毛细管电泳高灵敏度分析方法的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Study and Applications of High Sensitive Analysis Methods with Capillary Electrophoresis
  • 作者:王卫平
  • 论文级别:博士
  • 学科专业名称:分析化学
  • 学位年度:2007
  • 导师:胡之德
  • 学科代码:070302
  • 学位授予单位:兰州大学
  • 论文提交日期:2007-05-01
摘要
研究蛋白质与药物分子的相互作用具有重要的理论和实际意义,常用的方法有荧光光谱法、紫外-可见光谱法、圆二色谱法、红外光谱法以及分子模拟等。激光散射技术在生物大分子溶液性质研究方面的应用越来越广泛,它可以提供大分子的重均分子量、均方旋转半径、第二维里系数、平动扩散系数及平均流体力学半径等重要参数,这对于研究生物大分子的溶液状态行为特别适用。毛细管电泳具有分离模式多、分离效率高、分析速度快、试剂和样品用量少、易于调控等优点,已经在在生物、化学、医药、环保、食品等领域中有了广泛的应用。激光诱导荧光检测器具有很高的灵敏度,可以适应毛细管电泳不同模式的检测,已成为药物分析和生命科学领域的一种重要的分析检测技术。因此,本文用毛细管电泳-激光诱导荧光检测和激光散射法进行研究并提出了分离分析的新体系。
     该论文在综述前人工作的基础上,开展了如下未见文献报道的创新性的研究工作:
     (1)使用灵敏的衍生试剂对麻黄碱和伪麻黄碱在水体系中的衍生反应条件进行了系统研究,建立了微乳电动色谱-激光诱导荧光检测法和胶束电动色谱—激光诱导荧光检测法测定麻黄碱和伪麻黄碱的灵敏分析新方法,与以前的报道相比,灵敏度和分析时间均有很大改善;
     (2)使用荧光素钠作为背景荧光试剂,建立了同时分析测定六种黄酮类化合物(秦皮甲素、秦皮乙素、异秦皮定、染料木素、柚皮苷和槐角苷)的毛细管区带电泳—间接激光诱导荧光检测新方法,扩大了激光诱导荧光检测的应用范围,对难衍生化合物的分离分析提供了一种新思路和新途径;
     (3)以荧光素钠作为背景荧光试剂,建立了一种用于同时测定食品(蘑菇、玉米和大豆)提取DNA中的腺嘌呤和鸟嘌呤含量的胶束电动色谱—间接激光诱导荧光检测新方法;
     (4)用动态和静态激光散射法研究了模拟生理条件下人血清白蛋白与氨比西林钠盐相互作用所形成的复合物,为药物分子与蛋白质的相互作用、药代动力学等的研究提供了一种新思路。
     论文共分为六章
     第一章对毛细管电泳-激光诱导荧光检测技术的原理及其应用研究进行了综述。主要是近年来通过化学反应衍生标记的直接激光诱导荧光检测的应用,及间接激光诱导荧光检测的原理和应用进展。
     第二章以5-(4,6-三氯-s-三嗪基-2-氨基)荧光素作为衍生试剂,建立了一种胶束电动色谱-激光诱导荧光检测法分析麻黄碱和伪麻黄碱的新方法。在最佳条件下,8分钟内可实现基线分离,灵敏度高,重现性好,与其他色谱法相比,检测限至少提高了10~3倍。
     第三章以5-(4,6-三氯-s-三嗪基-2-氨基)荧光素为衍生试剂,建立了一种微乳电动色谱-激光诱导荧光检测法分析麻黄碱和伪麻黄碱的新方法。在最优条件下,分析物可在11分钟内实现基线分离。分析物的峰高与浓度之间存在较好的线性关系,麻黄碱和伪麻黄碱的检测限分别为2.39×10~(-3)和3.85×10~(-3)μg 1~(-1)。将该法成功用于麻黄及其制剂中两种生物碱的分析。
     第四章建立了一种毛细管区带电泳—间接激光诱导荧光检测法同时测定6种黄酮类化合物(秦皮甲素、秦皮乙素、异秦皮定、染料木素、柚皮苷和槐角苷)的新方法,扩大了LIF检测的应用范围。将该方法用于含黄酮类化合物的植物分析,得到了94.7-102.1%的回收率。
     第五章建立了一种用于同时测定DNA中腺嘌呤和鸟嘌呤含量的胶束电动色谱—间接激光诱导荧光检测新方法。该方法简单、快速,可用于食品样品DNA提取物中两种嘌呤碱的分析,得到的回收率范围在85.3-110.2%之间。
     第六章用动态和静态激光散射法研究了在模拟生理条件下人血清白蛋白与氨比西林钠盐相互作用所形成的复合物。静态激光散射结果给出了蛋白质和药物分子所形成复合物的分子量、均方旋转半径和第二维里系数;动态激光散射给出了不同pH条件下体系的扩散系数和粒径分布信息。
Studies on the interaction between protein and drug molecules are of great importance in theoretical and practical aspects. The commonly used methods for research are fluorescence spectra, UV-vis spectra, CD and FT-IR specta and molecular modelling. The technique of laser light scattering has been widely used in the investigations of biomacromolecule solutions, which can provide some more important parameters such as molar mass, root-mean-square radius of gyration, the second virial coefficients, diffusion coefficients and hydrodynamic radius. Therefore, it is very sutiable for the study of state behavior of biomacromolecule solutions. Capillary electrophoresis (CE) has been widely used in the field of biology, chemistry, medicine, environmental and food due to the advantages of multiple separation modes, higher separation power, short analysis time, consuming small volumes of sample and reagents, easy to control etc. Laser induced fluorescence (LIF) detection has high sensitivity and can be adapted to different separation modes of CE. So it has become an important detection technique in the field of drug analysis and life science. In this dissertation, new separation and analysis systems were brought forward based on CE-LIF detection and laser light scattering research.
     Based on the previous literatures, the following major innovation works were carried out in this dissertation:
     (1) The derivatization reaction conditions of ephedrine and pseudoephedrine with sensitive derivation reagent in aqueous system were studied and two new methods were developed for the assay of them by microemulsion electrokinetic chromatography (MEEKC) and micellar electrokinetic chromatography (MEKC) with LIF detection. The sensitivity and analysis times were greatly improved compared with the previous reports;
     (2) A new method of CZE with indirect LIF detection was developed for the simultaneous determination of six coumarin compounds (esculin, esculetin, isofraxidin, genistein, naringin and sophoricoside) with fluorescein as the probe.
     The proposed method enlarges the application range of LIF detector, and provides new approach for the analysis of certain compounds difficult to derivatize;
     (3) Based on the above research, an MEKC with indirect LIF detection method for the simultaneous determination of adenine and guanine in DNA extracts from fungus, maize and soybean was established;
     (4) A new method for the investigation of the complexes formed between human serum albumin (HSA) and ampicillin sodium under the simulated physiology conditions using laser light scattering technique was developed. This method offered a new way for the study of pharmacokinetic and the interaction between drug molecules and protein.
     This dissertation consists of six chapters.
     Chapter 1 The approach and application of capillary electrophoresis with laser-induced fluorescence detection were reviewed. This part mainly focused on the applications of direct LIF through chemical reaction, the theory and the developmentof indirect LIF.
     Chapter 2 An MEEKC with LIF detection method for the separation and quantification of ephedrine (E) and pseudoephedrine (PE) after derivatizated by 5-(4,6-dichloro-s-triazin-2-ylarnino) fluorescein (DTAF) was proposed. The baseline separation of the two alkaloids could be obtained in less than 11 min under the optimum conditions. Good linear relationship for E and PE was obtained, and the detection limits for E and PE were 2.39×10~(-3)ng mL~(-1), 1.09×l0~(-3)ng mL~(-1), respectively. The method was successfully applied to the analysis the alkaloids in ehpedra herb and its preparations.
     Chapter 3 An MEKC with LIF detection for the analysis of ephedrine (E) and pseudoephedrine (PE) after derivatizated with 5-(4,6-dichloro-s-triazin-2-ylamino) fluorescein was developed. The baseline separation was achieved within 8 min under the optimum conditions. The proposed method surpassed other chromatographic alternatives in terms of limit of detection at least 10~3 folds with good reproducebility.
     Chapter 4 A capillary zone electrophoresis (CZE) with indirect LIF detection method is developed for the simultaneous determination of six coumarin compounds (esculin, esculetin, isofraxidin, genistein, naringin and sophoricoside).This proposed method was applied to the analysis of the courmin compounds in herb plants, and also would extend the application range of LIF detection.
     Chapter 5 A new method for the simultaneous determination of adenine and guanine in DNA extracts using MEKC with indirect LIF detection was proposed. This developed method was simple and rapid, and it has been applied to the analysisof the two purines in DNA extracts with recoveries in the range of 85.3 - 110.2%.
     Chapter 6 The complexes formed by the interaction of human serum albumin and ampicillin sodium in aqueous solutions were investigated under the simulated physiology conditions using laser light scattering technique. The results of static light scattering have suggest the molecular weight of the protein/drug complexes, z-average root-mean-square radius of gyration and the second virial coefficients. Dynamic light scattering provides information on diffusion coefficient and particle distributions of protein/drug complexes under different conditions.
引文
[1] 胡之德著,高效毛细管电泳,兰州大学出版社,1997.
    [2] J.W. Jorgenson, K.D.Lukacs, Capillary zone electrophoresis, Science, 1983, 222: 266-272.
    [3] S.Tellez, N.Forges, A.Roussin, L.Hernandez, Coupling of microdialysis with capillary electrophoresis: a new approach to the study of drug transfer between two compartments of the body in freely moving rats, J. Chromatogr., 1992, 581: 257-266.
    [4] T.F. Cheng, N.J. Dovichi, Subattomole amino acid analysis by capillary zone electrophoresis and laser induced fluorescence, Science, 1988, 242: 562-564.
    [5] L. Hernandez, J. Escalona, P. Verdeguer, N.A.Guzman, In vivo monitoring of brain glutamate by microdialysis coupled to capillary electrophoresis and laser induced fluorescence detection, J. Liq. Chromatogr., 1993, 16:2149-2160.
    [6] H. Wan, L.G. Bolmberg, Chiral separation of amino acids and peptides by capillary electrophoresis, J. Chromatogr. A, 2000, 875: 43-88.
    [7] S.C. Beale, Capillary Electrophoresis, Anal. Chem., 1998, 70: 279R-300R.
    [8] S.N. Krylov, N.J. Dovichi, Capillary Electrophoresis for the Analysis of Biopolymers, Anal. Chem., 2000, 72:111R-128R.
    [9] 傅若农 编著,色谱分析概论,化学工业出版社,2000,p55-56.
    [10] E. Gassmann, J.E. Kuo, R.N. Zare, Electrokinetic separation of chiral compounds, Science, 1985, 230: 813-814.
    [11] T. Li, R.T. Kennedy, Laser-induced fluorescence detection in microcolumn separations, Trends In Anal. Chem., 1998, 17:484-491.
    [12] W.J.M. Underberg, J.C.M. Waterval, Derivatization trends in capillary electrophoresis: An update, Electrophoresis, 2002, 23: 3922-3933.
    [13] X. Paez, L. Herandez, Biomedical applications of capillary electrophoresis with laser-induced fluorescence detection, Biopharm. Drug Dispos., 2001, 22: 273-278.
    [14] 张继友,兰州大学博士学位论文,2004.
    [15] P.J. Viskari, C. L. Colyer, Separation and quantitation of phycobiliproteins using phytic acid in capillary electrophoresis with laser-induced fluorescence detection, J. Chromatogr. A, 2002, 972: 269-276.
    [16] R.S. Brown, J.H.T. Luong, O.H.J. Szolar, A. Halasz, J. Hawari, Cyclodextrin-Modified Capillary Electrophoresis: Determination of Polycyclic Aromatic Hydrocarbons in Contaminated Soils, Anal. Chem., 1996, 68: 287-292.
    [17] P.K. Roberts, C.H. Lin, R. Jankowiak, G.J. Small, On-line identification of diastereomeric dibenzo[a,l]pyrene diol epoxide-derived deoxyadenosine adducts by capillary electrophoresis-fluorescence line-narrowing and non-line narrowing spectroscopy, J. Chromatogr. A, 1999, 853: 159-170.
    [18] J. Kuijt, C. Garcia-Ruiz, G.J. Stroomberg, M.L. Marina, F. Ariese, U.A. Th. Brinkman, C. Gooijer, Laser-induced fluorescence detection at 266 nm in capillary electrophoresis: Polycyclic aromatic hydrocarbon metabolites in biota, J. Chromatogr. A, 2001, 907: 291-299.
    [19] K.C. Chan, G.M. Muschik, H.J. Issaq, Solid-state UV laser-induced fluorescence detection in capillary electrophoresis, Electrophoresis, 2000,21: 2062-2066.
    [20] K.C. Chan, G.M. Muschik, H.J. Issaq, Separation of tryptophan and related indoles by micellar electrokinetic chromatography with KrF laser-induced fluorescence detectionJ. Chromatogr. A, 1997, 718: 203-210.
    [21] H.T. Chang, E.D. Yeung, Determination of catecholamines in single adrenal medullary cells by capillary electrophoresis and laser-induced native fluorescence, Anal. Chem., 1995, 67: 1079-1083.
    [22] X. Zhang, J.V. Sweedler, Ultraviolet Native Fluorescence Detection in Capillary Electrophoresis Using a Metal Vapor NeCu Laser, Anal. Chem., 2001, 73: 5620-5624.
    [23] P. Britz-McKibbin, K. Otsuka, S. Terabe, On-Line Focusing of Flavin Derivatives Using Dynamic pH Junction-Sweeping Capillary Electrophoresis with Laser-Induced Fluorescence Detection, Anal. Chem., 2002, 74: 3736-3743.
    [24] T. R. I. Cataldi, D. Nardiello, L. Scrano, A. Scopa, Assay of Riboflavin in Sample Wines by Capillary Zone Electrophoresis and Laser-Induced Fluorescence Detection, J. Agric. Food Chem., 2002, 50: 6643-6647.
