氟化物诱导成牙本质细胞凋亡的相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氟化物在口腔医学中有着广泛的应用,在牙本质过敏、防龋、矿化机制和氟斑牙预防研究中扮演重要角色,在生活和临床中被大量使用。已有研究发现高氟暴露的牙本质矿化受到影响,高氟作用下多种细胞的矿化相关因子表达发生变化。牙髓的损伤刺激往往导致局部成牙本质细胞凋亡或坏死,丧失其形成牙本质的功能,同时也观察到受损区牙本质管样结构的修复性牙本质的形成,这说明了成牙本质细胞的凋亡是牙髓损伤修复中的重要现象,在牙髓损伤和修复的中间环节扮演重要角色。
     又有研究认为氟作用下的细胞膜氯离子通道受到影响,硫的转运增加,有可能与矿化相关蛋白的表达,调控,修饰相互作用。进而推测其影响细胞矿化模式,促进硬组织的损伤修复过程。
     由于成牙本质细胞在牙本质发育和改建扮演重要角色,能够在人一生之中不断地分泌成牙本质基质,生成修复牙本质。所以研究氟化物诱导下成牙本质细胞凋亡的适宜浓度和时间、牙本质细胞发生凋亡的分子信号通路对于探索氟化物治疗牙本质过敏机制、探寻氟化物调控的硬组织矿化机制有重要的意义。
     本研究从确定氟诱导的浓度,观察凋亡的发生,以及细胞凋亡的信号通路等不同层次,展开四个实验:
     实验一:氟对成牙本质细胞的增殖抑制。
     本实验观察了成牙本质细胞系(odontoblast-lineage cell, OLC)的生物学行为和氟刺激下的细胞形态变化。以不含血清的DMEM培养基孵育12h后,分别换以含NaF 0-6mmol/L浓度的无血清DMEM培养基分别培养12-48h后观察细胞形态变化。继而采用MTT法和台盼兰排斥实验检测氟对OLC细胞的增殖抑制。结果:细胞在氟的作用下增殖分裂缓慢,4mmol浓度作用24小时抑制率可以达到50%以上。推测4mmol浓度作用12-24小时后可能诱导OLC细胞的凋亡出现。
     实验二:氟诱导的成牙本质细胞系细胞的凋亡
     为了进一步观察氟诱导成牙本质细胞的凋亡,我们采用流式细胞术、原位末端标记法发现氟化钠能够诱导成牙本质细胞发生凋亡,采用透射电镜技术发现细胞凋亡后的超微结构发生变化,在4mmol/L浓度下,western blot试验中发现了凋亡发生晚期重要的caspase-3蛋白发生了剪切,表明此浓度的氟诱导成牙本质细胞凋亡进入不可逆转的状态。
     实验三:氟化物通过MAPK途径诱导成牙本质细胞凋亡。
     为了进一步观察MAPK通路对于成牙本质细胞凋亡的意义,本实验采用western blot技术对JNK、ERK和p38及其磷酸化蛋白进行了检测,发现JNK蛋白随着浓度增加和作用时间延长,磷酸化程度不断增强。ERK的磷酸化过程在时间上表现为短期内升高,降低后又升高的过程.但是随着浓度增加而升高。p38未检测到磷酸化改变。JNK抑制剂SP600125可以有效抑制JNK的磷酸化改变,ERK的抑制剂PD98059可以抑制部分磷酸化过程。这表明JNK信号通路参与了氟诱导的成牙本质细胞凋亡,而ERK信号通路部分参与了此凋亡过程,p38则未参与氟化物诱导的成牙本质细胞凋亡。
     实验四:线粒体途径对氟化物诱导成牙本质细胞凋亡的影响。
     为了进一步观察凋亡的另一经典通路,线粒体信号通路对成牙本质细胞凋亡的影响,我们又采用免疫组化法,使用MitoTracker deep red 633线粒体荧光探针标记线粒体,观察Bax在线粒体内的定位情况,结合western blot检测凋亡的线粒体途径中重要的两个分子Bax和Bcl-2的表达情况,发现Bax转位至线粒体并定位于线粒体外膜上,而Bax表达随时间延长而增加,显示凋亡不断进展,Bcl-2作为抗凋亡蛋白,在氟诱导过程中增高以对抗凋亡的发生,48小时后降低可能是凋亡进入不可逆转过程。这些表明了线粒体途径参与了氟诱导的成牙本质细胞凋亡。
     本研究初步证实了氟化物能够诱导成牙本质细胞系发生凋亡,并进一步发现MAPK通路和线粒体途径都在OLC细胞凋亡中的扮演了重要角色。
Fluoride plays an important role in preventing dentin hypersensitivity, remineralization of caries and mechanism of dental fluorosis. It also has been widely used in clinical and oral hygiene. The mineralization of dentin has been found affected by Fluoride exposure related to gene expression changes. For sake of odontoblasts developing function, they keep to converted pulp chamber through human lives, External pressure and temperature stimulations will induced the apoptosis of pulp cells and stimulate migration and differentiation, resulting in reparative dentin.
