客车气压制动系统欠压补偿控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
客车气压制动系统是客车行驶安全性的关键部件,系统因气体的微泄漏(如接头不紧密或管路微孔)将导致气压不足,出现系统欠压现象,这将严重影响客车行驶过程的制动稳定性,并使客车存在安全隐患。论文针对因微泄漏造成的欠压状态,系统深入地研究客车气压制动系统的欠压补偿制动控制问题,以实现提高客车在欠压状态下行驶安全性能的目的。论文的主要研究工作如下:
     (1)针对客车气压制动系统的结构特点和故障特征,提出客车气压制动系统欠压制动的概念,采用理论计算与试验相结合的方法,定量分析客车气压制动系统欠压制动所带来的客车行驶安全问题。
     (2)在对客车气压制动系统制动管路及主要部件进行分析的基础上,建立因泄漏造成的欠压状态下客车气压制动系统制动压力特性模型,研究客车气压制动系统的泄漏对制动压力特性的影响,重点分析对最终稳定的制动压力及延迟特性的影响。
     (3)基于对欠压状态下客车气压制动系统的制动特性与稳定性控制问题的分析,建立客车气压制动系统欠压制动控制的7自由度动力学模型,并对所建模型进行验证,利用所建模型对欠压状态下客车气压制动系统的制动特性进行仿真分析。
     (4)基于客车气压制动系统欠压制动控制的车辆动力学模型,利用差动制动与滑模控制的方法,提出客车气压制动系统欠压补偿控制的控制策略,设计客车气压制动系统欠压补偿控制器,实现欠压状态下的客车气压制动系统制动控制。
     (5)利用CAN总线控制技术,设计客车气压制动系统欠压补偿控制网络,搭建客车气压制动系统欠压补偿控制网络的试验平台,并对其进行网络性能测试。
     论文以某客车为对象,采用MATLAB/Simulink对客车气压制动系统欠压补偿控制的控制效果进行仿真分析;结果显示,本文所研究的客车气压制动系统欠压补偿控制方法对处于欠压状态下的客车气压制动系统制动稳定性控制具有较好的控制效果。
Air brake system of the bus is one of its critical components about driving safety,underpressure state due to micro-leakage such as the loose joints or micropore of pipeline will seriously affect the braking stability of the bus driving process, and security risks exists. Thesis focuses on underpressure state caused by the micro-leakage, air brake system of bus and its brake control problem are studied deeply, to improve the bus safety performance in underpressure state. The main research work are as follows:
     (1) Aimed at the failure features and the structural characteristics of bus air brake system, the concept of underpressure brake of bus air brake system is put forward,using the method of theoretical calculations and experimental analysis, the bus driving safety issues brought by bus air brake system in underpressure state is analyzed.
     (2) Based on the analysis of brake pipeline and main components of bus air brake system, brake pressure characteristic model of bus air brake system in underpressure state due to leakage is built, impact of leakage to brake pressure characteristics of bus air brake system is studied, focusing on the analysis of final stable brake pressure and delay characteristics.
     (3) Based on the analysis of the braking characteristics and stability control for bus air brake system in underpressure state, the7-DOF dynamic model of underpressure brake control for bus air brake system is built and validated, simulation and analysis are carryied out for braking characteristics of bus air brake system in the underpressure state using the model.
     (4) Based on the underpressure brake control model of bus air brake system, using differential brake and sliding mode control method, the underpressure compensation control strategy of bus air brake system is put forward, the underpressure compensation controller of bus air brake system is designed to achieve the brake control in the underpressure state.
     (5) Using the CAN bus control technology, underpressure compensation control network of bus air brake system is designed and its test bench is built, and network performance test is carried out.
     Targeting a type of bus, using MATLAB/Simulink to simulate and analyze the effect of underpressure compensation control of bus air brake system, the results show that the underpressure compensation control method in this study is effective for braking stability control of bus air brake system in underpressure state.
引文
[1]SMC(中国)有限公司.现代实用气动技术[M].北京:机械工业出版社.2006.
    [2]National Center for Statistics and Analysis of the National Traffic Highway Safety Administration. Traffic Safety Facts 2005-A Compilation of Motor Vehicle Crash Data from the Fatality Analysis Reporting System and the General Estimates System [R], Report No. DOT HS 810 631; Washington, DC,2006.
    [3]Federal Motor Carrier Safety Administration. Traffic Safety Facts & Reserrch- The Large Truck Crash Causation Study [R], Publication No. FMCSA-RRA-07-017; Washington, DC,2007.