    [25] T. Perez-Ruiz, C. Martinez-Lozano, A. Sanz, E. Bravo, Determination of riboflavin, flavin mononucleotide and flavin adenine dinucleotide in biological tissues by capillary zone electrophoresis and laser-induced fluorescence detection, Electrophoresis, 2001, 22: 1170-1174.
    [26] T. Perez-Ruiz, C. Martinez-Lozano, A. Sanz, E. Bravo, Simultaneous determination of doxorubicin, daunorubicin, and idarubicin by capillary electrophoresis with laser-induced fluorescence detection, Electrophoresis, 2001, 22: 134-138.
    [27] A.B. Anderson, CM. Ciriacks, K.M. Fuller, E.A. Arriaga, Distribution of Zeptomole-Abundant Doxorubicin Metabolites in Subcellular Fractions by Capillary Electrophoresis with Laser-Induced Fluorescence Detection, Anal. Chem., 2003, 75: 8-15.
    [28] Joselito P. Quirino, Maria T. Dulay, Lei Fu, Tarak D. ModyRichard N. Zare, Capillary electrophoresis separation and native laser-induced fluorescence detection of metallotexaphyrins, J. Sep. Sci., 2002, 25: 819-824.
    [29] Q. Liu, Y.J. Liu, M.L. Guo, X.B. Luo, S.Z. Yao, A simple and sensitive method of nonaqueous capillary electrophoresis with laser-induced native fluorescence detection for the analysis of chelerythrine and sanguinarine in Chinese herbal medicines, Talanta, 2006, 70: 202-207.
    [30] T. R.I. Cataldi, D. Nardiello, V. Carrara, R. Ciriello, G. E. De Benedetto, Assessment of riboflavin and flavin content in common food samples by capillary electrophoresis with laser-induced fluorescence detection, Food Chem., 2003,82:309-314.
    [31] J. Qin, Y. Fung, D. Zhu, B. Lin, Native fluorescence detection of flavin derivatives by microchip capillary electrophoresis with laser-induced fluorescence intensified charge-coupled device detection, J. Chromatogr. A, 2004, 1027:223-229.
    [32] B.F. Liu, H. Hisamoto, S. Terabe, Subsecond separation of cellular flavin coenzymes by microchip capillary electrophoresis with laser-induced fluorescence detection, J. Chromatogr, A, 2003, 1021: 201-207.
    [33] M.M Hsieh, C.E. Hsu, W.L. Tseng, H. T. Chang, Amplification of small analytes in polymer solution by capillary electrophoresis, Electrophoresis, 2002, 23: 1633-1641.
    [34] P.Britz-McKibbin, M.J. Markuszewski, T. Iyanagi, K. Matsuda, T. Nishioka, S. Terabe, Picomolar analysis of flavins in biological samples by dynamic pH junction-sweeping capillary electrophoresis with laser-induced fluorescence detection, Anal. Biochem., 2003, 313: 89-96.
    [35] M.M. Hsieh, H.T. Chang, Impact of halides on the simultaneous separation of aromatic amines and their acidic metabolites by capillary electrophoresis with laser-induced native fluorescence detection under acidic conditions, J. Chromatogr. A, 2006,1102: 302-308.
    [36] D.M. Paquette, R. Sing, P.R. Banks, K.C., Waldron, Capillary electrophoresis with laser-induced native fluorescence detection for profiling body fluids, J. Chromatogr. B, 1998, 714: 47-57.
    [37] A.M. Ho, E.S. Yeung, Capillary electrophoretic study of individual exocytotic events in single mast cells, J. Chromatogr.A, 1998, 817: 377-382.
    [38] W.L. Tseng, Y.W. Lin, H.T. Chang, Improved Separation of Microheterogeneities and Isoforms of Proteins by Capillary Electrophoresis Using Segmental Filling with SDS and PEO in the Background Electrolyte, Anal.Chem., 2002, 74: 4828-4834.
    [39] P.K. Jensen, C.S. Lee, Temperature Effects on Refolding and Aggregation of a Large Multimeric Protein Using Capillary Zone Electrophoresis, Anal. Chem., 1998, 70: 730-736.
    [40] S.C. Hsieh, M.F. Huang, B.S. Lin, H.T. Chang, Determination of aristolochic acid in Chinese herbal medicine by capillary electrophoresis with laser-induced fluorescence detection, J. Chromatogr. A, 2006,1105: 127-134.
    [41] S.K. Lau, F. Zaccardo, M. Little, P. Banks, Nanomolar derivatizations with 5-carboxyfluorescein succinimidyl ester for fluorescence detection in capillary electrophoresis, J. Chromatogr. A, 1998, 809: 203-210.
    [42] B.O. Eggum, H. Sorensen, in: M. Friedman (Ed.), Absorption and utilization of amino acids, Vol. Ill, CRC Press, Boca Raton, FL, 1989, PP. 265
    [43] A. Engstrom, P.E. Andersson, W.D. Pfeffer, B. Josefsson, Determination of 2-(9-Anthryl)ethyl Chloroformate-Labeled Amino Acids by Capillary Electrophoresis and Liquid Chromatography with Absorbance or Fluorescence Detection, Anal. Chem., 1995, 67: 3018-3022.
    [44] S.D. Gilman, A.G. Ewing, Analysis of Single Cells by Capillary Electrophoresis with On-Column Derivatization and Laser-Induced Fluorescence Detection, Anal. Chem. 1995,67:58-64.
    [45] L.Bert, F.Robert, L. Denoroy, L. Stoppini, B. Renaud, Enhanced temporal resolution for the microdialysis monitoring of catecholamines and excitatory amino acids using capillary electrophoresis with laser-induced fluorescence detection Analytical developments and in vitro validations, J. Chromatogr. A, 1996, 755: 99-111.
    [46] C. Parmentier, M. Wellman, A. Nicolas, G. Siest, P. Leroy, Simultaneous measurement of reactive oxygen species and reduced glutathione using capillary electrophoresis and laser-induced fluorescence detection in cultured cell lines, Electrophoresis, 1999, 20: 2938-2944.
    [47] S. Zhao, Y.M. Liu, Electrophoretic separation of tryptophan enantiomers in biological samples, Electrophoresis, 2001, 22, 2769-2774.
    [48] S. Chinka, S. Tanaka, N. Takayama, N. Tsuji, S. Takou, K. Ueda, High-sensitivity analysis of cyanide by capillary electrophoresis with fluorescence detection, Analytical Sciences, 2001, 17, 649-652.
    [49] M.T. Bowser, R.T. Kennedy, In vivomonitoring of amine neurotransmitters using microdialysis with on-line capillary electrophoresis, Electrophoresis, 2001, 22: 3668-3676.
    [50] K.B. Male, J.H. Luong, Derivatization, stabilization and detection of biogenic amines by cyclodextrin-modified capillary electrophoresis-laser-induced fluorescence detection, J. Chromatogr. A, 2001,926: 309-317.
    [51] S.K. Lau, F. Zaccardo, M. Little, P. Banks, Nanomolar derivatizations with 5-carboxyfluorescein succinimidyl ester for fluorescence detection in capillary electrophoresis, J. Chromatogr. A, 1998, 809: 203-210.
    [52] A.M. Rizzi, L. Kremser, Enantioseparation of derivatized amino acids by capillary isoelectric focusing using cyclodextrin complexation, Electrophoresis, 1999,20:3410-3416.
    [53] W. Wall, K. Chan, Z.E. Rassi, Electrically driven microseparation methods for pesticides and metabolites: VI. Surfactant-mediated electrokinetic capillary chromatography of aniline pesticidic metabolites derivatized with 9-fluoroenylmethyl chloroformate and their detection by laser-induced fluorescence, Electrophoresis 2001,22: 2320-2326.
    [54] J. Bergquist, J.V. Matthew, C.O. Stiller, W.T. O'Connor, T. Falkenberg, R. Ekman, Capillary electrophoresis with laser-induced fluorescence detection: a sensitive method for monitoring extracellular concentrations of amino acids in the periaqueductal grey matter, J. Neurosci. Methods, 1996, 65:33-42.
    [55] M. Ummadi, B.C. Weimer, Use of capillary electrophoresis and laser-induced fluorescence for attomole detection of amino acids, J. Chromatogr. A, 2002,964:243-253.
    [56] O. Boult, D.G. McLaren, E.A. Arriaga, D.D. Chen, Separation of free amino acids in human plasma by capillary electrophoresis with laser induced fluorescence: potential for emergency diagnosis of inborn errors of metabolism, J. Chromatogr. B, 2001, 754: 217- 228.
    [57] N.V. Komarova, J.S. Kamentsev, A.P. Solomonova, R.M. Anufrieva, Determination of amino acids in fodders and raw materials using capillary zone electrophoresis, J. Chromatogr. B, 2004, 800: 135-143.
    [58] S.P.D. Lalljie, P. Sandra, MEKC Analysis of FITC and DTAF Amino Acid Derivatives with LIF Detection, Chromatographia, 1995,40: 513-518.
    [59] S.P.D. Lalljie, P. Sandra, Practical and Quantitative Aspects in the Analysis of FITC and DTAF Amino Acid Derivatives by Capillary Electrophoresis and LIF Detection, Chromatographia, 1995,40: 519-526.
    [60] K. Arlt, S. Brandt, J. Kehr, Amino acid analysis in five pooled single plant cell samples using capillary electrophoresis coupled to laser-induced fluorescence detection, J. Chromatogr. A, 2001, 926, 319-325.
    [61] T. Perez-Ruiz, C. Martinez-Lozano, A. Sanz, E. Bravo, Sensitive method for the determination of ambroxol in body fluids by capillary electrophoresis and fluorescence detection, J. Chromatogr. B, 2000, 742: 205-210.
    [62] W. Wall, Z. EI Rassi, Electrically driven microseparation methods for pesticides and metabolites: V. Micellar electrokinetic capillary chromatography of aniline pesticidic metabolites derivatized with fluorescein isothiocyanate and their detection in real water at low levels by laser-induced fluorescence, Electrophoresis, 2001, 22: 2312-2319.
    [63] J.Y. Zhang, X.G. Chen, Z.D. Hu, X. Ma, Quantification of noradrenaline and dopamine in Portulaca oleracea L. by capillary electrophoresis with laser-induced fluorescence detection, Anal. Chim. Acta, 2002,471: 203-209.
    [64] J.Y. Zhang, J.N. Tian, J.Q. Liu, H. Gao, X.G. Chen, Z.D. Hu, Quantification of neurotransmitter amino acids in human serums by capillary electrophoresis with laser-induced fluorescence detection, Microchim Acta, 2003, 143: 241-244.
    [65] M. Molina, M. Silva, Simultaneous determination of phosphorus-containing amino acid-herbicides by nonionic surfactant micellar electrokinetic chromatography with laser-induced fluorescence detection, Electrophoresis, 2001,22: 1175-1181.
    [66] J.Y. Zhang, Z.D. Hu, X.G. Chen, Quantification of glutathione and glutathione disulfide in human plasma and tobacco leaves by capillary electrophoresis with laser-induced fluorescence detection, Talanta, 2005, 65: 986-990.
    [67] M.E. Dugan, R. D. Thacker, J. L. Aalhus, L. E. Jermiah, K.A. Lien, Analysis of 4-hydroxyproline using 4-chloro-7-nitrobenzo-2-oxa-l,3-diazol derivatization and micellar electrokinetic chromatography combined with laser-induced fluorescence detection, J. Chromatogr. B, 2000, 744: 195-199.
    [68] J.Y. Zhang, J.P. Xie, J.Q. Liu, J.N. Tian, X.G. Chen, Z.D. Hu, Microemulsion electrokinetic chromatography with laser-induced fluorescence detection for sensitive determination of ephedrine and pseudoephedrine, Electrophoresis, 2004, 25:74-79.
    [69] J.Y. Zhang, J.P. X.G. Chen, Z.D. Hu, Sensitive determination of ephedrine and pseudoephedrine by capillary electrophoresis with laser-induced fluorescence detection, Analyst, 2003,128: 369-372.
    [70] J.P. Xie, J.Y. Zhang, J.Q. Liu, J.N. Tian, X.G. Chen, Z.D. Hu, Micellar electrokinetic chromatography with laser-induced fluorescence detection for sensitive determination of ephedrine and pseudoephedrine, J. Sep. Sci. 2004, 27: 1211-1214.
    [71] J.P. Xie, J.Y. Zhang, H.X. Liu, J.Q. Liu, J.N. Tian, X.G. Chen, Z.D. Hu, Microemulsion electrokinetic chromatography with laser-induced fluorescence detection: as tested with amino acid derivatives, Biomed. Chromatogr., 2004,18: 600-607.
    [72] J.P. Xie, X.F. Chen, J.Y. Zhang, J.Q. Liu, J.N. Tian, X.G. Chen, Z.D. Hu, A novel double coating for microemulsion electrokinetic chromatography with laser-induced fluorescence detection: as tested with amino acid derivatives, J. Pharm. Biomed. Anal., 2004, 36: 1-8.
    [73] J.P. Xie, F.L. Cui, X.G. Chen, Z.D. Hu, Micellar electrokinetic chromatography with laser-induced fluorescence detection for rapid and sensitive analysis of two new bioactive reagents using dynamic covalent coating, J. Sep. Sci., 2004, 27: 1115-1120.
    [74] J.P. Xie, J.Y. Zhang, J.Q. Liu, J.N. Tian, X.G. Chen, Z.D. Hu, Rapid and sensitive determination of ephedrine and pseudoephedrine by micellar electrokinetic chromatography with on-line regenerating covalent coating, Biomed. Chromatogr., 2005, 19: 9-14.
    [75] Y.M. Dong, Y.L. Chen, X.G. Chen, Z.D. Hu, Method for derivatization of ephedrine and pseudoephedrine in nonaqueous media and determination by nonaqueous capillary electrophoresis with laser induced fluorescence detection, Biomed. Chromatogr. , 2006, 20:1150-1156.
    [76] H. Y. Zhang, I. L. Potier, C. Smadja, J. Y. Zhang, M. Tavema, Fluorescent detection of peptides and amino acids for capillary electrophoresis via on-line derivatization with 4-fluoro-7-nitro-2, 1, 3-benzoxadiazole, Anal. Bioanal. Chem. , 2006, 386(5): 1243-1252.