     Some studie shows that 3mmol / L of fluoride could not induce apoptosis of odontoblasts . Can fluoride induce apoptosis in odontoblasts ? What is the appropriate time and concentration? Through which molecular pathways did the fluoride-induced apoptosis regulated by? Some studies show that the chloride ion channel was affected by fluoride exposure with an increase of sulfur transfer. It may be associated with the expression, regulation and modification of some mineralization moleculars. what is the relationship between apoptosis-related protein and mineralization-related molecules in odontoblasts ?
     This research include four experiments:
     Experiment 1: Cell viability and cell proliferation
     To study cell proliferation, OLC cells were exposed to increasing concentrations of NaF at 0-6mmol/L for 12 to 48 hours after in serum-free medium for 12 hours. Cell viability was evaluated using a MTT assay. Results: Incubation of OLC cells with NaF for 12, 24,48 hrs induced a dose-dependent decrease in cell viability .Following exposure to 4 mM NaF for 24 hrs, cell viability was reduced by approximately 50%.
     Experiment 2: Measurement of apoptosis
     To detect the apoptosis induced by fluoride, we use flow cytometry and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) to check membrane alteration and DNA fragmentation. we also found the ultrastructural alterations by Scanning electron microscopy. Representative immunoblot obtained with caspase-3 and actin antibodies. Full-length and cleaved forms of caspase-3 were detected .
     Experiment 3:Involvement of MAPKs in NaF-induced Apoptosis
     Time-course of NaF-induced accumulation of phosphorylated JNK and phosphorylated ERK in OLC cells. In OLC cells exposed to 4 mM NaF for 24 hrs, treatment with the JNK inhibitor, SP600125 suppressed JNK phosphorylation, while treatment with the ERK inhibitor, PD98059 suppressed ERK phosphorylation partially.
     Experiment 4: Involvement of mitochondrion in NaF-induced Apoptosis
     we observe the mitochondrial dynamic morphology by cell stained with MitoTracker Deep Red 633 and Bcl-2 expression increased after flouride exposure.It shows that apoptosis induced by flouride is through the mitochondrial pathway.
引文
1. Malcolm, A.S. and E. Storey, Osteofluorosis in the rabbit: microradiographic studies. Pathology, 1971. 3(1): p. 39-51.
    2. Hall, B.K., Sodium fluoride as an initiator of osteogenesis from embryonic mesenchyme in vitro. Bone, 1987. 8(2): p. 111-6.
    3. Fernandez Lemos, S.M., et al., [Changes in the organic bone matrix and cartilage of rats by the prolonged use of sodium fluoride]. Medicina (B Aires), 1988. 48(1): p. 45-8.