    [4]公安部交通管理局.中华人民共和国道路交通事故统计年报(2003年度).[R],2004.
    [5]于翔鹏.混合电动汽车制动系统的控制技术研究[D].武汉:武汉理工大学,2009.
    [6]胡剑.客车信息集成控制系统基础技术的研究与实践[D].武汉:武汉理工大学,2008.
    [7]褚端峰.客车行驶稳定性控制的关键技术研究[D].武汉:武汉理工大学,2010.
    [8]余志生.汽车理论[M].北京:机械工业出版社,2005.
    [9]GB/T 258—2004:机动车运行安全技术条件[S].国家质量监督检验检疫总局,2004.
    [10]GB/T 12676—1999:汽车制动系统结构、性能和试验方法[S].国家质量监督检验检疫总局,1999.
    [11]柯为.商用车制动防抱死系统的玩到制动控制算法研究[D].长春:吉林大学,2009.
    [12]杨拯民,李伟.汽车制动过程中瞬时车速和轮速的仿真计算[J].合肥工业大学学报,2003,23(3).
    [13]金智林.运动型多功能汽车侧翻稳定性及防侧翻控制[D].南京:南京航空航天大学,2008.
    [14]刘惟信.汽车制动系统的结构分析[M].北京:清华大学出版社,2004.
    [15]张文春.汽车理论[M].北京:机械工业出版社,2005.
    [16]唐德修.现代汽车机械基础[M].西安:西安交通大学出版社,2006.
    [17]Richard W Radlinski. Braking Performance of Heavy U.S. vehicles. SAE Paper 870492.
    [18]Richard W Radlinski. Enhancing the Roller Brake Tester. SAE Paper 922444.
    [19]谢伟东,余翊妮,王磊,等.四轮转向汽车的动特性分析[J].浙江工业大学学报,2004,32(6):674-678.
    [20]赵长利.汽车制动性能及其统计特征研究[D].青岛:山东科技大学,2005.
    [21]李传斌.基于模糊综合评判的汽车制动性能评价[J].制造业信息化,2010,(1):76-77.
    [22]吴晓东,唐先智.基于制动轨迹的汽车制动性能检测技术研究[J].计量检测与监督,2009(2):130-133.
    [23]焦国昌,孔祥文,刘国东.汽车制动性能动态检测和静态检测的对比分析[J].东北林业大学学报,2006,34(5):93-94.
    [24]赖峰.重型汽车制动系统结构分析及其设计方法研究[D].武汉:武汉理工大学,2009.
    [25]孙益民.基于MATLAB的汽车制动系统设计与分析软件开发[J].上海汽车,2005,4.
    [26]王智深,李刚炎.装有ABS的汽车气压制动系统的建模与研究[J].机床与液压,2009,37(10):93-95.
    [27]S.J.Shatter, G1H1Alexander.Commercial Vehicle Brake Testing Part 1:Visual inspection versus Performance-Based Test.SAE Papers 952671.
    [28]S.J.Shatter, G1h1Alexander.Commercial Vehicle Brake Testing Part 2:Preliminary Results of Performance-Based Program.SAE Papers 952672.
    [29]S.Subramanian, S.Darbha, and K. Rajagopal. Modeling the pneumatic subsystem of an S-cam air brake system[J]. Journal of Dynamic Systems, Measurement, and Control, 2004(126):36-37.
    [30]S. C. Subramanian, A diagnostic system for air brakes in commercial vehicles, Ph.D. dissertation, Texas A&M University, College Station,Texas,2006.
    [31]蔡茂林.现代气动技术理论与实践:第三讲管路内的气体流动[M].北京:北京航空航天大学自动化科学与电气工程学院,2007,4:51-55.
    [32]Yulia Dukhovnaya,Michael A.Adewumi. Simulation of non-isothermal transients in gas/condensate pipelines using TVD scheme[J]. Power Technology,2000(112):163-171.
    [33]Mohammad Abbaspour,Kirby S. Chapman, Larry A. Glasgow. Transient modeling of non-isothermal, dispersed two-phase flow in natural gas pipelines [J]. Applied Mathematical Modelling 2010(34):495-507.
    [34]谢安桓,高院安,周华.高压气体系统管道流动研究与实验分析[J].液压与气动,2008,9:67-70.
    [35]李志辉,毕林,唐志共.基于气体运动论的差分算法对管道流动数值研究[J].应用数学与力学,2009,7(30):833-846.
    [36]Xu K, Li Z H. Microchannel flow in the slip regime:gas-kinetic BGK-Burnett solutions [J]. Journal of Fluid Mechanics,2004,513:87-110.