    [77] X. L. Zhu, P. N. Shaw, D. A. Barrett, Catecholamines derivatized with 4-fluoro-7-nitro-2, 1, 3-benzoxadiazole: characterization of chemical structure and fluorescence properties, Anal. Chim. Acta, 2003, 478: 259-269.
    [78] I. Beijerstenm D. Westerlund, Derivatization of dipeptides with 4-fluoro-7-nitro-2, 1, 3-benzoxadiazole for laser-induced fluorescence and separation by micellar electrokinetic chromatography, J. Chromatogr. A, 1995, 716: 389-399.
    [79] W. P. Wang, C. H. Li, Y. Li, Z. D. Hu, X. G. Chen, Rapid and ultrasensitive determination of ephedrine and pseudoephedrine derivatizated with 5-(4, 6-dichloro-s-triazin-2-ylamino) fluorescein by micellar electrokinetic chromatography with laser-induced fluorescence detection, J. Chromatogr. A, 2006, 1102: 273-279.
    [80] N. P. Beard, J. B. Edel, A. J. deMello, Integrated on-chip derivatization and eleetrophoresis for the rapid analysis of biogenic amines, Electrophoresis, 2004, 25: 2363-2373.
    [81] M. Molina, M. Silva, In-capillary derivatization and analysis of amino acids, amino phosphonic acid-herbicides and biogenic amines by capillary eleetrophoresis with laser-induced fluorescence detection, Electrophoresis, 2002, 23: 2333-2340.
    [82] M. Molina, M. Silva, Analytical potential of fluorescein analogues for ultrasensitive determinations of phosphorus-containing amino acid herbicides by micellar electrokinetic chromatography with laser-induced fluorescence detection, Electrophoresis, 2002, 23:1096-1103.
    [83] 王卫平,王树民,罗智,胡之德,微乳电动色谱—激光诱导荧光检测法快速分离测定麻黄碱和伪麻黄碱,分析化学,2007,35(3):382-385.
    [84] D. A. Wicks, P. C. H. Li, Separation of fluorescent derivatives of hydroxyl-containing small molecules on a microfluidic chip, Anal. Chim. Acta, 2004, 507: 107-114.
    [85] X. Liu, Y.Q. Hu, L. Ma, Y.T. Lu, Determination of phosphoamino acids derivatized with 5-(4,6-dichloro-s-triazin-2-ylamino)fluorescein by micellar electrokinetic chromatography, J.Chromatogr. A, 2004,1049: 237-242.
    [86] M.T. Veledo, M. de Frutos, J.C. Diez-Masa, Amino acids determination using capillary electrophoresis with on-capillary derivatization and laser-induced fluorescence detection, J. Chromatogr. A, 2005, 1079: 335-343.
    [87] Z. Chen, J. Wu, G.B. Baker, M. Parent, N.J. Dovichi, Application of capillary electrophoresis with laser-induced fluorescence detection to the determination of biogenic amines and amino acids in brain microdialysate and homogenate samples, J. Chromatogr. A, 2001, 914: 293-298.
    [88] D.M. Zhang, J.M. Zhang, W.Y. Ma, D.Y. Chen, H.W. Han, H.J. Shu, G.Q. Liu, Analysis of trace amino acid neurotransmitters in hypothalamus of rats after exhausting exercise using microdialysis, J. Chromatogr. B, 2001, 758: 277-282.
    [89] Z. Quan, Y.R. Song, Y.Z. Feng, M.H. LeBlanc, Y.M. Liu, Detection of D-serine in neural samples by saccharide enhanced chiral capillary electrophoresis, Anal. Chim. Acta, 2005, 528: 101-106.
    [90] S.L. Zhao, H.Y. Yuan, D. Xiao, Detection of D-Serine in rat brain by capillary electrophoresis with laser induced fluorescence detection, J. Chromatogr. B, 2005, 822: 334-338.
    [91] S.L. Zhao, Y.R. Song, Y.M. Liu, A novel capillary electrophoresis method for the determination of D-serine in neural samples, Talanta, 2005, 67: 212-216.
    [92] E. Siliva, L. Hernandez, B. Quinonez, L. E. Gonzalez, C. Colasante, Selective amino acids changes in the medial and lateral preoptic area in the formalin test in rats, Neuroscience, 2004, 124: 395-404.
    [93] C.K. Zacharis, F.W.A. Tempels, G.A. Theodoridis, A.N. Voulgaropoulos, W.J.M. Underberg, G.W. Somsen, G.J. de Jong, Coupling of sequential injection analysis and capillary electrophoresis-Laser-induced fluorescence via a valve interface for on-line derivatization and analysis of amino acids and peptides, J.Chromatogr. A, 2006, 1132: 297-303.
    [94] X. Liu, D.F. Li, Y. Wang, Y.T. Lu, Determination of 1-aminocyclopropane-l-carboxylic acid in apple extracts by capillary electrophoresis with laser-induced fluorescence detection, J. Chromatogr. A, 2004,1061:99-104.
    [95] X. Liu, L. Ma, Y.T. Lu, Determination of phosphoamino acids by micellar electrokinetic capillary chromatography with laser-induced fluorescence detection, Anal. Chim. Acta, 2004, 512: 297-304.
    [96] Y. Xiao, X.D. Yu, K. Wang, J.J. Xu, J. Huang, H.Y. Chen, Study on the separation of amino acids in modified poly(dimethylsiloxane) microchips, Talanta, 2007, 71(5): 2048-2055.
    [97] Z. Quan, Y.M Liu, Capillary electrophoretic separation of glutamate enantiomers in neural samples, Electrophoresis, 2003,24: 1092-1096.
    [98] X.N. Lu, Y. Chen, Chiral separation of amino acids derivatized with fluoresceine-5-isothiocyanate by capillary electrophoresis and laser-induced fluorescence detection using mixed selectors of β-cyclodextrin and sodium taurocholate, J. Chromatogr. A, 2002, 955: 133-140.
    [99] Y.M. Liu, M. Schneider, C.M. Sticha, T. Toyooka, J.V. Sweedier, Separation of amino acid and peptide stereoisomers by nonionic micelle-mediated capillary electrophoresis after chiral derivatization, J. Chromatogr. A, 1998, 800: 345-354.
    [100] H. Li, H. Wang, J.H. Chen, L.H. Wang, H.S. Zhang, Y. Fan, Determination of amino acid neurotransmitters in cerebral cortex of rats administered with baicalin prior to cerebral ischemia by capillary electrophoresis-laser-induced fluorescence detection, J. Chromatogr. B, 2003, 788: 93-101.
    [101] S.Y. Chang, F.Y. Wang, Determination of gabapentin in human plasma by capillary electrophoresis with laser-induced fluorescence detection and acetonitrile stacking technique, J. Chromatogr. B, 2004, 799: 265-270.
    [102] S.Y. Chang, W.C. Lin, Determination of vigabatrin by capillary electrophoresis with laser-induced fluorescence detection, J. Chromatogr. B, 2003, 794: 17-22.
    [103] N. Benturquia, S. Parrot, V. Sauvinet, B. Renaud, L. Denoroy, Simultaneous determination of vigabatrin and amino acid neurotransmitters in brain microdialysates by capillary electrophoresis with laser-induced fluorescence detection, J.Chromatogr. B, 2004, 806: 237-244.
    [104] J. Jiang, C.A. Lucy, Determination of glyphosate using off-line ion exchange preconcentration and capillary electrophoresis-laser induced fluorescence detection, Talanta, 2007, 72:113-118.
    [105] A.D. Presley, K.M. Fuller, E.A. Arriaga, MitoTracker Green labeling of mitochondrial proteins and their subsequent analysis by capillary electrophoresis with laser-induced fluorescence detection, J. Chromatogr. B, 2003,793:141-150.
    [106] G.F. Jiang, S. Attiya, G. Ocvirk, W. E. Lee, D. Jed Harrison, Red diode laser induced fluorescence detection with a confocal microscope on a microchip for capillary electrophoresis, Biosensors & Bioelectronics, 2000, 14: 861-869.
    [107] M. Ye, S. Hu, W.W.C. Quigley, N.J. Dovichi, Post-column fluorescence derivatization of proteins and peptides in capillary electrophoresis with a sheath flow reactor and 488 run argon ion laser excitation, J. Chromatogr. A, 2004, 1022:201-206.
    [108] I. Potier, G. Franck, C. Smadja, S. Varlet, M. Taverna, In-capillary derivatization approach applied to the analysis of insulin by capillary electrophoresis with laser-induced fluorescence detection, J. Chromatogr. A, 2004,1046: 271-276.
    [109] T.D. Laing, A.J. Marenco, D.M. Moore, G.J. Moore, D.C.W. Mah, W.E. Lee, Capillary electrophoresis laser-induced fluorescence for screening combinatorial peptide libraries in assays of botulinum neurotoxin A, J. Chromatogr. B, 2006, 843: 240-246.
    [110] Otsuka M, Yoshioka K. Neurotransmitter functions of mammalian tachykinins. Physiol. Rev. 1993, 73, 229-307.
    [111] A.L. Freed, J.D. Cooper, M.I. Davies, S.M. Lunte, Investigation of the metabolism of substance P in rat striatum by microdialysis sampling and capillary electrophoresis with laser-induced fluorescence detection, J. Neuroscience Methods, 2001, 109: 23-29.
    [112] V.A. Frerichsa, J.K. Herrmanna, A.Aguirreb, L.A. Colona, Trace level determination of substance P using capillary electrophoresis and laser-induced fluorescence, Microchemical Journal, 2004, 78: 135-142.
    [113] V. Lavigne, A. Pons, D. Dubourdieu, Assay of glutathione in must and wines using capillary electrophoresis and laser-induced fluorescence detection: Changes in concentration in dry white wines during alcoholic fermentation and aging, J. Chromatogr. A, 2006, 1139: 130-135.
    [114] N. Novatchev, U. Holzgrabe, Evaluation of amino sugar, low molecular peptide and amino acid impurities of biotechnologically produced amino acids by means of CE, J. Pharm. Biomed. Anal, 2002, 28: 475-486.
    [115] Y.W. Lin, H.T. Chang, Analysis of double-stranded DNA by capillary electrophoresis using poly(ethylene oxide) in the presence of hexadecyltrimethylammonium bromide, J. Chromatogr. A, 2006, 1130: 206-211.
    [116] F.M. Sang, J.C. Ren, Comparisons between capillary zone electrophoresis and real-time PCR for quantification of circulating DNA levels in human sera, J. Chromatogr. B, 2006, 838: 122-128.
    [117] L.M. Bell, G.M. Murray, Selective photo-reduction of N-nitroamines combined with micellar electrokinetic chromatography and laser fluorimetric detection, J. Chromatogr. B, 2005, 826: 160-168.
    [118] W.C. Brumley, V. Kelliher, Determination of aliphatic amines in water using derivatization with fluorescein isothiocyanate and capillary electrophoresis/laser-induced fluorescence detection, J. Liq. Chrom. & Rel. Technol., 1997, 20,2193-2205.
    [119] A. Zinellu, C. Carru, S. Sotgia, L. Deiana, Plasma D-penicillamine redox state evaluation by capillary electrophoresis with laser-induced fluorescence, J. Chromatogr. B, 2004, 803: 299-304.
    [120] S. Parrot, V. Sauvinet, V. Riban, A. Depaulis, B. Renaud, L. Denoroy, High temporal resolution for in vivo monitoring of neurotransmitters in awake epileptic rats using brain microdialysis and capillary electrophoresis with laser-induced fluorescence detection, J. Neurosci. Methods, 2004,140: 29-38.
    [121] D. A. Roman, A. S. Carretero, C.C. Blanco, A. F. Gutierrez, Subminute and sensitive determination of the neurotransmitter serotonin in urine by capillary electrophoresis with laser-induced fluorescence detection, Biomed. Chromatogr., 2004,18:422-426.
    [122] X. Paez, P. Rada, S. Tucci, N. Rodrgues, L. Hernandez, Capillary electrophoresis-laser-induced fluorescence detection of amphetamine in the brain, J. Chromatogr. A, 1996, 735: 263-269.
    [123] N. Kuroda, R. Nomura, O. Al-Dirbashi, S. Akiyama, K. Nakashima,Determination of methamphetamine and related compounds by capillary electrophoresis with UV and laser-induced fluorescence detection, J. Chromatogr. A, 1998, 798: 325-334.
    [124] X.H. Yang, X.C. Wang, X.G. Zhang, Capillary zone electrophoresis separation of low concentration stimulants in human urine with laser-induced fluorescence detection, Anal. Chim. Acta, 2005, 549: 81-87.
    [125] X. Liu, L.X. Yang, Y.T. Lu, Determination of biogenic amines by 3-(2-furoyl)quinoline-2-carboxaldehyde and capillary electrophoresis with laser-induced fluorescence detection, J. Chromatogr. A, 2003, 998: 213-219.
    [126] S. Cortacero-Ramirez, D. Arraez-Roman, A. Segura-Carretero, A. Fernandez-Gutierrez, Determination of biogenic amines in beers and brewing-process samples by capillary electrophoresis coupled to laser-induced fluorescence detection, Food Chem., 2007, 100: 383-389.
    [127] K. Yamamoto, K. Hamase, K. Zaitsu, 2-Amino-3-phenylpyrazine, a sensitive fluorescence prelabeling reagent for the chromatographic or electrophoretic determination of saccharides, J. Chromatogr. A, 2003, 1004: 99-106.
    [128] A. Karcher, Z. El Rassi, Electrically driven microseparation methods for pesticides and metabolites: Ⅳ. Effects of the nature of fluorescent labels on the enantioseparation of pesticides and their degradation products by capillary zone electrophoresis with UV and laser-induced fluorescence detection, Electrophoresis, 2000, 21: 2043-2050.
    [129] S. Honda, J. Okeda, H. Iwanaga, S. Kawakami, A. Taga, S. Suzuki, K. Imai, Ultramicroanalysis of Reducing Carbohydrates by Capillary Electrophoresis with Laser-Induced Fluorescence Detection as 7-Nitro-2,l,3-benzoxadiazole-Tagged 7V-Methylglycamine Derivatives, Anal. Biochem., 2000,286: 99-111.
    [130] V. Ruiz-Calero, L. Puignou, M. T. Galceran Determination of glycosaminoglycan monosaccharides by capillary electrophoresis using laser-induced fluorescence detection, J. Chromatogr. B, 2003,791: 193-202.