    4. Monjo, M., et al., In vivo expression of osteogenic markers and bone mineral density at the surface of fluoride-modified titanium implants. Biomaterials, 2008. 29(28): p. 3771-80.
    5. Farley, J.R., et al., Monofluorophosphate is hydrolyzed by alkaline phosphatase and mimics the actions of NaF on skeletal tissues, in vitro. Calcif Tissue Int, 1987. 40(1): p. 35-42.
    6. Ohta, T., et al., Phenytoin and fluoride act in concert to stimulate bone formation and to increase bone volume in adult male rats. Calcif Tissue Int, 1995. 56(5): p. 390-7.
    7. Gutowska, I., et al., [Living conditions of deer in the provinces of Western Pomerania and Lubuskie as revealed by mandibular content of fluoride, calcium, and magnesium. I. Inter-relations between fluoride, calcium, and magnesium content in mandible]. Ann Acad Med Stetin, 2004. 50 Suppl 1: p. 42-6.
    8. Rosenblatt, A., T.C. Stamford, and R. Niederman, Silver diamine fluoride: a caries "silver-fluoride bullet". J Dent Res, 2009. 88(2): p. 116-25.
    9. Carneiro, L.S., et al., In vivo study of pixel grey-measurement in digital subtraction radiography for monitoring caries remineralization. Dentomaxillofac Radiol, 2009. 38(2): p. 73-8.
    10. ten Cate, J.M., et al., Elevated fluoride products enhance remineralization of advanced enamel lesions. J Dent Res, 2008. 87(10): p. 943-7.
    11. ten Cate, J.M., Remineralization of deep enamel dentine caries lesions. Aust Dent J, 2008. 53(3): p. 281-5.
    12. Chu, C.H. and E.C. Lo, Microhardness of dentine in primary teeth after topical fluoride applications. J Dent, 2008. 36(6): p. 387-91.
    13. Wiegand, A., W. Buchalla, and T. Attin, Review on fluoride-releasing restorative materials--fluoride release and uptake characteristics, antibacterial activity and influence on caries formation. Dent Mater, 2007. 23(3): p. 343-62.
    14. Appleton, J., et al., Changes in the structure of dentine from cheek teeth of deer chronically exposed to high levels of environmental fluoride. Cells Tissues Organs, 2000. 167(4): p. 266-72.
    15. Rieben, A.S., et al., Influence of chlorhexidine on fluoride uptake by bovine dentin in vitro. Am J Dent, 2008. 21(6): p. 351-5.
    16. Knight, G.M., et al., Differences between normal and demineralized dentine pretreatedwith silver fluoride and potassium iodide after an in vitro challenge by Streptococcus mutans. Aust Dent J, 2007. 52(1): p. 16-21.
    17. Aoba, T., J. Collins, and E.C. Moreno, Possible function of matrix proteins in fluoride incorporation into enamel mineral during porcine amelogenesis. J Dent Res, 1989. 68(7): p. 1162-8.
    18. Drinkard, C., et al., Calcium binding by organic matrix of developing bovine enamel. Arch Oral Biol, 1981. 26(6): p. 483-5.
    19. Maciejewska, I., et al., Fluoride alters type I collagen expression in the early stages of odontogenesis. Folia Morphol (Warsz), 2006. 65(4): p. 359-66.
    20. Maciejewska, I. and B. Adamowicz-Klepalska, Influence of low and high doses of fluoride on tooth germ development in rats. Folia Morphol (Warsz), 2000. 59(4): p. 307-10.
    21. Moseley, R., et al., The influence of fluoride exposure on dentin mineralization using an in vitro organ culture model. Calcif Tissue Int, 2003. 73(5): p. 470-5.
    22. Moseley, R., et al., The influence of fluoride on the cellular morphology and synthetic activity of the rat dentine-pulp complex in vitro. Arch Oral Biol, 2003. 48(1): p. 39-46.
