客车气压制动系统时延分析及其控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
客车气压制动系统在工作过程中,因为驾驶员反应、力与信号传递和执行机构动作等,致使车辆最终制动结果比期望的时间滞后,此即制动系统的时延;显然,这会影响客车的制动性能和制动过程中的行驶状态,并可能会因制动不良而导致交通事故。目前,在客车气压制动系统及其控制的研究中,没有充分考虑时延特性,多是依据经验或实验数据将系统时延设定为一个冗值,缺乏系统地理论分析。
     随着车辆安全性能要求的不断提高,客车主动安全控制的研究与应用得到了不断发展;气压制动系统作为其中的重要组成部分,其时延及其主动控制问题也日益突出。客车电子和网络控制技术的飞速发展与应用为制动系统时延的实时动态控制提供了实施的基础;同时,也对时延及其控制的理论研究提出了新的要求,因为“精确的控制需要精确的理论模型”。本文针对客车气压制动系统的时延问题,采用理论研究、试验和仿真相结合的方法,系统深入地研究制动系统中气动回路压力响应、执行机构动作和控制网络信号传输等时延的理论特性,以及时延的控制策略与方法,旨在主动实时有效地控制客车气压制动系统的时延,减小对制动性能的影响,改善客车制动过程中的行驶状态。论文的主要研究工作如下:
     (1)在介绍客车气压制动系统的结构及其工作过程的基础上,分析客车制动过程的时间特性,提出客车气压制动系统时延的组成;推导客车气压制动系统时延所引起的纵向制动距离偏差和横向漂移量的计算公式,从而分析客车气压制动系统时延对客车制动性能的影响。
     (2)采用理论分析与试验相结合的方法,研究客车气压制动系统气动回路制动控制阀的时延特性;建立客车气压制动系统制动回路压力响应时延的数学模型;通过仿真与试验,分析客车气压制动系统气动回路的压力响应时延特性;采用PWM控制方式,对客车气压制动系统气动回路压力响应时延的控制进行试验研究,论证其可控性,提出控制方法。
     (3)采用等效原理,将客车气压制动系统执行机构各构件产生的累积动作延迟问题等效为制动块与制动盘之间的距离变化问题,建立执行机构的动力学方程,推导接触力的计算公式,提出执行机构动作时延的计算方法,并通过仿真与试验予以验证。
     (4)依据组态模式,构建客车气压制动控制网络系统,分析其信号传输时延的组成;根据CAN协议的通信规范,提出控制网络系统信号传输时延的计算方法;建立客车气压制动系统控制网络试验系统,进行信号传输的时延试验,进一步分析控制网络系统信号传输的时延特性。
     (5)为了实施客车气压制动系统时延控制,建立客车气压制动过程的动力学模型,用于描述客车在制动过程中的行驶状况,并验证模型的正确性和有效性。以此为基础,针对客车气压制动系统的时延,提出客车气压制动系统时延控制的策略和方法。
     论文的工作结果是客车气压制动系统的设计与开发,以及实现实时动态精确控制的理论基础和应用技术,将有利于增强客车气压制动系统及其控制的性能,提高客车气压制动的安全性、稳定性和精确性,保证客车在制动过程中的正确行驶状态,从而提升客车的主动安全性能。
Because of the driver reaction, force and signal transmission, actuator movement in the working process of bus pneumatic braking system, the braking time longer than the expectation, this is the delay time of braking system. Obviously, the delay time will affect bus braking performance, and may cause traffic accident due to undesired braking. At present, in the research fields of bus pneumatic braking system and its control, the designer do not consider the time delay characteristics sufficiently, and usually set the delay time for a redundancy value according to experience or experimental data, and that lack of systematic theoretical analysis.