    [131] M.A. Kabel, W.H. Heijnis, E.J. Bakx, R.Kuijpers, A.G.J. Voragen, H.A. Schols, Capillary electrophoresis fingerprinting, quantification and mass-identification of various 9-aminopyrene-l,4,6-trisulfonate-derivatized oligomers derived from plant polysaccharides, J. Chromatogr. A, 2006,1137: 119-126.
    [132] S. Kamoda, R. Ishikawa, K. Kakehi, Capillary electrophoresis with laser-induced fluorescence detection for detailed studies on N-linked oligosaccharide profile of therapeutic recombinant monoclonal antibodies, J. Chromatogr. A, 2006, 1133: 332-339.
    [133] C.J. Easley, L.J. Jin, K.B.P. Elgstoen, E. Jellum, J.P. Landers, J.P. Ferrance, Capillary electrophoresis with laser-induced fluorescence detection for laboratory diagnosis of galactosemia, J. Chromatogr. A, 2003,1004: 29-37.
    [134] X. Liu, L. Ma, Y. W. Lin, Y.T. Lu, Determination of abscisic acid by capillary electrophoresis with laser-induced fluorescence detection, J. Chromatogr. A, 2003,1021:209-213.
    [135] V, Zuriguel, E. Causse, J.D. Bounery, G. Nouadje, N. Simeon, M. Nertz, R. Salvayre, F. Couderc, Short chain fatty acids analysis by capillary electrophoresis and indirect UV detection or laser-induced fluorescence, J. Chromatogr. A, 1997, 781: 233-238.
    [136] D.L. Gallaher, M.E. Johnson, Development of near-infrared fluorophoric labels for the determination of fatty acids separated by capillary electrophoresis with diode laser induced fluorescence detection, Analyst, 1999, 124(11): 1541-1546.
    [137] T. Santa, D. Matsumura, C. Huang, C. Kitada, K. Imai, Design and synthesis of a hydrophilic fluorescent derivatization reagent for carboxylic acids, 4-N-(4-N-aminoethyl)piperazino-7-nitro-2,1,3-benzoxadiazole (NBD-PZ-NH2), and its application to capillary electrophoresis with laser-induced fluorescence detection, Biomed. Chromatogr., 2002,16: 523-528.
    [138] M. Jung, W.C. Brumly, Trace analysis of fluorescein-derivatized phenoxy acid herbicides by micellar electrokinetic chromatography with laser-induced fluorescence detection, J. Chromatogr. A, 1995, 717: 299-308.
    [139] Y. Mehref, G.K. Ostrander, Z. El Rassi, Capillary electrophoresis of carboxylated carbohydrates. Part 2. Selective precolumn derivatization of sialooligosaccharides derived from gangliosides with 7-aminonaphthalene-l,3-disulfonic acid fiuorescing tag, Electrophoresis, 1995, 16:1499-1504.
    [140] Y. Mechref, Z. EI Rassi, Capillary electrophoresis of herbicides: Ⅳ. Evaluation of octylmaltopyranoside chiral surfactant in the enantiomeric separation of fluorescently labeled phenoxy acid herbicides and their laser-induced fluorescence detection, Electrophoresis, 1997, 18: 220-226.
    [141] Z. L. Zhang, X. Liu, D. F. Li, Y. T. Lu, Determination of jasmonic acid in bark extracts from Hevea brasiliensis by capillary electrophoresis with LIF detection, Anal. Bioanal. Chem., 2005, 382: 1616-1619.
    [142] M.T. Lam, C. A. Boulet, X. Chris Lea, Development of a tetramethylrhodamine-labeled probe for a capillary electrophoresis-based competitive immunoassay of staphylococcal enterotoxin B, Anal. Chim. Acta, 2002, 457: 21-28.
    [143] H. Zhang, W. Jin, Single-cell analysis by intracellular immuno-reaction and capillary electrophoresis with laser-induced fluorescence detection, J. Chromatogr. A, 2006, 1104: 346-351.
    [144] A. B. Wey, J. Caslavska, W. Thormann, Analysis of codeine, dihydrocodeine and their glucuronides in human urine by electrokinetic capillary immunoassays and capillary electrophoresis-ion trap mass spectrometry, J. Chromatogr. A, 2000, 895: 133-146.
    [145] C.M. Liu, K.H. Tung, T.H. Chang, C.C. Chien, M.H. Yen, Analysis of secretory immunoglobulin A in human saliva by laser-induced fluorescence capillary electrophoresis, J. Chromatogr. B, 2003, 791:315-321.
    [146] K.Y. Hart, E.B., Y.S. Yoo, Analysis of vasopressin using capillary electrophoresis with laser-induced fluorescence detector based on competitive immunoassay, J. Chromatogr. A, 2003, 1013: 215-220.
    [147] C.V.S. Babu, B.C. Chung, D. S. Lho, Y.S. Yoo, Capillary electrophoretic competitive immunoassay with laser-induced fluorescence detection for methionine-enkephalin, J. Chromatogr. A, 2006, 1111: 133-138.
    [148] J. Sowell, R. Parihar, G. Patonay, Capillary electrophoresis-based immunoassay for insulin antibodies with near-infrared laser induced fluorescence detection, J. Chromatogr. B, 2001, 752: 1-8.
    [149] H.L. Wang, M.L. Lu, N. Mei, J. Lee, M. Weinfeld, X. Chris Le, Immunoassays using capillary electrophoresis laser induced fluorescence detection for DNA adducts, Anal. Chim. Acta, 2003, 500:13-20.
    [150] H. Xiao, X. Li, H.F. Zou, L. Yang, Y.Q. Yang, Y.L. Wang, H.L. Wang, X. Chris Le, Immunoassay of P-glycoprotein on single cell by capillary electrophoresis with laser induced fluorescence detection, Anal. Chim. Acta, 2006, 556: 340-346.
    [151] S.H. Kang, W. Wei, E.S. Yeung, On-column derivatization for the analysis of homocysteine and other thiols by capillary electrophoresis with laser-induced fluorescence detection, J.Chromatogr. B, 2000, 744:149-156.
    [152] M. Marlow, R.J. Hurtubise, Separation and detection of a benzo[a]pyrene metabolite with capillary electrophoresis in the presence of DNA using laser-induced fluorescence, Talanta, 2002, 57:193-201.
    [153] C.Z. Huang, T. Santa, K. Okabe, K. Imai, Capillary electrophoresis with laser induced-fluorescence detection of profens derivatized with the water-soluble fluorogenic reagent 4-N-(4-N'-aminoethyl)piperazino-7-nitro-2,1,3-benzoxadiazole, J. Chromatogr. A, 2003, 1011: 193-201.
    [154] C.Horstkotter, D. Schepmann, G. Blaschke, Separation and identification of zaleplon metabolites in human urine using capillary electrophoresis with laser-induced fluorescence detection and liquid chromatography-mass spectrometry, J. Chromatogr. A, 2003, 1014: 71-81.
    [155] S. Yoon, K.Y. Han, H.S. Nam, L. V.t Nga, Y. S. Yoo, Determination of protein phosphorylation and the translocation of green fluorescence protein-extracellular signal-regulated kinase 2 by capillary electrophoresis using laser induced fluorescence detection, J. Chromatogr. A, 2004, 1056: 237-242.
    [156] J.G. Goldsmith, E.C. Ntuen, E.C. Goldsmith, Direct quantification of gene expression using capillary electrophoresis with laser-induced fluorescence, Anal. Biochem., 2007, 360: 23-29.
    [157] X. Liu, L. Ma, J.F. Zhang, Y.T. Lu, Determination of single-cell gene expression in Arabidopsis by capillary electrophoresis with laser induced fluorescence detection, J. Chromatogr. B, 2004, 808: 241-247.
    [158] E. Szantai, A. Szilagyi, A. Guttman, M. Sasvari-Szekely, Z. Ronai, Genotyping and haplotyping of the dopamine D4 receptor gene by capillary electrophoresis, J. Chromatogr. A, 2004, 1053: 241-245.
    [159] Y. Sun, M. Lu, X.F. Yin, X.G. Gong, Intracellular labeling method for chip-based capillary electrophoresis fluorimetric single cell analysis using liposomes, J. Chromatogr. A, 2006, 1135:109-114.
    [160] B.G. Poe, M.Navratil, E.A. Arriaga, Analysis of subcellular sized particles: Capillary electrophoresis with post-column laser-induced fluorescence detection versus flow cytometry, J. Chromatogr. A, 2006, 1137: 249-255.
    [161] K. Claeson, G. Thorsen, B. Karlberg, Micellar electrokinetic chromatography separation and laser-induced fluorescence detection of the lipid peroxidation product 4-hydroxynonenal, J. Chromatogr. B, 2001, 763: 133-138.
    [162] G.Koller, G. Wichmann, U. Rolle-Kampczyk, P. Popp, O. Herbarth, Comparison of ELISA and capillary electrophoresis with laser-induced fluorescence detection in the analysis of Ochratoxin A in low volumes of human blood serum, J. Chromatogr. B, 2006, 840: 94-98.
    [163] N.Y. Morgan, E. Wellner, T. Talbot, P.D. Smith, T.M. Phillips, Development of a two-color laser fluorescence detector: On-line detection of internal standards and unknowns by capillary electrophoresis within the same sample, J. Chromatogr. A, 2006, 1105: 213-219.
    [164] H. Xiao, H. Zou, C. Pan, X. Jiang, X.C. Leb, L. Yang, Quantitative determination of oxidized carbon nanotube probes in yeastby capillary electrophoresis with laser-induced fluorescence detection, Anal. Chim. Acta, 2006, 580: 194-199.
    [165] J.F. Zhang, L. Ma, X. Liu, Y.T. Lu, Using capillary electrophoresis with laser-induced fluorescence to study the interaction of green fluorescent protein-labeled calmodulin with Ca~(2+)- and calmodulin-binding protein, J. Chromatogr. B, 2004, 804: 413-420.
    [166] X.Y. Huang, J.F. Weng, F.M. Sang, X.T. Song, C.X. Cao, J.C. Ren, Characterization of quantum dot bioconjugates by capillary electrophoresis with laser-induced fluorescent detection, J. Chromatogr. A, 2006, 1113: 251-254.
    [167] F. Welder, B. Paul, H. Nakazumi, S. Yagi, C.L. Colyer, Symmetric and asymmetric squarylium dyes as noncovalent protein labels: a study by fluorimetry and capillary electrophoresis, J. Chromatography B, 2003, 793: 93-105.
    [168] Y.J. Liu, R.S. Foote, S.C. Jacobson, R.S. Ramsey, J. M. Ramsey, Electrophoretic Separation of Proteins on a Microchip with Noncovalent, Postcolumn Labeling, Anal. Chem., 2000, 72: 4608-4613.
    [169] B.H. Weiller, L. Ceriotti, T. Shibata, D. Rein, M.A. Roberts, J. Lichtenberg, J. B. German, N.F. de Rooij, E. Verpoorte, Analysis of Lipoproteins by Capillary Zone Electrophoresis in Microfluidic Devices: Assay Development and Surface Roughness Measurements, Anal. Chem., 2002, 74:1702-1711.
    [170] E.M. McCorquodale, C.L. Colyer, Indocyanine green as a noncovalent, pseudofluorogenic label for protein determination by capillary electrophoresis, Electrophoresis, 2001, 22: 2403-2408.
    [171] S.A. Leung, A,J. de Mello, On.column pre-concentration of alcohol dehydrogenase in capillary electrophoresis, J. Sep. Sci., 2002, 25:1346-1350.
    [172] N. Gunasekera, K. Musier-Forsyth, E. Arriaga, Electrophoretic behavior of individual nuclear species as determined by capillary electrophoresis with laser-induced fluorescence detection, Electrophoresis, 2002, 23: 2110-2116.
    [173] C.C. Huang, T.C. Chiu, H.T. Chang, Effects of metal ions on concentration of DNA in high-conductivity media by capillary electrophoresis, J. Chromatogr. A, 2002, 966: 195-203.
    [174] J.L. Zabzdyr, S.J. Lillard, Measurement of Single-Cell Gene Expression Using Capillary Electrophoresis, Anal. Chem., 2001, 73: 5771-5775.
    [175] C.S. Effenhauser, G.J.M. Bruin, A. Paulus, M. Ehrat, Integrated Capillary Electrophoresis on Flexible Silicone Microdevices: Analysis of DNA Restriction Fragments and Detection of Single DNA Molecules on Microchips, Anal. Chem., 1997, 69: 3451-3457.
    [176] L. Reyderman, S. Stavchansky, Quantitative Determination of Short Single-Stranded Oligonucleotides from Blood Plasma Using Capillary Electrophoresis with Laser-Induced Fluorescence, Anal. Chem., 1997, 69: 3218-3222.
    [177] C.V. Owens, Y.Y. Davidson, S. Kar, S.A. Soper, High-Resolution Separation of DNA Restriction Fragments Using Capillary Electrophoresis with Near-IR, Diode-Based, Laser-Induced Fluorescence Detection, Anal. Chem., 1997, 69: 1256-1261.
    [178] J. Sowell, K.A. Agnew-Heard, J.C. Mason, C. Mama, L. Strekowski, G. Patonay, Use of non-covalent labeling in illustrating ligand binding to human serum albumin via affinity capillary electrophoresis with near-infrared laser induced fluorescence detection, J. Chromatogr. B, 2001, 755: 91-99.
    [179] G. Li, J. Gao, X. Zhou, O. Shimelis, R.W. Giese, Handling and detection of 25 amol of near-infrared dye deoxynucleotide conjugates by capillary electrophoresis with laser-induced fluorescence detection, J. Chromatogr. A, 2003: 1004, 47-50.
    [180] S. Descroix, I. Le Potier, C. Niquet, N. Minc, J.L. Viovy, M. Taverna, In-capillary non-covalent labeling of insulin and one gastrointestinal peptide for their analyses by capillary electrophoresis with laser-induced fluorescence detection, J. Chromatogr. A, 2005, 1087: 203-209.
    [181] W.G. Kuhr, E.S. Yeung, Indirect fluorescence detection of native amino acids in capillary zone electrophoresis, Anal. Chem., 1988, 60:1832-1834.