    [37]李志辉.从稀薄流到连续流的气体运动论统一数值算法研究[D].绵阳:中国空气动力研究与发展中心研究生部,2001.
    [38]Li Z H, Zhang H X. Numerical investigation from rarefied flow to continuum by solving the Boltzmann model equation[J]. International Journal of Numerical Methods in Fluids, 2003,42(4):361-382.
    [39]Li Z H, Zhang H X. Study on gas kinetic unified algorithm for flows from rarefied transition to continuum[J]. Journal of Computational Physics,2004,193(2):708-738.
    [40]杨慧钢.制动管路对整车制动系统的影响[J].汽车科技,2009,6:68-71.
    [41]马少民,蔡晓娟.城市客车制动管路结冰问题的研究[J].应用技术,2010,8:48-51.
    [42]王仁亮,黄虎,刘新田,等.大客车制动管路布置与制动性能分析[J].上海工程技术大学学报,2008,4(22):347-350.
    [43]邓红星.基于AMESim的汽车制动管路波动效应仿真[J].东北林业大学学报,2009,10(37):105-107.
    [44]邓红星.汽车ABS制动管路压力波动特性试验[J].东北林业大学学报,2009,12(37):122-123.
    [45]邓红星,王宪彬.汽车制动管路压力波动响应特性仿真[J].武汉理工大学学报-信息与管理工程版,2010,4(32):573-575.
    [46]邓红星,关强.汽车防抱制动管路波动效应负载发生装置结构设计[J].汽车与船舶,2009,4:159-163.
    [47]马恩.制动气室有效承压面积的探讨[J].机械设计与制造,2011,12(12):209-211.
    [48]叶挺.汽车弹簧制动室漏气问题探析[J].装备制造技术,2011,(7):164-165.
    [49]刘江峰,许沧粟.基于USB接口技术的制动气室自动试验台设计[J].机电工程,2006,23(7):21-23.
    [50]毛春静,关永,李锐.基于经验公式的制动气室动态特性分析[J].机床与液压,2009,37(6):77-79.
    [51]Chunjing Mao, Yong Guan, Rui Li. Analyzing the P-t Dynamic Characterizations of Air Brake Chamber Based on Empirical Formula. Second International Symposium on Intelligent Information Technology Application,2008,45:499-503.
    [52]S. P. Jung, K. J. Jun, T. W. Park, J. H. Yoon. Development of the Brake System Design Program for a Vehicle[J]. International Journal of Automotive Technology, 2008,9(1):45-51.
    [53]P. Karthikeyan, D. B. Sonawane, S. C. Subramanian. Model-based Control of an Electropneumatic Brake System for Commercial Vehicles [J]. International Journal of Automotive Technology,2010,(4):507-515.
    [54]问司,汪娇娇,巫辉燕,等.铁道车辆减振器调压阀三维流场仿真[J].机床与液压,2010,38(13):134-136.
    [55]金毅,项昌乐,马越.液力变矩减速装置进口调压阀动态性能优化[J].农业机械学报,2010,41(5):12-16.
    [56]武文佳,刘平方,武占新.解析后双桥驱动柴油车中后桥制动继动阀[J].汽车运用,2005,(11):46-48.
    [57]李哲,魏志军,张平.调压阀内流场数值模拟及动态特性分析[J].北京理工大学学报,2007,27(5):390-394.
    [58]彭光正,张宏立,高爽,范伟.基于一次填充法的调压阀流量特性测量[J].机械工程学报,2007,43(9):57-60.
    [59]蔡健敏,顾寄南,王庭义.停易制动系统及其双级气控继动阀的开发与应用[J].液压与气动,2004,(6):47-50.
    [60]魏福尊,宋修旭,邹伯宏.新型紧急继动阀在半挂车上的应用[J].专用汽车,2008,(6):60-61.
    [61]梁海生.载货汽车中后桥继动阀排气故障分析及排除[J].重型汽车,2011,(1):45-47.
    [62]马恩,李素敏.膜片弹要式气制动阎静特性的研究[J].机械设计与制造,2005,(2):72-74.
    [63]陈勇.汽车制动阀静特性自动测试[D].重庆:重庆大学,2006.
    [64]陈勇,王世耕,陈国聪,等.新型汽车制动阀静特性自动测试系统[J].重庆大学学报,2006,29,(1):19-21.
    [65]吕江红.串列式双腔制动阀的动态特性仿真研究[J].大众科技,2006,(7),47-48.
    [66]林慕义,李春超.工程车辆全液压动力制动阀的动态特性试验[J].试验研究,2005,(8):12-14.