     Along with the continuously improvement of the requirement of vehicle safety performance, the research and application of bus active safty control problem have been rapidly developing. Pneumatic braking system is an important part of the bus, its time delay and active control problem become prominent. The rapidly development and application of bus electronic and network control technology provide an implementation basis for braking system delay time real-time dynamic control, and propose a new demand for the theory research of delay time and its control, because 'accurate control need accurate theory model'. The paper focuses on the delay time problem of bus pneumatic braking system, adopt the method that combines theoretical research, experiment and simulation, systematically study the theory characteristic of pneumatic circuit pressure response delay, actuator action delay and control network signal transmission delay, and delay time control strategy and method, in order to effectively active control bus pneumatic braking system's delay time, reduce its influence on braking performance, improve bus braking state. The main researches of this paper as follows:
     (1) Based on the presentation of bus pneumatic brake system's structure and its working process, analyse the time characteristic of bus braking process, propose the delay time composition of bus pneumatic braking system, deduce the calculation formula of longitudinal braking distance deviation and lateral displacement which is caused by the delay time of bus pneumatic braking system, thus analyse delay time influence on bus braking performace.
     (2) By means of the method that combines theoretical analysis and experiment, study the time delay characteristic of bus pneumatic braking system air circuit braking control valve. Establish pneumatic braking system braking circuit pressure response delay time mathematical model, analyse bus pneumatic braking air circuit pressure response delay characteristics by simulation and experiment. Use PWM control mode to carry out bus pneumatic braking system air circuit pressure response time delay control test, prove its controllability, and propose control method.
     (3) Using equivalent principle, the cumulative action delay problem which is caused by bus pneumatic braking system actuator components is equivalent to the distance change between brake block and disc, establish actuator's dynamic equation, deduce contact force calculation formula, present actuator action delay time's calculation method, and verify it by simulation and experiment.
     (4) Based on the configuration mode, construct the bus pneumatic braking control network system, analyse signal transmission delay time's composition. According to the communication specification of CAN, propose calculate method of control network's signal transmission delay time. Build bus pneumatic braking system control network test system, and carry on signal transmission delay test, further analyse its characteristics.
     (5) In order to carry out bus pneumatic braking time delay control, establish bus pneumatic braking process dynamic model, which is used to describe bus running state in braking process, verify its validity and effectiveness. Based on this, aimed at bus pneumatic braking system time delay, present bus pneumatic braking system delay time control strategy and method.
     Achievements of this paper are the theoretical basis and application technology of bus pneumatic braking system's design and development and realize dynamic accuracy control, this will be beneficial to enhance the performance of bus pneumatic braking system and its control, improve bus pneumatic braking safety, stability and accuracy, ensure bus have correct running state in braking, so as to enhance the bus active safety performance.
引文
[1]陈家瑞.汽车构造上册(第3版)[M].吉林:机械工业出版社,2011
    [2]陈家瑞.汽车构造下册(第3版)[M].吉林:机械工业出版社,2011
    [3]尹延.气压制动系统在轻型载货车上的应用研究[D].天津:天津大学,2006.
    [4]董井泉.气压制动系统中制动拖印一致前轮仍然跑偏故障的分析与排除[J].汽车运用,2011(3).
    [5]刘东.基于稳定性控制的车辆主动避撞初期研究与仿真[D].湖南:湖南大学,2010.
    [6]喻凡,李道飞.车辆动力学集成控制综述[J].农业机械学报,2008(6).
    [7]张文春.汽车理论[M].北京:机械工业出版社,2005.
    [8]余志生.汽车理论[M].北京:机械工业出版社,2005.
    [9]公安部交通管理局.中华人民共和国道路交通事故统计年报(2003年度).[R],2004.
    [10]National Center for Statistics and Analysis of the National Traffic Highway Safety Administration. Traffic Safety Facts 2005-A Compilation of Motor Vehicle Crash Data from the Fatality Analysis Reporting System and the General Estimates System [R], Report No. DOT HS 810631; Washington, DC,2006.
    [11]Federal Motor Carrier Safety Administration. Traffic Safety Facts & Reserrch-The Large Truck Crash Causation Study [R], Publication No. FMCSA - RRA - 07 - 017; Washington, DC,2007.
    [12]胡剑.客车信息集成控制系统基础技术的研究与实践[D].武汉:武汉理工大学,2008.
    [13]王伟玮,宋健,李亮,李红志.高速开关阀在高频PWM控制下的比例功能[J].清华大学学报(自然科学版).2011(5).
