级联型多电平动态电压恢复器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着信息技术的飞速发展,基于计算机、微处理器控制的各种用电设备被大量使用,这些新型电力负荷对电能质量的要求不断提高,电压跌落、瞬时断电等暂态电能质量问题已成为电力用户共同关心的问题。动态电压恢复器(Dynamic Voltage Restorer,DVR)装置是一种能够保护关键负荷免受供电端电压跌落、骤升等扰动的新型电力电子设备。级联型多电平逆变器结构简单,技术成熟,易于封装和模块化,已广泛应用在有源滤波、无功补偿等电能质量控制领域。因此,本文针对级联型多电平拓扑结构的动态电压恢复器进行了研究。
     快速、准确地检测出系统电压跌落的特征量是动态电压恢复器运行的前提条件。本文针对三相系统中基于瞬时无功功率理论的dq0变换方法,引入并设计了数字低通滤波器,在保持检测精度的前提下提高了系统的响应速度。考虑到αβ变换法由于数据的非实时性给检测结果带来的延时和扰动,提出了一种基于拓展矢量的单相电压跌落快速检测算法,该算法以αβ变换检测方法为基础,利用三角函数的正交性,可快速检测出电压幅值和相角的跳变。
     在动态电压恢复器控制策略的研究方面,分析了前馈控制、负载电压瞬时值反馈控制和电压电流双环反馈控制三种控制方法在稳态和动态性能指标以及稳定性上的优缺点,提出一种基于比例谐振控制器的新型多环反馈控制策略,与传统的比例积分(PI)控制相比,含有谐振控制器的反馈控制能获得更高的稳态精度。
     直流侧电压平衡是级联型动态电压恢复器的关键问题。针对级联型多电平无串联注入变压器拓扑结构的DVR,详细定量分析了其稳态工作特性。分析表明调节补偿电压相角,可以实现稳定直流电容电压。提出了通过调节DVR注入电压相角实现快速补偿电网电压跌落的同时保持直流侧电压稳定的控制策略。该控制策略在最小能量补偿模式的基础上,将PI控制引入到注入电压生成方法中,DVR从电网吸收或发出有功功率,储能电容随之充电或放电以使电压恢复到额定值。为了减小直流电容间的电压偏差,进而提出引入内环PI控制器解决级联型多电平逆变器工作时H桥逆变单元之间的电容电压均衡问题的方法。
     最后,本文设计了一台基于DSP数字化控制的单相级联型五电平动态电压恢复器实验样机,进行了主电路方案设计、控制实验板的搭建及程序设计。实验结果表明,本文所设计的动态电压恢复器补偿效果良好,可以满足小功率场合电压跌落补偿的要求,为进一步研究奠定了的理论和实践基础。
With the rapid development of information technology, variety of computer-based and microprocessor-controlled power equipments have been used extensively. The new power load demands for continually improving of power quality, the transient power quality problem, such as voltage sags and Instantaneous interruptions of power supply, have become important issues of common concern of power user. A dynamic voltage restorer (DVR) is a power-electronic converter-based device that has been designed to protect critical loads from supply-side voltage sags and other disturbances. Cascade multilevel inverter structure is simple and mature in technological conditions, and easy to modularize and package, which has been widely applied in the field of active filter and reactive power compensation. So, the cascaded multilevel topology based dynamic voltage restorer is researched in this paper.
     For the operation of dynamic voltage restorer, fast and exact detection of voltage sag characteristics is very important. According to three-phase system instantaneous reactive power theory based dq0 transformation method, in this paper, a digital low pass filter is introduced and designed, which can improve response speed while maintain detection precision. Considering the delay and disturbance of detection results caused by non-real-time data ofαβtransformation method, a single-phase voltage sag detection algorithm based on expanded vector is presented. The improved method mainly originates fromαβtransformation method, can rapid detect the jump of voltage amplitude and phase angle, utilizing the orthogonality of trigonometric functions.
     In this paper, the steady-state, dynamic performance and stability of control strategy of DVR, including forward-feed control, instantaneous voltage feed-back control, voltage and current double closed-Loop control are analyzed. A novel multi-loop control method with resonant controller for DVR is introduced. Compared to traditional proportional integral (PI) control, the feedback control with resonant controller achieves high steady-state precision.