    [67]马恩.活塞弹簧式气制动阀动特性的研究[J].农机化研究,2011,(5):218-221.
    [68]Duan Zhengyong, Peng Yong, Wu Heng. Optimization and Control Researches into the Cooling System of Pneumatic Disc Brake.ICAIC,2011(225):644-652.
    [69]张京明,王宣锋,梁迎春等.鼓式制动器促进变形特性的实验研究[J].中国机械工程,2007,18(13):1633-1637.
    [70]李福庆,刘昭度,李志远,等.被动风冷式鼓式制动器制动特性的台架试验研究[J].汽车技术,2008,(6):42-44.
    [71]Sun Li, Liu Yong-chen. The Disc Brake Design and Performance Analysis. IEEE, 2011,846-849.
    [72]Jun HOU, Xuexun GUO. Suppression of Brake Squeal Noise Applying Viscoelastic Damping Insulator. IEEE,2009,167-171.
    [73]周明刚.鼓式制动器低频振动理论与特性研究[D].武汉:华中科技大学,2006.
    [74]周明刚,黄其柏,王勇.鼓式制动器制动低频振动特性的有限元分析[J].中国机械工程,2008,]9(4):396-401.
    [75]张立军,缪唯佳,余卓平.汽车盘式制动器摩擦-振动耦合特性试验研究[J].摩擦学学报,2008,28(5):480-484.
    [76]王荣红,马存责.盘式制动器振动特性的试验研究[J].煤矿机械,2011,32(11):84-86.
    [77]罗天洪,张会莉,罗文军,等.基于ADAMS的楔式制动器摩擦特性研究[J].重庆交通大学学报,2011,30(3):461-464.
    [78]刘筠,王剑华.加速度变化率对汽车制动器磨损特性的影响[J].长安大学学报,2007,27(6):95-98.
    [79]华小洋,连晋毅,文豪.块式制动器摩擦磨损特性的实验研究[J].起重运输机械,2006(2):55-56.
    [80]Zhaojun Yang, Changliang Liu, Jixin Wang and Xun Yang. (2010). Dynamic analysis of disc brake and impact law of related parameters on braking torque. IEEE,1478-1483.
    [81]周磊.连续下坡路段汽车行驶特性与制动器制动性能研究[D].长安:长安大学,2007.
    [82]郭洪强.盘式制动器振动特性的仿真分析[D].青岛:青岛理工大学,2007.
    [83]马存责,高玉芬,李豹.盘式制动器制动盘模态特性的试验研究[J].煤矿机械,2011,32(10):66-67.
    [84]李勇,崔友,陆永平.一种高速电磁制动器制动过程的动态特性分析[J].电工技术学报,2007,22(8):131-135.
    [85]任学平,宋小龙.制动器动态特性的仿真研究[J].噪声与振动控制,2009,29(3):31-34.
    [86]刘永超,刘道勇.双模片弹簧制动气室有限元分析[c].第二届中国CAE工程分析技术年会论文集.2006:368-373.
    [87]张威,张景海,隗海林,等.汽车动力学仿真模型的发展[J].汽车技术,2003(2):1-4.
    [88]屈求真.轿车车身结构的有限元分析与评价[J].汽车工程,1996(3).
    [89]Lee N K. Design of Engine Mount Using Finite Element Method and Optimization Technique[J]. SAE paper 980379.
    [90]高云凯.汽车动力总成玩去振动固有特性的有限元计算及结构修改灵敏度分析[J].汽车工程.1995(6).
    [91]王和毅,谷止气.汽车轮胎模型研究现状及其发展分析[J].橡胶工业,2005(52):58-63.
    [92]吴晓东,李冰,赵学增.差动制动对汽车制动稳定性的影响[J].交通运输工程学报,2008,1(8):23-26.
    [93]金智林,翁建生,胡海岩.基于模糊差动制动的运动型多功能汽车防侧翻控制[J].设计·计算·研究·,2008,1:13-17.
    [94]Da Wei Pi, Nan Chen, Bing Jun Zhang and Guo Hua Zhong. Enhancements in Vehicle Stability with Yaw Moment Control via Differential Braking [C]. ICVES,2009:136-140.
    [95]Jin-Oh Habn, Seung-Han You, Young-Man Cho, Soojoon Kang, Kyo Ⅱ Lee. Fault Diagnostics in the Differential Brake Control System Using the Analytical Redundancy Technique [C]. Conference on Decision and Control,2009:2276-2281.