    [14]孙佳.开关阀控气缸模型及PWM控制系统的研究[D].哈尔滨工业大学,2008.
    [15]许有熊,李小宁.新型压电式气动PWM数字比例阀建模及仿真研究[J].系统仿真学报.2010,22(10)
    [16]SMC(中国)有限公司.现代实用气动技术[M].北京:机械工业出版社,2003.
    [17]问司,汪娇娇,巫辉燕,等.铁道车辆减振器调压阀三维流场仿真[J].机床与液压,2010,38(13):134-136.
    [18]金毅,项吕乐,马越.液力变矩减速装置进口调压阀动态性能优化[J].农业机械学报,2010,41(5):12-16.
    [19]彭光正,张宏立,高爽,范伟.基于一次填充法的调压阀流量特性测量[J].机械工程学报,2007,43(9):57-60.
    [20]李哲,魏志军,张平.调压阀内流场数值模拟及动态特性分析[J].北京理工大学学报,2007,27(5):390-394.
    [21]魏福尊,宋修旭,邹伯宏.新型紧急继动阀在半挂车上的应用[J].专用汽车,2008,(6):60-61.
    [22]梁海生.载货汽车中后桥继动阀排气故障分析及排除[J].重型汽车,2011,(1):45-47.
    [23]陈勇.汽车制动阀静特性自动测试[D].重庆:重庆大学,2006.
    [24]陈勇,王世耕,陈国聪,等.新型汽车制动阀静特性自动测试系统[J].重庆大学学报,2006,29,(1):19-21.
    [25]郑智忠,王会义,祁雪乐,王斌.气压ABS压力调节单元的建模与分析[J].机床与液压,2005,(8).
    [26]Chu Liang, Hou,Yanli,Liu Minghui, Li Jun,Gao Yimin,Ehsani Mehrdad. Study on the dynamic characteristics of pneumatic ABS solenoid valve for commercial vehicle[C]. VPPC 2007-Proceedings of the 2007 IEEE Vehicle Power and Propulsion Conference,2007.
    [27]罗文发.气压防抱死制动系统电磁阀的性能评价方法[J].汽车电器,2008(6)
    [28]梅宗信,李开国,马国华,陈小磊.汽车防抱制动系统气压电磁调节器台架试验方法的探讨[J].汽车工程,2010(9).
    [29]Yulia Dukhovnaya, Michael A.Adewumi. Simulation of non-isothermal transients in gas/condensate pipelines using TVD scheme [J]. Power Technology,2000(112):163-171.
    [30]Mohammad Abbaspour, Kirby S. Chapman, Larry A. Glasgow. Transient modeling of non-isothermal, dispersed two-phase flow in natural gas pipelines [J]. Applied Mathematical Modelling 2010(34):495-507.
    [31]李志辉,毕林,唐志共.基于气体运动论的差分算法对管道流动数值研究[J].应用数学与力学,2009,7(30):833-846.
    [32]Xu K, Li Z H. Microchannel flow in the slip regime:gas-kinetic BGK-Burnett solutions [J]. Journal of Fluid Mechanics,2004,513:87-110.
    [33]Li Z H, Zhang H X. Numerical investigation from rarefied flow to continuum by solving the Boltzmann model equation[J]. International Journal of Numerical Methods in Fluids, 2003,42(4):361-382.
    [34]Li Z H, Zhang H X. Study on gas kinetic unified algorithm for flows from rarefied transition to continuum[J]. Journal of Computational Physics,2004,193(2):708-738.
    [35]杨慧钢.制动管路对整车制动系统的影响[J].汽车科技,2009,6:68-71.
    [36]王仁亮,黄虎,刘新田等.大客车制动管路布置与制动性能分析[J].上海工程技术大学学报,2008,4(22):347-350.
    [37]邓红星.基于AMESim的汽车制动管路波动效应仿真[J].东北林业大学学报,2009,10(37):105-107.
    [38]邓红星.汽车ABS制动管路压力波动特性试验[J].东北林业大学学报,2009,12(37):122-123.