    [182] W.G. Kuhr, E.S. Yeung, Optimization of sensitivity and separation in capillary zone electrophoresis with indirect fluorescence detection, Anal. Chem., 1988, 60: 2642-2646.
    [183] E. S. Yeung., Indirect detection methods: looking for what is not there, ACC. Chem. Res., 1989, 22, 125-130.
    [184] M.T. Ackermans, F.M. Everaerts, J.L. Beckers, Quantitative analysis in capillary zone electrophoresis with conductivity and indirect UV detection, J. Chromatogr., 1991,549: 345-355.
    [185] F. Kohlrausch, Displacement of concentrations by the current in solutions of electrolytes, Ann. Phys. Chem., 1897, 62, 209.
    [186] P.L. Desbene, C.J. Morin, A.M. Desbene Monvernay, R.S. Groult. Utilization of fluorescein sodium salt in laser-induced indirect fluorimetric detection of ions separated by capillary zone electrophoresis, J. Chromatogr. A, 1995, 689: 135-148.
    [187] P. Doble, M. Macka, P.R. Haddad, Design of background electrolytes for indirect detection of anions by capillary electrophoresis, Trends in Anal. Chem., 2000, 19(1): 10-17.
    [188] C.O. Thompson, V.C. Trenerry, B. Kemmery, Determination of cyclamate in low joule foods by capillary zone electrophoresis with indirect ultraviolet detection, J. Chromatogr.A, 1995, 704: 203-210.
    [189] A. Henshall, M.P. Harrold, J.M.Y. Tso, Separation of inositol phosphates by capillary electrophoresis, J. Chromatogr., 1992,608:413-419.
    [190] B.L. Hogan, E.S. Yeung, Indirect fluorometric detection of tryptic digests separated by capillary zone electrophoresis, J. Chromatogr. Sci., 1990, 28: 15-18.
    [191] 陈勇,杨新,韩凤美,袁倬斌,毛细管区带电泳激光诱导荧光间接检测环腺苷单磷酸和环鸟苷单磷酸,分析化学,1999,27(6):694-696.
    [192] K.C. Chan, C.W. Whang, E.S. Yeung, Separation of DNA restriction fragments using capillary electrophoresis, J. Liq. Chromatogr., 1993, 16(9-10): 1941-1962.
    [193] L. Gross, E.S. Yeung. Indirect fluorometric detection of cations in capillary zone electrophoresis, Anal. Chem., 1990, 62:427-431.
    [194] L. Gross, E.S. Yeung, Indirect fluorimetric detection and quantification in capillary zone electrophoresis of inorganic anions and nucleotides, J. Chromatogr., 1989, 480, 169-178.
    [195] S.A. Shamsi, N.D. Danielson, I.M. Warner, Flavin mononucleotide for indirect laser-induced fluorescence detection of anions separated by capillary electrophoresis, J. Chromatogr. A, 1999, 835: 159-168.
    [196] M.N. Church, J.D. Spear, R.E. Russo, G.L. Klunder, P.M. Grant, B.D. Andre, Transient Isotachophoretic-Electrophoretic Separations of Lanthanides with Indirect Laser-Induced Fluorescence Detection, Anal. Chem., 1998, 70: 2475-2480.
    [197] P.D. Zhang, G.W. Xu, J.H. Xiong, Y.F. Zheng, Q. Yang, F.S.Wei, Capillary electrophoretic analysis of arsenic species with indirect laser induced fluorescence detection, J. Sep. Sci., 2002,25:155-159,
    [198] C.G. Bailey, S.R. Wallenborg, Indirect laser-induced fluorescence detection of explosive compounds using capillary electrochromatography and micellar electrokinetic chromatography, Electrophoresis, 2000, 21:3081-3087.
    [199] V. Marti, M. Aguilar, E.S. Yeung, Indirect fluorescence detection of free cyanide and related compounds by capillary electrophoresis, J. Chromatogr. A, 1995, 709: 367-374.
    [200] N. Ragozina, M. Putz, W. Faube; U. Pyell, Indirect laser-induced fluorescence detection for capillary electrophoresis using a frequency-doubled diode laser, Electrophoresis, 2003, 24: 567-574.
    [201] A.G. Lista, L. Arce, A. Rios, M. Valcarcel, Use of eosin as a fluorophore in capillary electrophoresis with laser detection, J. Chromatogr. A, 2001, 919: 407-415.
    [202] A.M. Desbene, C.J. Morin, N.L. Mofaddel, R.S. Groult, Utilization of fluorescein sodium salt in laser-induced indirect fluorimetric detection Ⅱ. Application to organic anions, J. Chromatogr. A, 1995, 716: 279-290.
    [203] T. Wang, H. Wei, S.F.Y. Li, Nonaqueous capillary zone electrophoresis for separation of free fatty acids with indirect fluorescence detection, Electrophoresis, 1998, 19: 2187-2192.
    [204] L.J. Jin, T.L. Wang, S.F.Y. Li, Indirect laser-induced fluorescence detection of valproic acid in human serum by capillary electrophoresis, Electrophoresis, 1999, 20: 1856-1861.
    [205] M.J. Chen, H.S. Chen, C.Y. Lin, H.T. Chang, Indirect detection of organic acids in non-aqueous capillary electrophoresis, J. Chromatogr. A, 1999, 853: 171-180.
    [206] T.C. Chiu, M.F. Huang, C.C. Huang, M.M. Hsieh, H.T. Chang, Indirect fluorescence of aliphatic carboxylic acids in nonaqueous capillary electrophoresis using merocyanine 540, Electrophoresis, 2002, 23, 449-455.
    [207] D. Arraez-Roman, J. F. Fernandez-Sanchez, S. Cortacero-Ramirez, A. Segura-Carretero, A. Fernandez-Gutierrez, A simple light-emitted diode-induced fluorescence detector using optical fibers and a charged coupled device for direct and indirect capillary electrophoresis methods, Electrophoresis, 2006, 27: 1776-1783.
    [208] Y.C. Chao, C.W. Whang, Capillary zone electrophoresis of eleven priority phenols with indirect fluorescence detection, J. Chromatogr. A, 1994, 663: 229-237.
    [209] M. Arundell, P.D. Whalley, A. Manz, Indirect fluorescence detection of phenolic compounds by capillary electrophoresis on a glass device, Fresenius J. Anal. Chem., 2000, 367: 686-691.
    [210] L.N. Amankwa, W.G. Kuhr, Indirect fluorescence detection in micellar electrokinetic chromatography, Anal. Chem., 1991, 63: 1733-1737.
    [211] M. Molina, M. Silva, Micellar electrokinetic chromatography: Current developments and furore, Electrophoresis, 2002, 23: 3907-3921.
    [212] S.R. Wallenborg, C.G. Bailey, Separation and Detection of Explosives on a Microchip Using Micellar Electrokinetic Chromatography and Indirect Laser-Induced Fluorescence, Anal. Chem., 2000, 72:1872-1878.
    [213] C.J. Morin, N.L. Mofaddel, A.M. Desbene, P.L. Desbene, Utilization of fluorescein sodium salt for the indirect fluorimetric detection in micellar electrokinetic chromatography, J. Chromatogr. A, 2000, 872: 247-258.
    [214] T.W. Garner, E.S. Yeung. Indirect fluorescence detection of sugars separated by capillary zone electrophoresis with visible laser excitation, J.Chromatogr., 1990, 515: 639-644.
    [215] M.D. Rihmond, E.S. Yeung, Development of Laser-Excited Indirect Fluorescence Detection for High-Molecular-Weight Polysaccharides in Capillary Electrophoresis, Anal. Biochem., 1993, 210: 245-248.
    [216] V. Ruiz-Carleo, L. Puignou, M.T. Galceran, Analysis of glycosaminoglycan monosaccharides by capillary electrophoresis using indirect laser-induced fluorescence detection, J. Chromatogr. A, 2000, 873: 269-282.
    [217] N.P. Beard, A.J. de Mello, A polydimethylsiloxane/glass capillary electrophoresis microchip for the analysis of biogenic amines using indirect fluorescence detection, Electrophoresis, 2002, 23:1722-1730.
    [218] Y.T. Lee, C.W. Whang, Capillary electrophoresis of triorganotin compounds with indirect fluorescence detection, J. Chromatogr. A, 1996, 746: 269-275.
    [219] X.H. Yang, X.C. Wang, X.M. Zhang, Indirect laser-induced fluorescence detection of diuretics separated by capillary electrophoresis, J. Sep. Sci., 2006, 29: 677-683.
    [220] T. Richiter, L.L. Shultz-Lockyear, R.D. Oleschuk, Ursula Bilitewski, D.J. Harrison, Bi-enzymatic and capillary electrophoretic analysis of non-fluorescent compounds in microfluidic devices: Determination of xanthine, Sensors and Actuators B, 2002, 81: 369-376.
    [221] W.P. Wang, J.H. Tang, S.M. Wang, L. Zhou, Z.D. Hu., Method development for the determination of coumarin compounds by capillary electrophoresis with indirect laser-induced fluorescence detection, J. Chromatogr. A, 2007, 1148(1): 108-114.
    [222] W. P. Wang, L. Zhou, S. M. Wang, Z.Luo, Z. D. Hu, In preparing.
    [223] S.Y. Chang, C. H. Liao, Analysis of glyphosate, glufosinate and aminomethylphosphonic acid by capillary electrophoresis with indirect fluorescence detection, J. Chromatogr. A, 2002, 959:309-315.
    [224] Q.F. Xue, E.S. Yeung, Indirect fluorescence determination of lactate and pyruvate in single erythrocytes by capillary electrophoresis, J. Chromatogr. A, 1994, 661: 287-295.
    [225] T. Kaneta, Y. Saito, T. Imasaka, Indirect detection of amino-substituted polycyclic aromatic hydrocarbons in cyclodextrin-modified micellar electrokinetic chromatography combined with diode laser-induced fluorometry, J. Chromatogr. A, 1999, 831:285-292.
    [226] C.A. Currie, W.R. Heineman, H.B. Halsall, C.J. Seliskar, RA. Limbach, F. Arias, K.R. Wehmeyer. Estimation of pKa values using microchip capillary electrophoresis and indirect fluorescence detection, J.Chromatogr. B, 2005, 824: 201-205.
    [227] R. Chen, H.Z. Guo, Y.W. Shen, Y.Z. Hu, Y.Q. Sun, Determination of EOF of PMMA microfluidic chip by indirect laser-induced fluorescence detection, Sensors and Actuators B, 2006, 114:1100-1107.
    [228] X.J. Liu, X. Liu, A.Y. Liang, Z. Shen, Y. Zhang, Z.P. Dai, B. H. Xiong, B.C. Lin, Studying protein-drug interaction by microfluidic chip affinity capillary electrophoresis with indirect laser-induced fluorescence detection, Electrophoresis, 2006, 27:3125-3128.
    [229] Y.C. Chao, C.W. Whang, Capillary zone electrophoresis of eleven priority phenols with indirect fluorescence detection, J. Chromatogr. A, 1994, 663: 229-237.
    [230] S.Y. Chang, H.T. Chiang, Simultaneous determination of selenium and antimony compounds by capillary electrophoresis with indirect fluorescence detection, Electrophoresis, 2002, 23: 2913-2917.
    [231] S.J. Chen, M.J. Chen, H.T. Chang Light-emitting diode-based indirect fluorescence detection for simultaneous determination of anions and cations in capillary electrophoresis, J. Chromatogr. A, 2003, 1017: 215-224.
    [232] S. Kennedy, B. Caddy, J.M.F. Douse, Micellar electrokinetic capillary chromatography of high explosives utilising indirect fluorescence detection, J. Chromatogr. A, 1996, 726: 211-222.
    [233] J. Monahan, A. A. Gewirth, R. G. Nuzzo, Indirect fluorescence detection of simple sugars via high-pH electrophoresis in poly(dimethylsiloxane) microfluidic chips, Electrophoresis 2002, 23: 2347-2354.
    [234] S. Sirichai, A.J. de Mello, capillary electrophoresis chip for the analysis of print and film photographic developing agents in commercial processing solutions usingindirect fluorescence detection, Electrophoresis, 2001, 22: 348-354.
    [235] P.G. Wang, V. Murugaiah, B. Yeung, P. Vouros, R.W. Giese, 2-Phosphoglycolate and glycolate-electrophore detection, including detection of 87 zeptomoles of the latter by gas chromatography-electron-capture mass spectrometry, J. Chromatogr. A, 1996, 721: 289-296.
    [236] S.J. Williams, E.T. BergstrOm, D.M. Goodall, H. Kawazumi, Diode laser-based indirect absorbance detector for capillary electrophoresis, J. Chromatogr., 1993, 636: 39-45.
    [237] E.S. Yeung, W.G. Kuhr, Indirect detection methods for capillary separations, Anal. Chem., 1991, 63: 275A-282A.
    [238] P.E. Andersson, W.D. Pfeffer, L.G. Blomberg, Indirect detection in capillary electrophoresis comparison between indirect UV and indirect laser-induced fluorescence detection for the determination of isoprenyl pyrophosphates, J. Chromatogr. A, 1995, 699: 323-330.
    [239] M. J. Lovdahla, D. J. Pietrzyk, Anion-exchange separation and determination of bisphosphonates and related analytes by post-column indirect fluorescence detection, J. Chromatogr. A, 1999, 850: 143-152.
    [240] J. E. Melanson, C. A. Boulet, C. A. Lucy, Indirect Laser-Induced Fluorescence Detection for Capillary Electrophoresis Using a Violet Diode Laser, Anal. Chem. 2001, 73: 1809-1813.
    [241] A. B. Jemere, R. D. Oleschuk, D. J. Harrison, Electrophoresis 2003, 24, 3018-3025.
    [242] V. Heleg-Shabtai, N. Gratziany, Z. Liron, Separation and detection of VX and its methylphosphonic acid degradation products on a microchip using indirect laser-induced fluorescence, Electrophoresis, 2006, 27: 1996-2001.
    [243] W. Tong, E.S. Yeung, Simple double-beam absorption detection systems for capillary electrophoresis based on diode lasers and light-emitting diodes, J. Chromatogr. A, 1995, 718: 177-185.