    23. Araki, S., [Ultrastructural changes in rat-incisor odontoblasts and dentin caused by administration of sodium fluoride]. Shikwa Gakuho, 1989. 89(1): p. 49-91.
    24. Appleton, J., The ultrastructure of dentine from rat incisors following exposure to sodium fluoride and potassium pyroantimonate staining. Scanning Microsc, 1988. 2(4): p. 2045-54.
    25. Appleton, J. and D.C. Morris, An ultrastructural investigation of the role of the odontoblast in matrix calcification using the potassium pyroantimonate osmium method for calcium localization. Arch Oral Biol, 1979. 24(6): p. 467-75.
    26. Milan, A.M., R.J. Waddington, and G. Embery, Altered phosphorylation of rat dentine phosphoproteins by fluoride in vivo. Calcif Tissue Int, 1999. 64(3): p. 234-8.
    27. Karlinsey, R.L., et al., In vitro assessments of experimental NaF dentifrices containing a prospective calcium phosphate technology. Am J Dent, 2009. 22(3): p. 180-4.
    28. Milan, A.M., R.J. Waddington, and G. Embery, Fluoride alters casein kinase II and alkaline phosphatase activity in vitro with potential implications for dentine mineralization. Arch Oral Biol, 2001. 46(4): p. 343-51.
    29. Harbrow, D.J., M.G. Robinson, and P.A. Monsour, The effect of chronic fluoride administration on rat condylar cartilage. Aust Dent J, 1992. 37(1): p. 55-62.
    30. Claassen, H., et al., Extracellular matrix changes in knee joint cartilage following bone-active drug treatment. Cell Tissue Res, 2006. 324(2): p. 279-89.
    31. Yan, D., et al., Genetic background influences fluoride's effects on osteoclastogenesis. Bone, 2007. 41(6): p. 1036-44.
    32. Zhang, Y., et al., [Effects of fluoride on cell cycle and apoptosis in cultured osteoblasts of rats]. Wei Sheng Yan Jiu, 2003. 32(5): p. 432-3.
    33. Pimplikar, S.W. and K. Simons, Activators of protein kinase A stimulate apical but notbasolateral transport in epithelial Madin-Darby canine kidney cells. J Biol Chem, 1994. 269(29): p. 19054-9.
    34. Varecka, L., E. Peterajova, and E. Pisova, Properties of the Ca2+ influx reveal the duality of events underlying the activation by vanadate and fluoride of the Gardos effect in human red blood cells. FEBS Lett, 1998. 433(1-2): p. 157-60.
    35. Biffen, M. and B.R. Martin, Inhibition of PI-kinase in rat liver membranes by F. Cell Signal, 1989. 1(3): p. 283-7.
    36. Strunecka, A., et al., The effect of inositol 1,4,5-trisphosphate and inositol
    1,4,5-trisphosphorothioate on calcium release and membrane skeleton organization in the human red blood cell. Receptor, 1991. 1(3): p. 141-54.
    37. Hirano, S., M. Ando, and S. Kanno, Inflammatory responses of rat alveolar macrophages following exposure to fluoride. Arch Toxicol, 1999. 73(6): p. 310-5.
    38. Li, Y., et al., Effects of sodium fluoride on the actin cytoskeleton of murine ameloblasts. Arch Oral Biol, 2005. 50(8): p. 681-8.
    39. Matsuo, S., K. Kiyomiya, and M. Kurebe, Mechanism of toxic action of fluoride in dental fluorosis: whether trimeric G proteins participate in the disturbance of intracellular transport of secretory ameloblast exposed to fluoride. Arch Toxicol, 1998. 72(12): p. 798-806.
    40. Bronckers, A.L., D.M. Lyaruu, and P.K. DenBesten, The impact of fluoride on ameloblasts and the mechanisms of enamel fluorosis. J Dent Res, 2009. 88(10): p. 877-93.
    41. Ribeiro, D.A., et al., Ultrastructural morphometric analysis of ameloblasts exposed to fluoride during tooth development. J Mol Histol, 2006. 37(8-9): p. 361-7.