    [39]邓红星,王宪彬.汽车制动管路压力波动响应特性仿真[J].武汉理工大学学报-信息与管理工程版,2010,4(32):573-575.
    [40]邓红星,关强.汽车防抱制动管路波动效应负载发生装置结构设计[J].汽车与船舶,2009,4:159-163.
    [41]马恩.制动气室有效承压面积的探讨[J].机械设计与制造,2011,12(12):209-211.
    [42]毛春静,关永,李锐.基于经验公式的制动气室动态特性分析[J].机床与液压,2009,37(6):77-79.
    [43]Chunjing Mao, Yong Guan, Rui Li. Analyzing the P-t Dynamic Characterizations of Air Brake Chamber Based on Empirical Formula. Second International Symposium on Intelligent Information Technology Application,2008,45:499-503.
    [44]S. P. Jung, K. J. Jun, T. W. Park, J. H. Yoon. Development of the Brake System Design Program for a Vehicle[J]. International Journal of Automotive Technology, 2008,9(1):45-51.
    [45]叶挺.汽车弹簧制动室漏气问题探析[J].装备制造技术,2011(7):164-165.
    [46]王智深,李刚炎.装有ABS的汽车气压制动系统的建模与研究[J].机床与液压,2009(10).
    [47]Mahanty Subhajit, Subramanian Shankar C. Model based analysis of a heavy commercial vehicle with an electropneumatic brake towards antilock braking systems[C]. IEEE International Conference on Vehicular Electronics and Safety,2009.
    [48]Subramanian Shankar C, Darbha Swaroop, Rajagopal K.R. Modeling the Pneumatic Subsystem of a S-cam Air Brake System[J]. Proceedings of the American Control Conference,2003(2):1416-1421.
    [49]Karthikeyan P,Siva Chaitanya Ch,Jagga Raju N,Subramanian S.C. Modelling an electropneumatic brake system for commercial vehicles[J]. IET Electrical Systems in Transportation,2011(1):41-48.
    [50]何玮,刘昭度,齐志权,王斌.气压ABS系统制动压力动态特性分析[J].液压气动与密封,2006(6).
    [51]Ramarathnam Srivatsan, Dhar SandeepDarbha, SwaroopRajagopal K.R. Development of a model for an air brake system with leaks[C]. Proceedings of the American Control Conference,2009.
    [52]Subramanian, Shankar C, Darbha, Swaroop, Rajagopal. K.R. A diagnostic system for air brakes in commercial vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2006(9):360-375.
    [53]张成才,詹涛.汽车气压制动系反应时间测量系统的实现[J].北京汽车,2009(6).
    [54]罗鹏WABCO气压盘式制动器[M].青岛:威伯科汽车控制系统(中国)有限公司,2009.
    [55]覃健.气压盘式制动器常见故障及其解决方法[J]Equipment Manufactring Technology,2012(4):132-133.
    [56]宁国宝,张立军,尹东晓,余卓平.制动盘端面跳动引起制动力矩波动的建模分析[J].同济大学学报(自然科学版),2006(8).
    [57]Kiyotaka Obunai, Kazuya Okubo and Toru Fujii, Tsuyoshi Nakatsuji. Characterization of Brake Torque Variation of Wave Type Brake Disc for Motorcycles. SAE Paper2009013023.
    [58]Alan Backstrom,. An Experimental Investigation of Brake Rotor DTV under Laboratory Conditions - Part 1. SAE Paper2008012543.
    [59]Alan Backstrom., An Experimental Investigation of Brake Rotor DTV under Laboratory Conditions - Part 2. SAE Paper2009013044.
    [60]Alan Backstrom., An Experimental Investigation of Brake Rotor DTV under Laboratory Conditions - Part 3. SAE Paper2010011690.
    [61]Lijun Zhang and Dejian Meng, Zhuoping Yu. Theoretical Modeling and FEM Analysis of the Thermo-mechanical Dynamics of Ventilated Disc Brakes. SAE Paper2010010075.