    [1] Y. F. Cheng, N. J. Dovichi, Subattomole amino acid analysis by capillary zone electrophoresis and laser induced fluorescence, Science, 1988, 242:562 -564.
    [2] J.Y. Zhang, Z.D. Hu, X.G. Chen, Quantification of glutathione and glutathione disulfide in human plasma and tobacco leaves by capillary electrophoresis with laser-induced fluorescence detection, Talanta, 2005, 65: 986-990.
    [3] X. Liu, D.F. Li, Y. Wang, Y.T. Lu, Determination of 1-aminocyclopropane-1-carboxylic acid in apple extracts by capillary electrophoresis with laser-induced fluorescence detection, J. Chromatogr. A, 2004, 1061: 99-104.
    [4] S. Yoona, K.Y. Hana, H.S. Nam, L.V. Ngab, Y.S. Yooa, Determination of protein phosphorylation and the translocation of green fluorescence protein-extracellular signal-regulated kinase 2 by capillary electrophoresis using laser induced fluorescence detection, J. Chromatogr. A, 2004, 1056: 237-242.
    [5] M. Molina, M. Silva, Micellar electrokinetic chromatography: Current developments and future, Electrophoresis, 2002, 23:3907-3921.
    [6] K. Swinney, D.J. Bornhop, Detection in capillary electrophoresis, Electrophoresis, 2000, 21: 1239-1250.
    [7] S. Mcwhorter, S.A. Soper, Near-infrared laser-induced fluorescence detection in capillary electrophoresis, Electrophoresis, 2000, 21: 1267-1280.
    [8] D. Blakeslee, M.G. Baines, Immunofluorescence using dichlorotriazinylaminofluorescein (DTAF) Ⅰ. Preparation and fractionation of labelled IgG, J. Immunol. Methods, 1976, 13: 305-320.
    [9] D. Blakeslee, Immunifluorescence using dichlorotriazinylaminofluorescein (DTAF) Ⅱ. Preparation, purity and stability of the compound, J. Immunol. Methods, 1977, 17: 361-364.
    [10] S.P.D. Lalljie, P. Sandra, MEKC Analysis of FITC and DTAF Amino Acid Derivatives with LIF Detection, Chromatographia, 1995, 40:513-518.
    [11] S.P.D. Lalljie, P. Sandra, Practical and Quantitative Aspects in the Analysis of FITC and DTAF Amino Acid Derivatives by Capillary Electrophoresis and LIF Detection, Chromatographia, 1995, 40:519-526.
    [12] M. Molina, M. Silva, Analytical potential of fluorescein analogues for ultrasensitive determinations of phosphorus-containing amino acid herbicides by micellar electrokinetic chromatography with laser-induced fluorescence detection, Electrophoresis, 2002, 23: 1096-1103.
    [13] X. Liu, Y.Q. Hu, L. Ma, Y.T. Lu, Determination of phosphoamino acids derivatized with 5-(4,6-dichloro-s-triazin-2-ylamino)fluorescein by micellar electrokinetic chromatography, J.Chromatogr. A, 2004, 1049: 237-242.
    [14] A.W. David, C.H.Li. Paul, Separation of fluorescent derivatives of hydroxyl-containing small molecules on a microfluidic chip, Anal. Chim. Acta, 2004, 507: 107-114.
    [15] P.B. Nigel, B.E. Joshua, J.D. Andrew, Integrated on-chip derivatization and electrophoresis for the rapid analysis of biogenic amines, Electrophoresis, 2004, 25: 2363-2373.
    [16] M. Molina, M. Silva, In-capillary derivatization and analysis of amino acids, amino phosphonic acid-herbicides and biogenic amines by capillary electrophoresis with laser-induced fluorescence detection, Electrophoresis, 2002, 23: 2333-2340.
    [17] New Medical College of Jiangsu, Dictionary of Chinese Traditional Medicine, People's Publisher of Shanghai, 1977, p. 2222.
    [18] http://www.fda.gov/oc/initiatives/ephedra/february2004/; date of consultation November 2004.
    [19] J.Y. Zhang, J.P. Xie, X.G. Chen, Z.D. Hu, Sensitive determination of ephedrine and pseudoephedrine by capillary electrophoresis with laser-induced fluorescence detection, Analyst, 2003, 128: 369-372.
    [20] J.P. Xie, J.Y. Zhang, J.Q. Liu, J.N. Tian, X.G. Chen, Z.D. Hu, Rapid and sensitive determination of ephedrine and pseudoephedrine by micellar electrokinetic chromatography with on-line regenerating covalent coating, Biomed. Chromatogr., 2005, 19: 9-14.
    [21] J.P. Xie, J.Y. Zhang, J.Q. Liu, J.N. Tian, X.G. Chen, Z.D. Hu, Micellar electrokinetic chromatography with laser-induced fluorescence detection for sensitive determination of ephedrine and pseudoephedrine, J. Sep. Sci. 2004, 27: 1211-1214.
    [22] J.Y. Zhang, J.P. Xie, J.Q. Liu, J.N. Tian, X.G. Chen, Z.D. Hu, Microemulsion electrokinetic chromatography with laser-induced fluorescence detection for sensitive determination of ephedrine and pseudoephedrine, Electrophoresis, 2004, 25: 74-79.
    [23] Y.M. Liu, S.J. Sheu, Determination of ephedrine and pseudoephedrine in Chinese herbal preparations by capillary electrophoresis, J. Chromatogr., 1993, 637: 219-223.
    [24] W.P. Karen, I. Toshihide, C.S. Lane, Determination of ephedrine alkaloid stereoisomers in dietary supplements by capillary electrophoresis, J. Chromatogr. A, 2005, 1077: 90-97.
    [25] M.A. Lidia, M. Patrice, S. Martial, Development and validation of a capillary zone electrophoresis method for the determination of ephedrine and related compounds in urine without extraction, J.Chromatogr. B, 2003, 791: 203-216.
    [26] G. Shao, D.S. Wang, F. Wu, S.J. Chen, X. Luo, Separation and determination of (L)-ephedrine and (D)-pseudoephedrine in plasma by high-performance liquid chromatography with fluorescence detection, J. Liquid Chromatogr., 1995, 18: 2133-2145.
    [27] C.W. Mahoney, A. Azzi, The synthesis of fluorescent chlorotriazinylaminofluorescein-concanavalin A and its use as a glycoprotein stain on sodium dodecyl sulphate/polyacrylamide gels, Biochem. J., 1987, 243: 569-574.
    [28] R. Siegler, L.A. Sterson, J.F. Stobaugh, Suitability of DTAF as a fluorescent labelling reagent for direct analysis of primary and secondary amines-spectral and chemical reactivity considerations, J. Pharm. Biomed. Anal., 1989, 127: 45-55.
    [29] R. Siegler, L.A. Sterson, Analysis by liquid chromatography of desipramine in aqueous solutions and plasma application of dichlorotriazinylaminofluorescein (DTAF) as a pre-column fluorescent derivatising agent for selected secondary amines, J. Pharm. Biomed. Anal., 1988, 6: 485-492.
    [30] P.R. Banks, D.M. Paquette, Comparison of Three Common Amine Reactive Fluorescent Probes Used for Conjugation to Biomolecules by Capillary Zone Electrophoresis, Bioconjug. Chem., 1995, 6: 447-458.
    [31] R. Weinberger, I.S. Lurie, Micellar electrokinetic capillary chromatography of illicit drug substances, Anal. Chem., 1991, 63: 823-827.
    [32] Q.F. Li, X.Y. Zhang, H.Y. Zhang, X.G. Chen, M.C. Liu, Z.D. Hu, A new Method to Measure Electroosmotic Flow Mobility of CapillaryElectrophoresis by Abrupt Change of Current De-nois- Ing via Wavelet Transform, Chinese J. Chem., 2001, 19: 581-587.
    [1] H. Watarai., Microemulsion capillary electrophoresis, Chem. Lett., 1991, 231: 391-394.
    [2] S. Terabe, N. Matsubara, Y. Ishihama, Y. Okada, Microemulsion electrokinetic chromatography: comparison with micellar electrokinetic chromatography, J. Chromatogr. 1992, 608: 23-29.
    [3] K.D. Altria, Application of microemulsion electrokinetic chromatography to the analysis of a wide range of pharmaceuticals and excipients, J. Chromatogr. A., 1999, 844: 371-386.
    [4] G.B. Li, X.G. Chen, M.C. Liu, Z.D. Hu, Separation and identification of active components in the extract of rheum natural products by microemulsion electrokinetic chromatography, Analyst, 1998, 123: 1501-1505.
    [5] G.H. Zhou, G.A. Luo, X.D. Zhang, Microemulsion electrokinetic chromatography of proteins, J. Chromatogr., 1999, 853: 277-284.
    [6] New Medical College of Jiangsu (1977) Dictionary of Chinese Traditional Medicine, People's Publisher of Shanghai, p 2222
    [7] http://www.fda.gov/oc/initiatives/ephedra/february2004/; date of consultation November 2004.
    [8] J.Y. Zhang, J.P.X.G. Chen, Z.D. Hu, Sensitive determination of ephedrine and pseudoephedrine by capillary electrophoresis with laser-induced fluorescence detection, Analyst, 2003, 128: 369-372.
    [9] J.P. Xie, J.Y. Zhang, J.Q. Liu, J.N. Tian, X.G. Chen, Z.D. Hu, Rapid and sensitive determination of ephedrine and pseudoephedrine by micellar electrokinetic chromatography with on-line regenerating covalent coating, Biomed. Chromatogr., 2005, 19: 9-14.
    [10] J.P. Xie, J.Y. Zhang, J.Q. Liu, J.N. Tian, X.G. Chen, Z.D. Hu, Micellar electrokinetic chromatography with laser-induced fluorescence detection for sensitive determination of ephedrine and pseudoephedrine, J. Sep. Sci. 2004, 27:1211-1214.
    [11] J.Y. Zhang, J.P. Xie, J.Q. Liu, J.N. Yian, X.G. Chen, Z.D. Hu, Microemulsion electrokinetic chromatography with laser-induced fluorescence detection for sensitive determination of ephedrine and pseudoephedrine, Electrophoresis, 2004, 25: 74-79.
    [12] W.P. Wang, C.H. Li, Y. Li, Z.D. Hu, X.G. Chen, Rapid and ultrasensitive determination of ephedrine and pseudoephedrine derivatizated with 5-(4,6-dichloro-s-triazin-2-ylamino) fluorescein by micellar electrokinetic chromatography with laser-induced fluorescence detection, J. Chromatogr. A, 2006, 1102: 273-279.
    [13] Y.M. Liu, S.J. Sheu, Determination of ephedrine and pseudoephedrine in Chinese herbal preparations by capillary electrophoresis, J. Chromatogr., 1993, 637: 219-223.
    [14] W.P. Karen, I. Toshihide, C.S. Lane, Determination of ephedrine alkaloid stereoisomers in dietary supplements by capillary electrophoresis, J. Chromatogr. A., 2005, 1077: 90-97.
    [15] M.A. Chicharro, B.E. Zapardiel, J.A. Perez-Lopez, L. Hemandez, Direct determination of ephedrine alkaloids and epinephrine in human urine by capillary zone electrophoresis., J. Liquid. Chromatogr., 1995, 18: 1363-1381.
    [16] D.Blakeslee, M.G. Baines, Immunofluorescence using dichlorotriazinylaminofluorescein (DTAF) Ⅰ. Preparation and fractionation of labelled IgG, J. Immunol. Methods, 1976, 13: 305-320.
    [17] D. Blakeslee, Immunifluorescence using dichlorotriazinylaminofluorescein (DTAF) Ⅱ. Preparation, purity and stability of the compound, J. Immunol. Methods, 1977, 17: 361-364.
    [18] S.P.D. Lalljie, P. Sandra, MEKC Analysis of FITC and DTAF Amino Acid Derivatives with LIF Detection, Chromatographia, 1995, 40:513-518.
    [19] S.P.D. Lalljie, P. Sandra, Practical and Quantitative Aspects in the Analysis of FITC and DTAF Amino Acid Derivatives by Capillary Electrophoresis and LIF Detection, Chromatographia, 1995, 40:519-526.
    [20] M. Molina, M. Silva, In-capillary derivatization and analysis of amino acids amino phosphonic acid-herbicides and biogenic amines by capillary electrophoresis with laser-induced fluorescence detection, Electrophoresis, 2002, 23: 2333-2340.
    [21] Liu X, Hu Y Q, Ma L, Lu Y T, Determination of phosphoamino acids derivatized with 5-(4,6-dichloro-s-triazin-2-ylamino)fluorescein by micellar electrokinetic chromatography, J Chromatogr. A, 2004, 1049: 237-242.
    [22] N.P. Beard, J.B. Edel, A.J. deMello, Integrated on-chip derivatization and electrophoresis for the rapid analysis of biogenic amines, Electrophoresis, 2004, 25: 2363-2373.
    [23] Q.F. Li, X.Y. Zhang, H.Y. Zhang, X.G. Chen, M.C. Liu, Z.D. Hu, A new Method to Measure Electroosmotic Flow Mobility of CapillaryElectrophoresis by Abrupt Change of Current De-nois- Ing via Wavelet Transform, Chinese J. Chem., 2001, 19: 581-587.
    [24] R. Weinberger, I.S. Lurie, Micellar electrokinetic capillary chromatography of illicit drug substances, Anal. Chem., 1991, 63: 823-827.
    [25] M. Broderick, S. Donegan, J. Power, K. Altria., Optimisation and use of water-in-oil MEEKC in pharmaceutical analysis, J Pharm. Biomed. Anal., 2005 37: 877-884.
    [26] K. Altria, B. Clark, P. Malhuzier, The effect of operating variables in microemulsion electrokinetic capillary chromatography, Chromatographia, 2000, 52: 758-768.
    [1] E. Gassmann, J.E. Kuo, R.N. Zare, Electrokinetic separation of chiral compounds, Science, 1985, 230: 813-814.
    [2] W.G. Kuhr, E.S. Yeung, Optimization of sensitivity and separation in capillary zone electrophoresis with indirect fluorescence detection, Anal. Chem., 1988, 60: 2642-2646.