    42. Xu, S., et al., [Direct effects of fluoride on activities of bone morphogenetic protein]. Zhonghua Yu Fang Yi Xue Za Zhi, 2000. 34(4): p. 215-7.
    43. Mousny, M., et al., Fluoride effects on bone formation and mineralization are influenced by genetics. Bone, 2008. 43(6): p. 1067-74.
    44. Bialecki, P., [Evaluation of the repair process in mechanically injured rat bone stimulated by sodium fluoride with non-toxic doses]. Ann Acad Med Stetin, 1999. 45: p. 195-209.
    45. Vazquez, J., et al., Clinical efficacy of a triclosan/copolymer/NaF dentifrice and a commercially available breath-freshening dentifrice on hydrogen sulfide-forming bacteria. Oral Dis, 2005. 11 Suppl 1: p. 64-6.
    46. Waddington, R.J. and M.S. Langley, Altered expression of matrix metalloproteinases within mineralizing bone cells in vitro in the presence of fluoride. Connect Tissue Res, 2003. 44(2): p. 88-95.
    47. Turner, C.H., et al., Fluoride treatment increased serum IGF-1, bone turnover, and bone mass, but not bone strength, in rabbits. Calcif Tissue Int, 1997. 61(1): p. 77-83.
    48. Rosenstock, M., A. Danon, and G. Rimon, Prostaglandin H synthase: protein synthesis-independent regulation in bovine aortic endothelial cells. Am J Physiol, 1997. 273(5 Pt 1): p. C1749-55.
    49. Tokunaga, T., et al., Effect of endodontic agents on cytotoxicity induction by sodium fluoride. In Vivo, 2003. 17(6): p. 583-91.
    50. Hirano, S. and M. Ando, Fluoride mediates apoptosis in osteosarcoma UMR 106 and its cytotoxicity depends on the pH. Arch Toxicol, 1997. 72(1): p. 52-8.
    51. Cooper, L.F., et al., Fluoride modification effects on osteoblast behavior and bone formation at TiO2 grit-blasted c.p. titanium endosseous implants. Biomaterials, 2006. 27(6): p. 926-36.
    52. Isa, Z.M., et al., Effects of fluoride-modified titanium surfaces on osteoblast proliferation and gene expression. Int J Oral Maxillofac Implants, 2006. 21(2): p. 203-11.
    53. Yamazaki, H. and H.C. Margolis, Enhanced enamel remineralization under acidic conditions in vitro. J Dent Res, 2008. 87(6): p. 569-74.
    54. Bronckers, A.L., et al., Fluoride enhances intracellular degradation of amelogenins during secretory phase of amelogenesis of hamster teeth in organ culture. Connect Tissue Res, 2002. 43(2-3): p. 456-65.
    55. Robinson, C., Fluoride and the caries lesion: interactions and mechanism of action. Eur Arch Paediatr Dent, 2009. 10(3): p. 136-40.
    56. Robinson, C., et al., The effects of fluoride on the nanostructure and surface pK of enamel crystals: an atomic force microscopy study of human and rat enamel. Eur J Oral Sci, 2006. 114 Suppl 1: p. 99-104; discussion 127-9, 380.
    57. Robinson, C., et al., The effect of fluoride on the developing tooth. Caries Res, 2004. 38(3): p. 268-76.
    58. Kirkham, J., et al., Effect of experimental fluorosis on the surface topography of developing enamel crystals. Caries Res, 2001. 35(1): p. 50-6.
    59. Tjaderhane, L., E.L. Hietala, and M. Larmas, Mineral element analysis of carious and sound rat dentin by electron probe microanalyzer combined with back-scattered electron image. J Dent Res, 1995. 74(11): p. 1770-4.