    [62]Y.-G.JOE,B.-G.CHA,H.J.SIM,H.-J.LEE and J.-E.OH. ANALYSIS OF DISC BRAKE INSTABILITY DUE TO FRICTION-INDUCED VIBRATION USING A DISTRIBUTED PARAMETER MODEL[J]. International Journal of Automotive Technology, 2008:161-171.
    [63]陶顺兴.基于厚薄差的盘式制动器制动抖动研究和热-结构耦合分析[D].浙江大学,2010.
    [64]黄健萌,高诚辉,唐旭晟,林谢昭.盘式制动器热—结构耦合的数值建模与分析[J].机械工程学报,2008(2):145-151.
    [65]张立军,缪唯佳,余卓平.汽车盘式制动器摩擦-振动耦合特性试验研究[J].摩擦学学报,2008(5):480-485.
    [66]余为高.通风盘式制动器热一机耦合仿真分析及寿命预测[D].华南理工大学,2010.
    [67]孟德建,张立军,余卓平.通风盘式制动器热机耦合理论建模与分析[J].同济大学学报(自然科学版),2010(6):890-897.
    [68]黄新建.盘式制动器制动尖叫影响因素分析[D].吉林大学,2008.
    [69]李锦,罗方,徐兆坤.气压盘式制动器制动噪声产生的原因及改进[J].知识与研究,2009(30):72-73.
    [70]韩建荣.汽车制动抖动分析的研究[D].南京航空航天大学,2008.
    [71]张立军,宁国宝,尹东晓,余卓平.制动力矩波动引起方向盘抖动的传递途径试验研究[J].振动与冲击,2006(2).
    [72]李运超,吴光强,盛云.盘式制动器制动抖动研究综述[J].噪声与振动控制,2008(5):6-9.
    [73]王强,齐钢,崔海峰.盘式制动器制动抖动机理和控制研究[J].机械设计与制造,2010(5):178-179.
    [74]李莉,尹东晓,张立军.盘式制动器制动抖动现象机理研究[J].汽车工程,2006(4):361-365.
    [75]张坤.基于ADAMS的盘式制动器多柔体仿真分析[D].武汉理工大学,2010.
    [76]向上升.气压盘式制动器物理建模与仿真分析[D].武汉理工大学,2007.
    [77]游登科.制动器特性建模及参数测试方法研究[D].吉林大学,2008.
    [78]Y.-G. KIM, S.-W. KIM, C.-K. PARK, T.-W. PARK and Y.-M. KIM. MEASUREMENT OF THE DISC-PAD FRICTION COEFFICIENT FOR MECHANICAL BRAKES USING DIRECT AND INDIRECT METHODS[J]. International Journal of Automotive Technology,2011:51-58.
    [79]阮广东.汽车浮钳盘式制动器关键技术研究[D].华中科技大学,2011.
    [80]关鹏.面向制动系匹配设计的整车简化模型的建立[D].吉林大学,2011.
    [81]董鹏.盘式制动器及其与整车匹配的研究[D].武汉理工大学,2007.
    [82]赵波,范平清.盘式制动器的制动效能和接触应力分析[J].机械设计与制造,2011(9):134-136.
    [83]罗方,徐达,王明道,童幸源.气压盘式制动器制动力矩的改进设计[J].技术与研究,2006(5):52-54.
    [84]勇波.气压盘式制动器制动力矩的计算[J].设计计算,2007(6):129-130.
    [85]严波.气压盘式制动器制动间隙自调机构工作原理及运动仿真[D].武汉理工大学,2006.
    [86]谢峰,纪王芳,林巨广.单端惯性式制动器性能试验台架的研制[J].工艺与装备,2008(11):96-98.
    [87]陈宇峰.机电混合模拟技术的制动器惯性试验台研究与设计[D].吉林大学,2011.
    [88]曾钰琳.基于交流传动的汽车惯性式制动器试验台控制策略研究[D].重庆大学,2010.
    [89]张元涛.基于快速气动伺服的汽车惯性式制动器试验系统应用研究[D].重庆大学,2007.
    [90]赵婷.基于直流传动的汽车惯性式制动器试验台控制策略研究[D].重庆大学,2010.