    [3] L. Gross, E.S. Yeung, Indirect fluorimetric detection and quantification in capillary zone electrophoresis of inorganic anions and nucleotides, J. Chromatogr., 1989, 480, 169-178.
    [4] L. Gross, E.S. Yeung. Indirect fluorometric detection of cations in capillary zone electrophoresis, Anal. Chem., 1990, 62:427-431.
    [5] E.S. Yeung, W.G. Kuhr, Indirect detection methods for capillary separations, Anal. Chem., 1991, 63: 275A-282A.
    [6] V. Heleg-Shabtai, N. Gratziany, Z. Liron, Separation and detection of VX and its methylphosphonic acid degradation products on a microchip using indirect laser-induced fluorescence, Electrophoresis, 2006, 27: 1996-2001.
    [7] S.J. Chen, M.J. Chen, H.T. Chang Light-emitting diode-based indirect fluorescence detection for simultaneous determination of anions and cations in capillary electrophoresis, J. Chromatogr. A, 2003, 1017:215-224.
    [8] X.H. Yang, X.C. Wang, X.M. Zhang, Indirect laser-induced fluorescence detection of diuretics separated by capillary electrophoresis, J. Sep. Sci., 2006, 29: 677-683.
    [9] P.L. Desbene, C.J. Morin, A.M. Desbene Monvemay, R.S. Groult. Utilization of fluorescein sodium salt in laser-induced indirect fluorimetric detection of ions separated by capillary zone electrophoresis, J. Chromatogr. A, 1995, 689: 135-148.
    [10] N. Ragozina, M. Putz, W. Faube, U. Pyell, Indirect laser-induced fluorescence detection for capillary electrophoresis using a frequency-doubled diode laser, Electrophoresis, 2003, 24: 567-574.
    [11] A.M. Desbene, C.J. Morin, N.L. Mofaddel, R.S. Groult, Utilization of fluorescein sodium salt in laser-induced indirect fluorimetric detection Ⅱ. Application to organic anions, J. Chromatogr. A, 1995, 716: 279-290.
    [12] C.J. Morin, N.L. Mofaddel, A.M. Desbene, P.L. Desbene, Utilization of fluorescein sodium salt for the indirect fluorimetric detection in micellar electrokinetic chromatography, J. Chromatogr. A, 2000, 872: 247-258.
    [13] T.C. Chiu, M.F. Huang, C.C. Huang, M.M. Hsieh, H.T. Chang, Indirect fluorescence of aliphatic carboxylic acids in nonaqueous capillary electrophoresis using merocyanine 540, Electrophoresis, 2002, 23, 449-455.
    [14] S. Pelletier, C. A. Lucy, High-performance liquid chromatographic separation and indirect fluorescence detection of thiols, J. Chromatogr. A, 2002, 972: 221-229.
    [15] S.A. Shamsi, N.D. Danielson, I.M. Warner, Flavin mononucleotide for indirect laser-induced fluorescence detection of anions separated by capillary electrophoresis, J. Chromatogr. A, 1999, 835: 159-168.
    [16] C.G. Bailey, S.R. Wallenborg, Indirect laser-induced fluorescence detection of explosive compounds using capillary electrochromatography and micellar electrokinetic chromatography, Electrophoresis, 2000, 21:3081-3087.
    [17] L.J. Jin, T.L. Wang, S.F.Y. Li, Indirect laser-induced fluorescence detection of valproic acid in human serum by capillary electrophoresis, Electrophoresis, 1999, 20: 1856-1861.
    [18] N.P. Beard, A.J. de Mello, A polydimethylsiloxane/glass capillary electrophoresis microchip for the analysis of biogenic amines using indirect fluorescence detection, Electrophoresis, 2002, 23:1722-1730.
    [19] P.D. Zhang, G.W. Xu, J.H. Xiong, Y.F. Zheng, Q. Yang, F.S.Wei, Capillary electrophoretic analysis of arsenic species with indirect laser induced fluorescence detection, J. Sep. Sci., 2002, 25: 155-159.
    [20] S.Y. Chang, H.T. Chiang, Simultaneous determination of selenium and antimony compounds by capillary electrophoresis with indirect fluorescence detection, Electrophoresis, 2002, 23: 2913-2917.
    [21] S.Y. Chang, C.H. Liao, Analysis of glyphosate, glufosinate and aminomethylphosphonic acid by capillary electrophoresis with indirect fluorescence detection, J. Chromatogr. A, 2002, 959:309-315.
    [22] X.J. Liu, X. Liu, A.Y. Liang, Z. Shen, Y. Zhang, Z.P. Dai, B.H. Xiong, B.C. Lin, Studying protein-drug interaction by micro fluidic chip affinity capillary electrophoresis with indirect laser-induced fluorescence detection, Electrophoresis, 2006, 27:3125-3128.
    [23] C.A. Currie, W.R. Heineman, H.B. Halsall, C.J. Seliskar, P.A. Limbach, F. Arias, K.R. Wehmeyer. Estimation of pK_a values using microchip capillary electrophoresis and indirect fluorescence detection, J. Chromatogr. B, 2005, 824: 201-205.
    [24] J.S. Li, Study on the Identification of Chinese Traditional Medicine, Shanghai, Shanghai Science and Technology Press, 1995, p. 316.
    [25] C.Y. Chu, Y.Y. Tsai, C.J. Wang, W.L. Lin, T.H. Tseng, Induction of apoptosis by esculetin in human leukemia cells, Eur. J. Pharmacol., 2001, 416: 25-32.
    [26] S.L. Pan, Y.W. Huang, J.H. Guh, Y.L. Chang, C.Y. Peng, C.M. Teng, Esculetin inhibits Ras-mediated cell proliferation and attenuates vascular restenosis following angioplasty in rats, Biochem. Pharmacol., 2003, 65: 1897-1905.
    [27] H.C. Kuo, H.J. Lee, C.C. Hu, H.I. Shun, T.H. Tseng, Enhancement of esculetin on Taxol-induced apoptosis in human hepatoma HepG2 cells, Toxicol. Appl. Pharmacol., 2006, 210: 55-62.
    [28] Y.M. Zuo, Z.Y. Wang, H.H. Cui, L.M. Liu, Determination of aesculin and aesculetin in periderm and leaves of Cortex Fraxini among different provenances, Chin. Tradit. Patent Med., 2003, 25: 552-554.
    [29] C.H. Li, A.J. Chen, X.F. Chen, X.G. Chen, Z.D. Hu, Separation and simultaneous determination of rutin, puerarin, daidzein, esculin and esculetin in medicinal preparations by non-aqueous capillary, J. Pharm. Biomed. Anal., 2005, 39: 125-131.
    [30] H.Y. Zhang, Q.F. Li, Z.H. Shi, Z.D. Hu, R. Wang, Analysis of aesculin and aesculotin in Cortexfraxini by capillary zone electrophoresis, Talanta, 2000, 52: 607-621.
    [31] R.J. Ochocka, D. Rajzer, P. Kowalski, H. Lamparcayk, Determination of coumarins from Chrysanthemum segetum L. by capillary electrophoresis, J. Chromatogr. A, 1995, 709: 197-202.
    [32] T.Y You, X.R. Yang, E.K. Wang, End-column amperometric detection of aesculin and aesculetin by capillary electrophoresis, Anal. Chimi. Acta, 1999, 401: 29-34.
    [33] Y. Shibusawa, Y. Hagiwara, Z. Chao, M. Ying, Y. Ito, Application of high-speed counter-current chromatography to the separation of coumarin and related compounds, J. Chromatogr. A, 1997, 759: 47-53.
    [34] Pharmacopoeia Committee of People's Republic of China, Pharmacopoeia of People's Republic of China (S), Beijing, Chemistry Industry Publisher, 2000, p. 179.
    [35] 王钢力,郑笑为,陈道峰,林瑞超,肿节风注射液HPLC指纹图谱的研究,中草药,2004,35:1119-1123.
    [36] G. P. Zhou, H. Y. Liu, H. Z. Wang, T. H. Xu, L. P. Wu, A Study on the Determination of Isofraxidin in Zhongjiefeng Tablet by HPLC, Chin. J. Pharm. Anal., 2000, 20: 15-16.
    [37] W. J. Zheng, S. F. Wang, X. G. Chen, Z. D. Hu, Analysis of Sarcandra glabra and its medicinal preparations by capillary electrophoresis, Talanta, 2003, 60: 955-960.
    [38] J. Yun, C. K. Lee, I. M. Chang, K. Takatsu, T. Hirano, K. R. Min, M. K. Lee, Y. Kim, Differential inhibitory effects of sophoricoside analogs on bioactivity of several cytokines, Life Sciences, 2000, 67: 2855-2867.
    [39] J. W. Jiang, Q. X. Xiao, Handbook of Herbal Medicine Bioactivity Components, Beijing, People's Medical Publishing House, 1986, p. 493.
    [40] 刘晓华,李涛,朱亮,牛宇东,HPLC测定槐角丸中槐角苷含量,中成药,2005,27:476-478.
    [41] H. Xiao, Z. N. Chen, Y. Lu, Y. F. Gu, Y. F. Xie, Z. Wang, HPLC Determination of Sophoricoside in Sophora japonica, J. Dali Univ. 2 (2003) 11-13.
    [42] J. B. Wang, P. Guo, X. B. Zhao, Y. H. Xie, Determination of genistein in Fructus Sophorae extract by RP-HPLC, Chin. Tradit. Herbal Drugs, 2004, 35: 402-403.
    [43] L. Sun, J. B. Zheng, Z. R, Suo, HPCE Analysis of Genistein in Huaijiao Pills, Chin. J. Pharrna. Anal., 2004, 24: 361-363.
    [44] J. W. Jiang, Q. X. Xiao, Handbook of Herbal Medicine Bioactivity Components, Beijing, People's Medical Publishing House, 1986, p. 761.
    [45] J. Vanamala, L. Reddivari, K. S. Yoo, L. M. Pike, B. S. Patil, Variation in the content of bioactive flavonoids in different brands of orange and grapefruit juices, J. Food Compos. Anal., 2006, 19: 157-166.
    [46] F. I. Kanaze, C. Gabrieli, E. Kokkalou, M. Georgarakis, I. Niopas, Simultaneous reversed-phase high-performance liquid chromatographic method for the determination of diosmin, hesperidin and naringin in different citrus fruit juices and pharmaceutical formulations, J. Pharm. Biomed. Anal., 2003, 33: 243-249.
    [47] X.L. Li, L. Li, Determination of Hesperidin and Naringin in Fructus Aurantii Immaturus and Fructus Aurantii by Reversed-Phase High Performance Liquid Chromatography, Chin. J. Chromatogr., 2002, 20: 585-586.
    [48] Y.Q. Lv, Y.L. Wang, Z.B. Yuan, Fast Determination of Hesperidin and Naringin in Fructus Aurantii Immaturus and Fructus Aurantii by Capillary Electrophoresis, Life Sci. Instrum., 2004, 2: 36-37.
    [49] C. Corradini, F. Bianchi, D. Matteuzzi, A. Amoretti, M. Rossi, S. Zanoni, High-performance anion-exchange chromatography coupled with pulsed amperometric detection and capillary zone electrophoresis with indirect ultra violet detection as powerful tools to evaluate prebiotic properties of fructooligosaccharides and inulin, J. Chromatogr. A, 2004, 1054: 165-173.
    [50] S.M. Cousins, P. R. Haddad, W. Buchberger, Evaluation of carrier electrolytes for capillary zone electrophoresis of low-molecular-mass anions with indirect UV detection, J. Chromagogr. A, 1994, 671, 397-402.
    [51] J.Y. Zhang, Z.D. Hu, X.G. Chen, Quantification of glutathione and glutathione disulfide in human plasma and tobacco leaves by capillary electrophoresis with laser-induced fluorescence detection, Talanta, 2005, 65: 986-990.
    [52] J.P. Xie, X.F. Chen, J.Y. Zhang, J.Q. Liu, J.N. Tian, X.G. Chen, Z.D. Hu, A novel double coating for microemulsion electrokinetic chromatography with laser-induced fluorescence detection: as tested with amino acid derivatives, J. Pharm. Biomed. Anal., 2004, 36: 1-8.
    [53] A.J. Chen, J.Y. Zhang, C.H. Li, X.F. Chen, X.G. Chen, Z.D. Hu, Separation and determination of active components in Radix Salviae miltiorrhizae and its medicinal preparations by nonaqueous capillary electrophoresis, J. Sep. Sci., 2004, 27: 569-575.
    [1] W.H.Brown, Introduction to Organic and Biochemistry, fourth ed., Brooks/Cole Publ., Monterey, 1987, pp. 418.
    [2] T. Wessel, C. Lanvers, S. Fruend, G. Hempel, Determination of purines including 2,8-dihydroxyadenine in urine using capillary electrophoresis, J. Chromatogr. A, 2000, 894: 157-164.
    [3] P. G. Moral, M.J. Arin, J.A. Resines, M.T. Diez, Simultaneous determination of adenine and guanine in ruminant bacterial pellets by ion-pair HPLC, J. Chromatogr. B, 2005, 826: 257-260.
    [4] X. Xiong, O.Y. Jin, W.R.G. Baeyens, J.R. Delanghe, X.M. Shen, Y.P. Yang, Enhanced separation of purine and pyrimidine bases using carboxylic multiwalled carbon nanotubes as additive in capillary zone electrophoresis, Electrophoresis, 2006, 27: 3243-3253.
    [5] Y.C. Huang, C.C. Lin, C.Y. Liu, Preparation and evaluation of molecularly imprinted polymers based on 9-ethyladenine for the recognition of nucleotide bases in capillary electrochromatography, Electrophoresis, 2004, 25: 554-561.
    [6] C.S. Robb, S.C. Yang, P.R. Brown, Enhanced analysis of purine and pyrimidine bases by the use of double-strand polyaniline coatings in micellar electrokinetic capillary chromatography, Electrophoresis, 2002, 23: 1900-1905.
    [7] D. Friedecky, T. Adam, P. Bartak, Capillary electrophoresis for detection of inherited disorders of purine and pyrimidine metabolism: A selective approach, Electrophoresis, 2002, 23: 565-571.
    [8] P. Wang, J.C. Ren, Separation of purine and pyrimidine bases by capillary electrophoresis using β-cyclodextrin as an additive, J. Pharm. Biomed. Anal., 2004, 34: 277-283.