     DC voltage balance is the key issues of cascaded dynamic voltage restorer. For the cascaded multilevel transformerless topology based dynamic voltage restorer, of which steady state characteristics were analyzed quantitatively. Analyses show that DC capacitor voltage can be changed by adjusting the injected voltage phase angle. It is deduced feasible method that compensating by adjusting the injected voltage phase angle to achieve DC voltage stable control, under the premise of rapid compensation of system voltage sags. A novel injected voltage generating method with PI controller is introduced based on the minimum energy compensation model. The DVR can absorb or deliver active power to maintain the DC capacitor voltage at its reference value. In order to minimize the DC capacitor voltage deviation, PI closed-loop control is used to solve the problem of cascade inverter power balance. The correctness of theoretical analysis and the feasibility of the proposed design scheme are verified by simulation results.
     At last, this paper designs a single-phase five-level DVR experimental prototype with DSP-based digital control system. The scheme designs of main circuit, implementation of experimental control board are presented in this paper. The results show that DVR designed by this paper has a good compensation effect, which gives important theoretical and practical foundation for further research.
引文
1林海雪.电能质量国家标准介绍.电气工程应用. 2005, (1):2~9
    2肖湘宁,徐永海.电能质量问题剖析.电网技术. 2001, 25(3):66~69
    3 A. Sannino, M. G. Miler, and M. H.J. Bollen. Overview of Voltage Sag Mitigation. IEEE Proc. of Power Engineering Society Winter Meeting, USA, 2000:2871~2878
    4金广厚,李庚银,周明.电能质量市场理论的初步探讨.电力系统自动化. 2004, 28(12):1-6
    5沈广,陈允平,刘栋等.应用动态电压恢复器解决电压跌落问题.高电压技术. 2007, 33(3):156-158
    6 W. B. Brumsickle, R. S. Schneider, and G. A. Luckjiff. Dynamic Sag Correctors: Cost-Effective Industrial Power Line Conditioning. IEEE Transactions on Industry Applications. 2001, 37(1): 212~216
    7肖湘宁,徐永海,刘连光.考虑相位跳变的电压凹陷动态补偿控制器研究.中国电机工程学报. 2002, 22(1):64~68
    8 H. G. Sarmiento, E. Estrada. A Voltage Sag Study in an Industry with Adjustable Speed Drives. IEEE Industry Magazine. 1996, 2(1): 16~19
    9王宾,潘贞存,徐丙垠.配电系统电压跌落问题的分析.电网技术. 2004, 28(2):56~59
    10 http://www.itic.org/technical/iticurv.pdf. ITI(CBEMA) Curve Application Note. 2000
    11 N. H. Woodley, L. Morgan, A. Sundaram. Experience With An Inverter-Based Dynamic Voltage Restorer. IEEE Transactions on Power Delivery. 1999, 14(3): 1181~1185
    12韩英铎,严干贵,姜齐荣等.信息电力与FACTS及DFACTS技术.电力系统自动化. 2000, 24(19):1~6
    13王同勋,薛禹胜, S. S. Choi.动态电压恢复器研究综述.电力系统自动化. 2007, 31(9):101~105
    14周晖,齐智平.动态电压恢复器检测方法和补偿策略综述.电网技术. 2006, 30(6):23~28
    15 C. Zhan, V. K. Ramachandaramurthy, and A. Arulampalam. Dynamic Voltage Restorer Based on Voltage-Space-Vector PWM Control. IEEE Transactions on Industry Applications. 2001, 37(6): 1855~1862
    16 S. Polmai, T. Ise, and S. Kumagai. Experiment on Voltage Sag Compensation WithMinimum Energy Injection by Use of a Micro-SMES. Proc. of Power Conversion Conference, Osaka, Japan, 2002, 2:415~420
