,24:954-962.
    117. Mason G.,Provero P.,Vaira A.M.,Accotto G.P..Estimating the number of integrations in transformed plants by quantitative real-time PCR.BMCBiotech,2002,2(1) :20.
    118. NCBI.http://www.ncbi.nlm.nih.gov/.2007.
    119. Palmer S.,Wiegand A.P.,Maldarelli F.,Bazmi H.,Mican J.M.,Polis M.,Dewar R.L.A new real-time reverse transcriptase-initiated PCR assay with single-copy sensitivity for human immunodeficiency virus type 1 RNA in plasma.J.Clin.Microbiol,2003,41:4531-4536.
    120. Parasnis A.S.,Ramakrishna W.,Chowdari K.V.,Ranjekar P.K..MicrosateIlite(GATA)n reveals sex specific differ ences in papaya.Theor.Appl.Gene.1999,99(6) :1047-1052.
    121. Parker J.S..Sex chromosomes and sexual differentiation in flowering plants.Chromosomes Today,1990,10:187-198.
    122. Parker J.S.and Clark M.S..Dosage sex-chromosomes systems in plants.Plant Sci,1991,80:79-92.
    123. Perl-Treves R.,Kahana A.,Rosenmann N.,Yu X.,Silberstein L.Expression of multiple agamous-like genes in male and female flowers of cucumber(cucumis sativus L.).Plant Cell Physiol,1998,39:701-710
    124. Rebecca Favaro,Anusak Pinyopich,Raffaella Battaglia,Maarten Kooiker,Lorenzo Borghi,Gary Ditta,Martin F.Yanofsky,Martin M.ater and Lucia Colombo.MADS-Box Protein Complexes Control Carpel and Ovule Development in Arabidopsis.The Plant Cell,2003 ,15(11) :2603-261.
    125. Roman G.,Lubarsky B.,Kieber J.J.,Rothenberg M.,Ecker J.R..Genetic analysis of ethylene signal transduction in Arabidopsis thaliana:five novel mutant loci integrated into a stress response pathway.Genetics,1995,139:1393-1409.
    126. Rudich J.,Halevy H.A.,Kedar N..Ethylene evolution from cucumber Plants as related to sex expression.Plant Physiol,1972,49:998-999.
    127. Rudich J.,Halevy A.H.and Kedar N..Ethylene Evolution from Cucumber Plants as Related to Sex Expression.Plant Physiol,1972,49,998-999.
    128. Sabine Lebel-Hardenack and Sarah R.Grant.Genetics of sex determination in flowering plants.Trends in Plant Science,1997,2(4) :130-136
    129. Schmittgen T.D.,Zakrajsek B.A.,Mills A.G.,Gorn V.,Singer M.J.and Reed M.W..Quantitative reverse transcription-poly-merase chain reaction to study mRNA decay:comparison of endpoint and real-time meth-ods.Anal.Biochem,2000,285:194-204.
    130. Schneiderbaue A.,Sandermann H.Jr.,Ernst D..Isolution of functional RNA from plant tissues rich in phenolic compounds.Anal Biochen,1991,197:91-952.
    131. Shiomi S.,Yamamoto M.,Ono T.,Kakiuchi K.,Nakamoto J.,Nakatsuka A.,Kubo Y.,Nakamura R., Inaba A.. cDNA cloning of ACC synthase and ACC oxidase in genes in cucumber fruit and their differential expression by wounding and auxin. Japan. Soc. Hort. Sci., 1998: 685-692.
    132. Simpson D.A., Feeney S., Boyle C., and Stitt A.W.. Retinal VEGF mRNA measured by SYBR green Ⅰ fluorescence: A versatile approach to quantitative PCR. Mol. Vis, 2000, 6:178-183.
    133. Souaze F., Ntodou-Thome A., Tran C.Y., Rostene W., andForgez P.. Quantitative RT-PCR: limits and accuracy. BioTechniques, 1996, 21:280-285.
    134. Stephen L. Deilaporta' and Alejandro Calderon-Urrea. Sex Determination in Flowering Plants .The Plant Cell, 1997, 5: 1241-1251.
    135. Takahashi H., Suge H.. Sex expression and ethylene Production in cucumber Plants as affected by 1-aminocyclopropane 1-carboxylic acid. J Jpn Soc Hortic Sci, 1982,54:51-55.
    136. Takahashi H, Suge Physiol.. Sex expression in cucumber plants as affected by mechanical stress. Plant Cell, 1980, 21:303-310.
    137. Takahiro Yamaguchi, Dong Yeon Lee, Akio Miyao, Hikohiko Hirochika, Gynheung An. and Hiro-Yuki Hiranoa. Functional Diversification of the Two C-Class MADS Box Genes OSMADS3 and OSMADS58 in Oryza sativa. The Plant Cell, 2006,18(1): 15-28
    138. Talcahashi H., Jaffe M.J.. Further studies of auxin and ACC induced femini7ation in the cucumber plant using ethylene inhibitors. PhyWn (BuenosAires), 1984, 44 (1): 81-86.
    139. Terauchi R., Kahl G...Mapping of the Dioscrea tokoro genome: AFLP markers linked to sex. Genome, 1999,42(4):752-762.
    140. Tichopad A., Dilger M., Schwarz G., and Pfaffl M.W.. Standardized determination of real-time PCR efficiency from a single reaction set-up. Nucleic Acids Res, 2003, 31:e122.
    141. Tieman D.M., Klee H.J..Differential expression of two novel members of the tomato ethylene receptor family.Plant Physiol, 1999,120:165-172.
    142. Trebitsh T., Riov J., Rudich J..Auxin biosynthes is of ethylene and sex expression in cucember (Cucumis sativus).Plant Growth Regul,1987, 5:105-113
    143. Trebitsh T., Staub JE., O'Neil SD..Identification of al-carboxylic acide synthase gene linked to the female(F) locus that enhance female sex expression in cucumber.Plant Physiology, 1997,113: 987-995.
    144. Aranda-Rodriguez R., Kubwabo C. and Benoit F. M. Cloning genetic mapping and expression analysis of an Arabidopsis thaliana gene that encodes 1-aminocyclopropane- 1-carboxylate .Proc Natl Acad Sci USA, 1992, 89: 9969-9973.
    145. Von Ahsen N., Schutz E., Armstrong V.W. and Oellerich M.. Rapid detection of prothrombotic mutations of prothrombin (G20210A), factor Ⅴ (G1691A), and methylenetetrahydrofolate reductase (C677T) by real-time fluorescence PCR with the LightCycler. Clin. Chem., 1999, 45: 694-696.
    146. Wang T. and Brown M.J.. mRNA quantification by real time TaqMan polymerase chain reaction: validation and comparison with RNase protection. Anal. Biochem. ,1999, 269: 198-201.
    147. Woodson W.R., Park K.Y., Drory A., Larsen P.B., Wang H.. Expression of ethylene biosynthetic pathway transcripts in senescing carnation flowers.PlantPhysiol, 1992,99:526-532.
    148. Xu Zhi-Hong, Chong Ka. Plant Developmental Biology in China: Past, Present and Future.Acta Botanica Sinica 2002,44(9): 1085-1095.
    149. Yin T., Quinn J.A..Tests of a mechanistic model of one hormone regulation both sexes in cucumis sativus (Cucurbitaceae). Amec J. Bot, 1995, 82: 1537-1546.
    150. Yu Y.B., Adams D.O., Yang S.F..1-Aminocyclopropane-1-car-boxylate synthase,a key enzyme in ethylene biosynthesis.Arch Biochem Biophys, 1979,198:280-286.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700