    [91]Bosch, CAN Specification, Ver.2.0, Robert Bosch GmbH,1991.
    [92]饶运涛,邹继军,郑勇芸.现场总线CAN原理与应用技术[M].北京:北京航空航天大学出版社,2003.
    [93]邬宽明.CAN总线原理和应用系统设计[M].北京:北京航空航天大学出版社,1996.
    [94]Robert Bosch GmbH. CAN Specification Version 2.0.1991.
    [95]Road Vehicles-Controller Area Network (CAN)-Part 4:Time-Triggered Communication, ISO 11898-4,2000.
    [96]LIN consortium, Local Interconnect Network bus, Protocol Specification, Version 2.1 [EB/OL], http://www.lin-subbus.org/,2006.
    [97]FlexRay Consortium. FlexRay Communication System, Protocol Specification, Version 2.1 [EB/OL]. http://www.flexray.com/index.php.
    [98]T Fuhrer, et al., Time triggered communication on CAN (Time Triggered CAN-TTCAN) [C]. Proceedings 7th International CAN Conference; 2000.
    [99]Time-Triggered Protocol TTP/C, High-Level Specification Document, Protocol Version 1.1 [EB/OL]. http://www.tttech.com.
    [100]TTTech Computertechnik GmbH. Time-Triggered Protocol TTP/C, High-Level Specification Document, Protocol Version 1.1. http://www.tttech.com/,2007.
    [101]刘胜,李刚炎,胡剑.SAE J1939协议在客车车灯控制系统中的应研究[J].微计算机信息,2007(019):26-28.
    [102]孟晓楠.SAE J1939协议分析和SmartJ1939系统设计实现[D].浙江大学,2006.
    [103]锡隽.汽车电控系统J1939协议和诊断通信模块的开发[D].浙江大学,2006.
    [104]曹万科.CAN.协议车载网络若干关键理论研究[D].东北大学,2007.
    [105]陈曦.CAN总线实时性和可靠性若干问题的研究[D].天津大学,2010.
    [106]关学峰.CAN总线网络的实时性能分析、改进和测试[D].西安大学,2008.
    [107]周慧OPNET网络仿真及其应用研究[D].武汉理工大学,2009.
    [108]李晓汀,丁凡,熊华钢.基于OPNET的CAN网络建模与仿真[J].北京航空航天大学学 报,2009(3):284-287.
    [109]刘建刚.网络控制系统的时延问题研究[D].中南大学,2008.
    [110]张华.网络控制系统中的时延研究[D].吉林大学,2009.
    [111]丰敏.网络控制系统时延问题及其仿真研究[D].河北工业大学,2011.
    [112]鄂大志.网络控制系统的时延分析、建模与控制[D].东北大学,2009.
    [113]郭晓倩.网络控制系统的时延分析及HD控制器的设计[D].北京交通大学,2010.
    [114]李冰.网络控制系统的时延分析与控制[D].山东科技大学,2011.
    [115]温阳东,李或.网络控制系统的时延估算及补偿[J].技术与方法,2011(13):75-79.
    [116]刘雍.网络控制系统时延补偿及调度算法研究[D].东北大学,2009.
    [117]赵莹莹.基于串联排队网理论的通信网络建模与性能分析[D].吉林大学,2011.
    [118]陈曦,刘鲁源,吕伟杰,李芳.基于排队论的CAN总线消息响应时间建模与分析[J].天津大学学报,2012(3):228-235.
    [119]李雯,戴金海.基于CAN的网络控制系统消息等待时间研究[J].计算机仿真,2008(1):173-175.
    [120]孙宁,张丙军,钟国华,宋彪,皮大伟.CAN通信延迟对ABS控制性能影响的仿真分析[J].轻型汽车技术,2009(9):12-15.
    [121]肖献强,王其东,.基于驾驶行为的汽车主动安全技术研究[J].中国机械工程,2010(19).
    [122]柴卫红.汽车底盘主动安全集成控制技术研究[D].长春:长春工业大学,2010.
    [123]储颖.面向汽车主动安全的驾驶行为识别关键技术研究[D].合肥:合肥工业大学,2010.