    17 T. Jimichi, H. Fujita, and H. Akagi. Design and Experimentation of a Dynamic Voltage Restorer Capable of Significantly Reducing an Energy-Storage Element. IEEE Transactions on Industry Applications. 2008, 44(3): 817~824
    18 Y. Cheng, J. V. Mierlo. and P. V. Bossche. Using Super Capacitor Based Energy Storage to Improve Power Quality in Distributed Power Generation. Proc. of 12th International Power Electronics and Motion Control Conference, Portoroz, Slovenia, 2006, 2:896~903
    19 B. Wang, G. Venkataramanan. Dynamic Voltage Restorer Utilizing a Matrix Converter and Flywheel Energy Storage. IEEE Transactions on Industry Applications. 2009, 45(1): 222~230
    20 M. Vilathgamuwa, A. A. D. R. Perera, and S. S. Choi. Performance Improvement of the Dynamic Voltage Restorer With Closed-Loop Load Voltage and Current-Mode Control. IEEE Transactions on Power Electronics. 2002, 17(5): 824~833
    21 H. Kim, S. Sul. Compensation Voltage Control in Dynamic Voltage Restorers by Use of Feed Forward and State Feedback Scheme. IEEE Transactions on Power Electronics. 2005, 20(5): 1169~1176
    22 P. R. Sanchez, E. Acha, and J. E. O. Calderon. A Versatile Control Scheme for a Dynamic Voltage Restorer for Power-Quality Improvement. IEEE Transactions on Power Delivery. 2009, 24(1): 277~283
    23 A. Kara, P. Dahler, D. Amhof. Power Supply Quality Improvement with a Dynamic Voltage Restorer (DVR). Proc. of IEEE APEC'98, Malaysia, 1998, 2:986~992
    24 H. K. Al-Hadidi, A. M. Gole. and D. A. Jacobson. Minimum Power Operation of Cascade Inverter-Based Dynamic Voltage Restorer. IEEE Transactions on Power Delivery. 2008, 23(2): 889~897
    25 P. R. Sanchez, E. Acha. Dynamic Voltage Restorer Based on Flying Capacitor Multilevel Converters Operated by Repetitive Control. IEEE Transactions on Power Delivery. 2009, 24(2): 951~959
    26 D. M. Vilathgamuwa, C. J. Gajanayake, and P. C. Loh. Voltage Sag Compensation With Z-Source Inverter Based Dynamic Voltage Restorer. Proc. of IEEE 41st IAS Annual Meeting. Florida, USA, 2006, 5:2242~2248
    27 A. Arora, K. Chan, and T. Jauch. Innovative System Solutions for Power Quality Enhancement. ABB Review. 1998(3):4-12
    28杨亚飞,颜湘武,娄尧林.一种新的电压骤降特征量检测方法.电力系统自动化. 2004, 28(2):41~44
    29张庆超,肖玉龙.一种改进的电压暂降检测方法.电工技术学报. 2006, 21(2):123~126
    30肖湘宁,徐永海,刘昊.电压凹陷特征量检测算法研究.电力自动化设备. 2002, 22(1):19~44
    31 H. S. Song, K. Nam. Instantaneous Phase-angle Estimation Algorithm under Unbalanced Voltage-sag Conditions. IEE Proc. Generation, Transmission, and Distribution. 2000, 147(6):409~415
    32 S. Lee, H. Kim, and S. Sul. A Novel Control Algorithm for Static Series Compensators by Use of PQR Instantaneous Power Theory. IEEE Transactions on Power Electronics. 2004, 19(3): 814~826
    33李红雨,吴隆辉,卓放等.一种新型的快速电流检测方法的研究.中国电机工程学报. 2005, 25(13):57~61
    34袁兆祥,郑建勇,胡敏强等.有源滤波器中新型检测滤波器的设计与研究.中国电机工程学报. 2008, 28(9):45~48
    35姚建清.简明数字信号处理.人民邮电出版社, 2009:95~100
    36胡书举,李建林,梁亮等.风力发电用电压跌落发生器研究综述.电力自动化设备. 2008, 28(2):101~103