    [9] C.W. Klampfl, M. Himmelsbach, W. Buchberger, H. Klein, Determination of purines and pyrimidines in beer samples by capillary zone electrophoresis, Anal. Chim. Acta, 2002, 454: 185-191.
    [10] T. Wessel, C. Lanvers, S. Fruend, G. Hempel, Determination of purines including 2,8-dihydroxyadenine in urine using capillary electrophoresis, J. Chromatogr. A, 2000, 894: 157-164.
    [11] S.E. Geldart, P.R. Brown, Separation of purine and pyrimidine bases by capillary zone electrophoresis with carbonate buffers, J. Chromatogr. A, 1999, 831: 123-129.
    [12] R Kieβling, G.K.E. Scriba, S. Falco,G. Werner, H. Knoth, M. Hartmann, Development and validation of a high-performance liquid chromatography assay and a capillary electrophoresis assay for the analysis of adenosine and the degradation product adenine in infusions, J. Pharm. Biomed.1 Anal., 2004, 36: 535-539.
    [13] D.K. Xu, L. Hua, H.Y. Chen, Determination of purine bases by capillary zone electrophoresis with wall-jet amperometric detection, Anal. Chim. Acta, 1996, 335: 95-101.
    [14] G. Chen, Q.C. Chu, L.Y. Zhang, J.N. Ye, Separation of six purine bases by capillary electrophoresis with electrochemical detection, Anal. Chim. Acta, 2002, 457: 225-233.
    [15] G. Chen, X.H. Han, L.Y. Zhang, J.N. Ye, Determination ofpurine and pyrimidine bases in DNA by micellar electrokinetic capillary chromatography with electrochemical detection, J. Chromatogr. A, 2002, 954: 267-276.
    [16] H. Lin, D.K. Xu, H.Y. Chen, Simultaneous determination of purine bases, ribonucleosides and ribonucleotides by capillary electrophoresis-electrochemistry with a copper electrode, J. Chromatogr. A, 1997, 760: 227-233.
    [17] J. Wang, G., Chen, A. Muck, Jr. Dongchan Shin, A. Fujishima, Microchip capillary electrophoresis with a boron-doped diamond electrode for rapid separation and detection of purines, J. Chromatogr. A, 2004, 1022:207-212.
    [18] W. G. Kuhr, E.S. Yeung, Optimization of sensitivity and separation in capillary zone electrophoresis with indirect fluorescence detection, Anal. Chem., 1988, 60: 2642-2646.
    [19] E. Gassmann, J.E. Kuo, R.N. Zare, Electrokinetic separation of chiral compounds, Science, 1985, 230: 813-814.
    [20] L. Gross, E.S. Yeung, Indirect fluorimetric detection and quantification in capillary zone electrophoresis of inorganic anions and nucleotides, J. Chromatogr., 1989, 480, 169-178.
    [21] L. Gross, E.S. Yeung. Indirect fluorometric detection of cations in capillary zone electrophoresis, Anal. Chem., 1990, 62: 427-431.
    [22] E.S. Yeung, W.G. Kuhr, Indirect detection methods for capillary separations, Anal. Chem., 1991, 63: 275A-282A.
    [23] V. Heleg-Shabtai, N. CJratziany, Z. Liron, Separation and detection of VX and its methylphosphonic acid degradation products on a microchip using indirect laser-induced fluorescence, Electrophoresis, 2006, 27: 1996-2001.
    [24] S.J. Chen, M.J. Chen, H.T. Chang Light-emitting diode-based indirect fluorescence detection for simultaneous determination of anions and cations in capillary electrophoresis, J. Chromatogr. A, 2003, 1017: 215-224.
    [25] X.H. Yang, X.C. Wang, X.M. Zhang, Indirect laser-induced fluorescence detection of diuretics separated by capillary electrophoresis, J. Sep. Sci., 2006, 29: 677-683.
    [26] T.C. Chiu, M.F. Huang, C.C. Huang, M.M. Hsieh, H.T. Chang, Indirect fluorescence of aliphatic carboxylic acids in nonaqueous capillary electrophoresis using merocyanine 540, Electrophoresis, 2002, 23, 449-455.
    [27] S. Pelletier, C.A. Lucy, High-performance liquid chromatographic separation and indirect fluorescence detection of thiols, J. Chromatogr. A, 2002, 972: 221-229.
    [28] C.J. Morin, N.L. Mofaddel, A.M. Desbene, EL. Desbene, Utilization of fluorescein sodium salt for the indirect fluorimetric detection in micellar electrokinetic chromatography, J. Chromagogr. A, 2000, 872: 247-258.
    [29] T. Kaneta, Y. Saito, T. Imasaka, Indirect detection of amino-substituted polycyclic aromatic hydrocarbons in cyclodextrin-modified micellar electrokinetic chromatography combined with diode laser-induced fluorometry, J. Chromatogr. A, 1999, 831: 285-292.
    [30] S.R. Wallenborg, C.G. Bailey, Separation and Detection of Explosives on a Microchip Using Micellar Electrokinetic Chromatography and Indirect Laser-Induced Fluorescence, Anal. Chem., 2000, 72:1872-1878.
    [31] S. Kennedy, B. Caddy, J.M.F. Douse, Micellar electrokinetic capillary chromatography of high explosives utilising indirect fluorescence detection, J. Chromatogr. A, 1996, 726:211-222.
    [32] C.G. Bailey, S.R. Wallenborg, Indirect laser-induced fluorescence detection of explosive compounds using capillary electrochromatography and micellar electrokinetic chromatography, Electrophoresis, 2000, 21: 3081-3087.
    [33] X.J. Liu, X. Liu, A.Y. Liang, Z. Shen, Y. Zhang, Z.P. Dai, B.H. Xiong, B.C. Lin, Studying protein-drug interaction by microfluidic chip affinity capillary electrophoresis with indirect laser-induced fluorescence detection, Electrophoresis, 2006, 27:3125-3128.
    [34] C.A. Currie, W.R. Heineman, H.B. Halsall, C.J. Seliskar, P. A. Limbach, F. Arias, K.R. Wehmeyer. Estimation of pK_a values using microchip capillary electrophoresis and indirect fluorescence detection, J. Chromatogr. B, 2005, 824: 201-205.
    [35] J.C. Zhou, M.J. Yang, X.F. Yang, J.M. Huang, W.H. Ling, Q. Huang, W.L. Li, DNA extraction from genetially modified foods by modified CTAb method or SDS method, Food Science, 2005, 29: 29-32.
    [36] P.L. Desbene, C.J. Morin, A.M. Desbene Monvemay, R.S. Groult. Utilization of fluorescein sodium salt in laser-induced indirect fluorimetric detection of ions separated by capillary zone electrophoresis, J. Chromatogr. A, 1995, 689: 135-148.
    [37] S.M. Cousins, P. R. Haddad, W. Buchberger, Evaluation of carrier electrolytes for capillary zone electrophoresis of low-molecular-mass anions with indirect UV detection, J. Chromagogr. A, 1994, 671, 397-402.
    [38] J.Y. Zhang, Z.D. Hu, X.G. Chen, Quantification of giutathione and glutathione disulfide in human plasma and tobacco leaves by capillary electrophoresis with laser-induced fluorescence detection, Talanta, 2005, 65: 986-990.
    [39] J.P. Xie, X.F. Chen, J.Y. Zhang, J.Q. Liu, J.N. Tian, X.G. Chen, Z.D. Hu, A novel double coating for microemulsion electrokinetic chromatography with laser-induced fluorescence detection: as tested with amino acid derivatives, J. Pharm. Biomed. Anal., 2004, 36: 1-8.
    [40] A.J. Chen, J.Y. Zhang, C.H. Li, X.F. Chen, X.G. Chen, Z.D. Hu, Separation and determination of active components in Radix Salviae miltiorrhizae and its medicinal preparations by nonaqueous capillary electrophoresis, J. Sep. Sci., 2004, 27: 569-575.
    [1] 郭永康,鲍培谛编著,光学教程,四川大学出版社,成都,1996,357.
    [2] 吴强,郭光灿编著,光学,中国科学技术大学出版社,合肥,1996,369.
    [3] 左榘编著,激光散射原理及在高分子科学中的应用,河南科学技术出版社,1994.
    [4] BI-200SM operation manual: Instruction Manual for BI-ZPW, Ⅱ—4.
    [5] J. C. Gimel, W. Brown, A light scattering investigation of the sodium dodecyl sulfate-lysozyme system, J. Chem. Phys. , 1996, 104 (20) : 8112-8117.
    [6] R. M. Murphy, Static and dynamic light scattering of macromolecules: what can we learn?, Anal. Biotech. (Current Opinion in Biotechnology), 1997, 8: 25-30.
    [7] T. Antony, A. Saxena, K. B. Roy, H. B. Bohidar, Laser light scattering immunoassay: An improved data analysis by CONTIN method, J. Biochem. Biophys. Methods, 1998, 36: 75-85.
    [8] 魏立平,姜雄平,光散射法在医学分子生物学中的应用,国外医学分子生物学分册,2000,22(2):123-127.
    [9] 王志刚,左榘,激光散射在生物高分子中的应用,化学工业与工程,1993,10(3):24-30.
    [10] 李连之,周永洽,激光散射及其在蛋白质溶液研究中的应用,大学化学,1998,13(3):26-29.
    [11] B. P. Sinch, H. B. Bohidar, S. Chopra, Heat aggregation studies of phycobilisomes, ferritin, insulin, and immunoglobulin by dynamic light scattering, Biopolymers, 1991, 31: 1387-1396.
    [12] 吴佩强,马星奇,吴奇,激光光散射研究天花粉蛋白的聚集过程,物理化 学学报,1995,ll(4):331-336.
    [13] K. B. Roy, T. Antony, H, B. Bohidar, Ethanol-induced condensation of calf thymus DNA by laser light scattering, J. Phys. Chem. B, 1999, 103, 5117-5121.
    [14] T. Nicolai, C. Urban, R Schurtenberger, Light scattering study of turbid heat-set globular protein gels using cross-correlation dynamic light scattering, Journal of Colloid and Interface Science, 2001, 240: 419-424.
    [15] 古怀民,邢达,激光散射法测量溶液中蛋白质含量,应用激光,2001,21(4):260-262。
    [16] J. M. Ruso, D. Attwood, M. Garcy a, G. Prieto, F. Sarmiento, P. Taboada, L. M. Varela, V. Mosquera, Interaction of Amphiphilic Propranolol Hydrochloride with Haemoglobin and Albumin in Aqueous Solution, Langmuir 2000, 16: 10449-10455.
    [17] D. Leis, S. Barbosa, D. Attwood, P. Taboada, V. Mosquera, Influence of the pH on the Complexation of an Amphiphilic Antidepressant Drug and Human Serum Albumin, J. Phys. Chem. B, 2002, 106: 9143-9150.
    [18] D. Leis, S. Barbosa, D. Attwood, P. Taboada, V. Mosquera, Physicochemical Study of the Complexation of Nortriptyline and Human Serum Albumin, Langmuir, 2002, 18: 8178-8185.
    [19] J.M. Ruso, D. Attwood, M. Garcy'a, P. Taboada, L. M. Varela, V. Mosquera, A Study of the Interaction of the Amphiphilic Penicillins Cloxacillin and Dicloxacillin with Human Serum Albumin in Aqueous Solution, Langmuir, 2001, 17: 5189-5195.
    [20] J.M. Ruso, P. Taboada, L. M. Varela, D. Attwood, V. Mosquera, Adsorption of an amphiphilic penicillin onto human serum albumin: characterisation of the complex, Biophy. Chem., 2001, 92: 141-153.
    [21] S. Barbosa, P. Taboada, J. M. Ruso, D. Attwood, V. Mosquera, Complexes of penicillins and human serum albumin studied by static light scattering, Colloids and Surfaces A: Physicochem. Eng. Aspects, 2003, 224:251-256.
    [22] M. Perez-Rodriguez, D. Attwood, J, M. Ruso, P. Taboada, L. M. Varela, V. Mosquera, Adsorption of a cationic amphiphilic drug on human serum albumin: characterization of the complex, Phys. Chem. Chem. Phys., 2001, 3: 1655-1660.
    [23] C. Ruhlmann, M. Thieme, M. Helmstedt, Interaction between dextran and human low density lipoproteins (LDL) observed using laser light scattering, Chem. Phy. Lipids, 2001, 110: 173-181.
    [24] T.O. Hushcha, A.I. Luik, Yu.N. Naboka, Conformation changes of albumin in its interaction with physiologically active compounds as studied bu quasic-elstaic light scattering spectroscopy and ultrasonic method, Talanta, 2000, 53: 29-34.
    [25] A.I. Luik, Yu.N. Naboka, S.E. Mogilevich, T.O. Hushcha, N.I. Mischenko, Study of human serum albumin by dynamic light scattering: two types of reactions under different pH and interaction with physiologically active compounds, SpectrochimicaActa Part A, 1998, 54: 1503-1507.
    [26] P.M. Landeira, J.M. Ruso, G. Prieto, F. Sarmiento, M.N. Jones, The Interaction of Human Serum Albumin with Dioctan7oylphosphatidylcholine in Aqueous Solutions, Langmuir, 2002, 18: 3300-3305.
    [27] J.R. Lu, T.J. Su, J. Penfold, Adsorption of Serum Albumins at the Air/Water Interface, Langmuir, 1999, 15: 6975-6983.
    [28] Houska, M., Brynda, D., Interaction of Proteins with Polyelectrolytes at Solid/Liquid Interfaces: Sequential Adsorption of Albumin and Heparin, J. Colloid. Interf. Sci., 1997, 188: 243-250.
    [29] Krauss, M., Gresh, N., Antony, J., Binding and Hydrolysis of Ampicillin in the Active Site of a Zinc Lactamase, J. Phys. Chem. B, 2003, 107: 1215-1229.
    [30] Ottens, M., Lebreton, B., Zomerdijk, M., Crystallization Kinetics of Ampicillin. Ind. Eng. Chem. Res., 2001, 40: 4821-4827.
    [31] He, X. M., Carter, D. C., Atomic structure and chemistry of human serum albumin, Nature, 1992, 358: 209-215.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700