    [96]Siqi Zhang, Tianxia Zhang, Shuwen Zhou. Vehicle Stability Control Strategy Based on Active Torque Distribution and Differential Braking [C]. International Conference on Measuring Technology and Mechatronics Automation,2009:922-925.
    [97]毛艳娥,井元伟,张嗣瀛,等.汽车ABS滑模变结构控制方法的研究[J].系统仿真学报,2008,5(20):1243-2345,1288.
    [98]SAE J1939 Standards Collection, Recommended Practice for a Serial Control and Communication Vehicle Network[S]. Society of Automotive Engineers.2003:32-67.
    [99]LIN Specification Package, Revision2.0. [EB/OL]. http://www.lin-subbus.org.
    [100]Robert Bosch GmbH. CAN Specification Version 2.0.1991.
    [101]MOST Specification Revision 2.4[EB/OL]. http://www.mostnet.de/index.php.
    [102]Time-Triggered Protocol TTP/C, High-Level Specification Document, Protocol Version 1.1 [EB/OL]. http://www.tttech.com.
    [103]B. Muller, T. Fuhrer, F. Hartwich, R. Hugel, and H. Weiler, Fault tolerant TTCAN networks [EB/OL]. http://www.can-cia.org.
    [104]Road Vehicles-Controller Area Network (CAN)-Part 4:Time-Triggered Communication, ISO 11898-4,2000.
    [105]Byte flight Protocol [EB/OL]. http://www.byteflight.com/homepage.htm.
    [106]Thomas Fuhrer, Bernd Muller, Werner Dieterle, Florian Hartwich, Robert Hugel and Michael Walther. Time Triggered Communication on CAN (Time Triggered CAN-TTCAN) [EB/OL]. http://www.can.bosch.com.
    [107]FlexRay Consortium. FlexRay Communication System, Protocol Specification, Version 2.1 [EB/OL]. http://www.flexray.com/index.php.
    [108]Florian Hartwich, Bernd Muller, Thomas Fuhrer and Robert Hugel. CAN Network with Time Triggered Communication. [EB/OL]. http://www.can.bosch.com.
    [109]Michiel van Osch and Scott A. Smolka. Finite-State Analysis of the CAN Bus Protocol[C]. Proceedings of the 6th IEEE International Symposium on High Assurance Systems Engineering (HASE'01).2001:42-52.
    [110]Gianluca Cena, Adriano Valenzano. Performance Analysis of Byte flight Networks[C].2004 IEEE International Workshop on Factory Communication Systems. 2004:157-166.
    [111]王凌,杨新照,张凤登.CAN协议状态分析[J].仪器仪表学报.2004.(4):464-466.
    [112]H. Kopetz and Gunter Grunsteidl. TTP-A Protocol for Fault-Tolerant Real-Time Systems[J]. COMPUTER,1994,(1)14-23.
    [113]MOST Specification Revision 2.4[EB/OL]. http://www.mostnet.de/index.php.
    [114]Bruno Gaujal, Nicolas Navet. Fault Confinement Mechanisms on CAN:Analysis and Improvements [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2005,54(3):1103-1113.
    [115]FlexRay Consortium. FlexRay Communication System, Protocol Specification, Version 2.1 [EB/OL]. http://www.flexray.com/index.php.
    [116]Manuele Bertoluzzo, Giuseppe Buja and Alberto Zuccollo. Development and Testing of a Communication Network for a Drive-by-Wire Industrial Vehicle[C].2005 3rd IEEE International Conference on Industrial Informatics (INDIN).2005:529-534.
    [117]Time-Triggered Protocol TTP/C, High-Level Specification Document, Protocol Version 1.1 [EB/OL]. http://www.tttech.com.
    [118]Susan R.Dickey, Xiao-Yun Lu. Control Actuation of Fully Automated Heavy-Duty Vehicles using SAE J1939. PATH. UC Berkeley,2003.
    [119]Chen-Chou Hsieh, Pau-Lo Hsu. The Event-Time Triggered Network Control Structure for CAN-Based Motion Systems[C]. Proceedings of the 2005 IEEE Conference on Control Applications, August 28-31,2005, Toronto, Canada.2005:722-726.
    [120]刘翔宇.基于直接横摆力矩控制的车辆稳定性研究[D].合肥:合肥工业大学,2010.
    [121]ISO 6358-2, Pneumatic fluid power-Determination of flow-rate characteristics using compressible fluid [S]. The International Organization for Standardization,2007.
    [122]张兆顺,崔桂香.流体力学[M].北京:清华大学出版社,2006.
    [123]何立明,赵罡,程邦勤.气体动力学[M].北京:国防工业出版社,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700