    37 K. Chan, A. Kara. Dynamic Voltage Restorer and Its Performance. International Electric Power for China. 1998, (1):49~51
    38彭春萍.基于DSP的串联型电能质量调节器的研究.武汉大学硕士学位论文. 2003:27~30
    39杨成林.三相逆变器DSP控制技术的研究.浙江大学硕士学位论文. 2004:33~35
    40夏德钤,翁贻方.自动控制理论.第3版.机械工业出版社, 2009:213~217
    41袁性忠,姜新建,黄宇淇.动态电压恢复器的复合控制策略.电力系统自动化. 2006, 30(19):61~64
    42苏丹柳.单相级联逆变器研究.南京航空航天大学硕士学位论文. 2007:15~16
    43黄瀚,杨潮,韩英铎等.配电网动态电压调节器控制策略的研究.电网技术. 2002, 26(1):1~4
    44 Y. W. Li, P. C. Loh, and F. Blaabjerg. Investigation and Improvement of Transient Response of DVR at Medium Voltage Level. IEEE Transactions on Industry Applications. 2007, 43(5): 1309~1318
    45林渭勋.现代电力电子技术.机械工业出版社, 2006:153~157
    46 M. J. Ryan, W. E. Brumsickle, and R. D. Lorenz. Control Topology Options for Single-Phase UPS Inverters. IEEE Transactions on Industry Applications. 1997, 33(2): 493~500
    47张允,邹云屏,吴振兴等.励磁电流补偿方法的电流控制型单相动态电压恢复器的仿真研究.中国电机工程学报. 2008, 28(22):152~157
    48张纯江,张婧,邬伟扬等.基于Delta算子的谐振控制器实现高频链逆变器波形控制.电工技术学报. 2008, 23(7):81~85
    49 D. N. Zmood, D. G. Holmes. Stationary Frame Current Regulation of PWM Inverters With Zero Steady-State Error. IEEE Transactions on Power Electronics. 2003, 18(3): 814~822
    50赵清林,郭小强,邬伟扬.单相逆变器并网控制技术研究.中国电机工程学报. 2007, 27(16):60~64
    51李子欣,王平,李耀华等.采用数字控制的400 Hz大功率逆变电源.中国电机工程学报. 2009, 29(6):36~41
    52 A. Nabae, I. Takahashi, and H. Akagi. A New Neutral-Point-Clamped PWM Inverter. IEEE Transactions on Industry Applications. 1981, 17(5): 518~523
    53陈阿莲,何湘宁,赵荣祥.一种改进的级联型多电平变换器拓扑.中国电机工程学报. 2003, 23(11):9~12
    54 J. S. Lai, F. Z. Peng. Multilevel Converters-A New Breed of Converters. IEEE Transactions on Industry Applications. 1996, 32(3): 509~516
    55王德发,丁洪发.基于不对称级联型多电平逆变器的动态电压恢复器研究.继电器, 2007, 35(13):49~52
    56赵剑锋,蒋平,唐国庆.基于电压型逆变器的可连续运行的动态电压恢复器(UDVR)的研究.电工技术学报, 2002, 17(3):88~92
    57 B. H. Li, S. S. Choi, and D. M. Vilathgamuwa. Transformerless dynamic voltage restorer. IEE Proc. Generation, Transmission, and Distribution. 2002, 149(3):263~273
    58 S. S. Choi, B. H. Li, and D. M. Vilathgamuwa. Dynamic voltage restoration with minimum energy injection. IEEE Transactions on Power Systems. 2000, 15(1):51~57
    59 D. M. Vilathgamuwa, A. A. D. R. Perera, S. S. Choi. Voltage sag compensation with energy optimized dynamic voltage restorer. IEEE Transactions on Power Delivery. 2003, 18(3):928~936
    60肖国春,南长合,胡志亮等.一种串联有源电压质量调节器的移相控制技术.中国电机工程学报. 2008, 28(4):114~112
    61刘凤君.多电平逆变技术及其应用.机械工业出版社, 2007:213~217
    62 F. Z. Peng, J. S. Lai, J. Mckeever. A Multilevel Voltage-Source Inverter with Separate DC Sources for Static Var Generation. IEEE Transactions on Industry Application. 1996, 32(5):1130~1138
    63陈道炼. DC-AC逆变技术及其应用.机械工业出版社, 2003:285~290
    64杜朝辉.级联型多电平逆变器的优化设计.华北电力大学硕士学位论文. 2006:16~17 26~28
    65 S. S. Choi, B. H. Li, and D. M. Vilathgamuwa. Design and Analysis of the Inverter-Side Filter Used in the Dynamic Voltage Restorer. IEEE Transactions on Power Delivery. 2002, 17(3): 857~864
    66王晓明,王玲.电动机的DSP控制-TI公司DSP应用.北京航空航天大学出版社, 2004:20~26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700