    [124]唐德修.现代汽车机械基础[M].西安:西安交大出版社,2006.
    [125]刘维信.汽车设计[M].北京:清华大学出版社,2001
    [126]Tomas D. Gillespie车辆动力学基础[M].北京:清华大学出版社,2006.
    [127]H-P威鲁麦特.车辆动力学:模拟及其方法[M].北京:北京理工大学出版社,1998.
    [128]喻凡,林逸.汽车系统动力学[M].北京:机械工业出版社,2005
    [129]郭孔辉.汽车操纵动力学[M].长春:吉林科学技术出版社,1991
    [130]Hsueh-Yuan Lu. Dynamic Model and Control of Vehicles[D]. Lakehead University, Canada. 2006.
    [131]Setiawan, J.D.,Safarudin, M.,Singh, A. Modeling, simulation and validation of 14 DOF full vehicle model Instrumentation, Communications, Information Technology, and Biomedical Engineering (ICICI-BME),2009 International Conference on.2009:1-6.
    [132]Saglam, F,Unlusoy Y.S. Identification of low order vehicle handling models from multibody vehicle dynamics models. Mechatronics (ICM),2011 IEEE International Conference on.2011:96-101
    [133]Yunfeng Ai, Qunzhi Zhou,Haitao Zhang. A New Simulation Model for 4WS Vehicles based on Dynamic Tire Friction Model. Mechatronic and Embedded Systems and Applications, Proceedings of the 2nd IEEE/ASME International Conference on.2006:1-6
    [134]郭孔辉,金凌鸽,卢荡.统一轮胎模型在车辆动力学仿真中的应用[J].吉林大学学报(工学版),2009(S2).
    [135]袁忠诚,卢荡,郭孔辉UniTire与Magic Formula稳态模型的对比研究[J].汽车技术,2006(2).
    [136]Hou Yu-huai, Song Fang-zhen,Ma Ru-jian. Dynamic Simulation of Vehicle Floating Bridge System Based on ADAMS. Measuring Technology and Mechatronics Automation,2009. ICMTMA'09. International Conference on.2009:212-216.
    [137]Jiantao Deng, Ashley L. Dunn,Dennis A,Guenther and Gary J. Heydinger. Adaptation of TruckSim Models to Simulate Experimental Heavy Truck Hard Braking Test Data Under Various Levels of Brake Disablement. SAE Paper2010011920.
    [138]Siddharth D'Silva, Padma Sundaram and Joseph G. D'Ambrosio. Co-Simulation Platform for Diagnostic Development of a Controlled Chassis System. SAE Paper2006011058.
    [139]Tejas Shrikant Kinjawadekar. Model-based Design of Electronic Stability Control System for Passenger Cars Using CarSim and Matlab-Simulink[D]. Ohio State University. U.S.2009.
    [140]Hongchang Zhang, Jinglai Wu, Wei Chen, Yunqing Zhang, Liping Chen. Object oriented modeling and simulation of a pneumatic brake system with ABS[C]. Intelligent Vehicles Symposium,2009 IEEE.2009:780-785.
    [141]Karthikeyan P., Subramanian,S.C.. Development and modelling of an electropneumatic brake system. Intelligent Vehicles Symposium,2009 IEEE.2009:858-863.
    [142]Habibi, M.; Yazdizadeh, A. A novel Fuzzy-Sliding Mode Controller for Antilock Braking System International Conference on Advanced Computer Control (ICACC),20102nd 2010: 110-114.
    [143]Lee Ki-Chang, Jeon Jeong-Woo,Hwang Don-Ha,Kim Yong-Joo. Performance Evaluation of Antilock Brake Controller for Pneumatic Brake System[C]. Conference Record-IAS Annual Meeting,2003(1):301-307.
    [144]Zhang Hongchang, Wu Jinglai,Chen Wei, Zhang Yunqing,Chen Liping. Object oriented modeling and simulation of a pneumatic brake system with ABS[C]. IEEE Intelligent Vehicles Symposium Proceedings,2009.
    [145]王军,郑益红,刘秋菊,熊冉.电动大客车电控气压制动系统性能仿真分析[J].系统仿真学报,2011(2).