    60. Misra, U.K., G. Gawdi, and S.V. Pizzo, Beryllium fluoride-induced cell proliferation: a process requiring P21(ras)-dependent activated signal transduction and NF-kappaB-dependent gene regulation. J Leukoc Biol, 2002. 71(3): p. 487-94.
    61. Sofuoglu, S.C. and P. Kavcar, An exposure and risk assessment for fluoride and trace metals in black tea. J Hazard Mater, 2008. 158(2-3): p. 392-400.
    62. Sun, H.C., et al., [The effect of overdose fluoride on the proliferation and apoptosis of rat's incisor ameloblast]. Zhonghua Kou Qiang Yi Xue ZaZhi, 2003. 38(3): p. 217-9.
    63. Refsnes, M., et al., Fluoride-induced apoptosis in human epithelial lung cells (A549 cells): role of different G protein-linked signal systems. Hum Exp Toxicol, 2003. 22(3): p. 111-23.
    64. Buratta, S., et al., Serine base exchange enzyme in porcine lyophilised platelets: enzyme properties and modulation by AlF4- and different types of heparin. Mol Cell Biochem, 2000. 203(1-2): p. 177-84.
    65. Bogatcheva, N.V., et al., Mechanism of fluoride-induced MAP kinase activation in pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol, 2006. 290(6): p. L1139-45.
    66. Chouhan, S. and S.J. Flora, Effects of fluoride on the tissue oxidative stress and apoptosis in rats: biochemical assays supported by IR spectroscopy data. Toxicology, 2008. 254(1-2): p. 61-7.
    67. Anuradha, C.D., S. Kanno, and S. Hirano, Oxidative damage to mitochondria is a preliminary step to caspase-3 activation in fluoride-induced apoptosis in HL-60 cells. Free Radic Biol Med, 2001. 31(3): p. 367-73.
    68. Karran, L. and M.J. Dyer, Proteolytic cleavage of molecules involved in cell death or survival pathways: a role in the control of apoptosis? Crit Rev Eukaryot Gene Expr, 2001. 11(4): p. 269-77.
    69. Thorburn, A., Death receptor-induced cell killing. Cell Signal, 2004. 16(2): p. 139-44.
    70. MacFarlane, M., TRAIL-induced signalling and apoptosis. Toxicol Lett, 2003. 139(2-3): p. 89-97.
    71. Ashkenazi, A. and V.M. Dixit, Apoptosis control by death and decoy receptors. Curr Opin Cell Biol, 1999. 11(2): p. 255-60.
    72. Groenendyk, J. and M. Michalak, Endoplasmic reticulum quality control and apoptosis. Acta Biochim Pol, 2005. 52(2): p. 381-95.
    73. Szegezdi, E., U. Fitzgerald, and A. Samali, Caspase-12 and ER-stress-mediated apoptosis: the story so far. Ann N Y Acad Sci, 2003. 1010: p. 186-94.
    74. Larner, S.F., R.L. Hayes, and K.K. Wang, Unfolded protein response after neurotrauma. J Neurotrauma, 2006. 23(6): p. 807-29.
    75. Shigemura, N., et al., Localization of activated caspase-3-positive and apoptotic cells in the developing tooth germ of the mouse lower first molar. Histochem J, 2001. 33(5): p. 253-8.
    76. Baratella, L., V.E. Arana-Chavez, and E. Katchburian, Apoptosis in the early involuting stellate reticulum of rat molar tooth germs. Anat Embryol (Berl), 1999. 200(1): p. 49-54.
    77. Vaahtokari, A., T. Aberg, and I. Thesleff, Apoptosis in the developing tooth:association with an embryonic signaling center and suppression by EGF and FGF-4. Development, 1996. 122(1): p. 121-9.
    78. Mitsuyasu, T., et al., Immunohistochemical demonstration of bcl-2 protein in ameloblastoma. J Oral Pathol Med, 1997. 26(8): p. 345-8.
    79. Hatakeyama, S., et al., The immunohistochemical localization of Fas and Fas ligand in jaw bone and tooth germ of human fetuses. Calcif Tissue Int, 2000. 66(5): p. 330-7.
    80. Tranasi, M., et al., Microarray evaluation of age-related changes in human dental pulp. J Endod, 2009. 35(9): p. 1211-7.
    81. Kim, J.Y., et al., Inhibition of apoptosis in early tooth development alters tooth shape and size. J Dent Res, 2006. 85(6): p. 530-5.
    82. Jernvall, J., et al., The life history of an embryonic signaling center: BMP-4 induces p21 and is associated with apoptosis in the mouse tooth enamel knot. Development, 1998. 125(2): p. 161-9.
    83. Salmela, E., et al., Tributyltin impairs dentin mineralization and enamel formation in cultured mouse embryonic molar teeth. Toxicol Sci, 2008. 106(1): p. 214-22.
    84. Mitsiadis, T.A., et al., The large functional spectrum of the heparin-binding cytokines MK and HB-GAM in continuously growing organs: The rodent incisor as a model. Developmental Biology, 2008. 320(1): p. 256-266.
    85. Mitsiadis, T.A., et al., Stem cell niches in mammals. Experimental Cell Research, 2007. 313(16): p. 3377-3385.
    86. Goga, Y., et al., Compressive force induces osteoblast apoptosis via caspase-8. J Dent Res, 2006. 85(3): p. 240-4.
    87. Struys, T., et al., Immunohistochemical evidence for proteolipid protein and nestin expression in the late bell stage of developing rodent teeth. Archives of Oral Biology, 2005. 50(2): p. 171-174.
    88. Tonetti, M.S., D. Cortellini, and N.P. Lang, In situ detection of apoptosis at sites of chronic bacterially induced inflammation in human gingiva. Infect Immun, 1998. 66(11): p. 5190-5.
    89. Murashima-Suginami, A., et al., Enhanced BMP signaling results in supernumerary tooth formation in USAG-1 deficient mouse. Biochem Biophys Res Commun, 2008. 369(4): p. 1012-6.
    90. Peterkova, R., et al., Correlation between apoptosis distribution and BMP-2 and BMP-4 expression in vestigial tooth primordia in mice. Eur J Oral Sci, 1998. 106(2 Pt 1): p. 667-70.
    91. Zhao, H., et al., TGF-beta type I receptor Alk5 regulates tooth initiation and mandible patterning in a type II receptor-independent manner. Dev Biol, 2008. 320(1): p. 19-29.
    92. Arany, S., et al., Phenotype properties of a novel spontaneously immortalized odontoblast-lineage cell line. Biochemical and Biophysical Research Communications, 2006. 342(3): p. 718-724.
    93. Wurtz, T., et al., Fluoride at non-toxic dose affects odontoblast gene expression in vitro. Toxicology, 2008. 249(1): p. 26-34.
    94. Johnson, G.L. and R. Lapadat, Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science, 2002. 298(5600): p. 1911-2.
    95. He, W.-X., et al., Smad protein mediated transforming growth factor [beta]1 induction of apoptosis in the MDPC-23 odontoblast-like cell line. Archives of Oral Biology, 2005. 50(11): p. 929-936.
    96. Xu, S., et al., Differential regulation of mitogen-activated protein/ERK kinase (MEK)1 and MEK2 and activation by a Ras-independent mechanism. Mol Endocrinol, 1997. 11(11): p. 1618-25.
    97. Karube, H., et al., NaF activates MAPKs and induces apoptosis in odontoblast-like cells. J Dent Res, 2009. 88(5): p. 461-5.
    98. Kuwana, T., et al., Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell, 2002. 111(3): p. 331-42.
    99. Saito, M., S.J. Korsmeyer, and P.H. Schlesinger, BAX-dependent transport of cytochrome c reconstituted in pure liposomes. Nat Cell Biol, 2000. 2(8): p. 553-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700