    [146]蒋科军,刘成晔.气压制动系统ABS双模糊控制仿真分析[J].机床与液压,2011(3).
    [147]石柏军,何强.基于ADAMS与MATLAB联合仿真的ABS逻辑门限控制研究[J].中国高新技术企业,2008(23).
    [148]Tseng, H. E., Ashrafi, B., Madau, D., Brown, T. A., Recker, D. The development of vehicle stability control at Ford [J]. IEEE/ASME Transactions on Mechatronics,4(3):223-234, 1999.
    [149]E. Dincmen, T. Acarman, Active Coordination of The Individually Actuated Wheel Braking and Steering To Enhance Vehicle Lateral Stability and Handling [C]. Proceedings of the 17th World Congress The International Federation of Automatic Control Seoul, Korea, 2008.
    [150]B.A. Guvenc, L. Guvenc, S. Karaman, Robust Yaw Stability Controller Design and Hardware-in-the-Loop Testing for a Road Vehicle [J]. IEEE T. on Vehicular Technology, Vol.58, No.2,2009.
    [151]Van Zanten, A.T., Erhardt, R., Pfaff, G., VDC - The Vehicle Dynamics Control System of Bosch [J]. SAE Technical Paper No.950759,1995.
    [152]Van Zanten, A.T. Bosch ESP system:5 years of experience [J]. SAE Technical Paper No. 2000-01-1633,2000.
    [153]E. K. Liebemann, K. Meder, J. Schuh, G. Nenninger, Safety and Performance Enhancement: The Bosch Electronic Stability Control (ESP) [J]. SAE Technical Paper No.05-0471,2005.
    [154]Jianbo Lu, et al., An Enhancement to an Electronic Stability Control System to Include a Rollover Control Function [J]. SAE Technical Paper No.2007-01-0809,2007.
    [155]于良耀,宋健,李亮,王学辉.汽车动力学稳定性控制系统冬季试验[J].农业机械学报,2007(11).
    [156]李亮,宋健,祁雪乐.汽车动力学稳定性控制系统研究现状及发展趋势[J].农业机械学报,2006(2).
    [157]F. Yu, Li Jun, J. Z. Feng. Study of Vehicle Yaw Stability Control Based on Hardware-in-The-Loop Simulation [J]. SAE Paper, No 2005-01-1845,2005.
    [158]J. Li, F. Yu, J. Z. Feng and H.P. Zhao. The rapid development of vehicle electronic control system by hardware-in-the-loop simulation[J]. Proceedings of IMechE (Part D), Journal of Automotive Engineering,216(D2):95-105,2002.
    [159]王德平,郭孔辉.车辆动力学稳定性控制的控制原理与控制策略研究[J].机械工程学报,36(3):97-99,2000.
    [160]刘通.基于模糊卡尔曼滤波的车速估计方法研究及硬件实现[D].吉林:吉林大学,2011.
    [161]郭洪艳.车辆速度估计非线性观测器方法研究[D].吉林:吉林大学,2010.
    [162]余卓平,高晓杰,张立军.用于车辆稳定性控制的直接横摆力矩及车轮变滑移率控制[J].汽车工程,2006(9):844-848.
    [163]赵伟.汽车动力学稳定性横摆力矩和主动转向联合控制策略的仿真研究[D].西安:长安大学,2008.
    [164]赵治国.车辆动力学及其非线性控制理论、技术的研究[D].西安:西北工业大学,2002.
    [165]Bu Fanping, Tan Han-Shue. Pneumatic brake control for precision stopping of heavy-duty vehicles[J]. IEEE Transactions on Control Systems Technology,2007,15(1):53-64.
    [166]王建强,杨波,李升波,李克强.基于高速开关阀的气压电控辅助制动装置[J].交通运输工程学报.2011(8).61-67.
    [167]张建军,王跃飞,张本宏,张利,李县军.CAN网络周期任务与偶发任务混合调度的研究[J].汽车工程.2012(7),653-656.
    [168]尹安东,朱云骁,江吴,赵韩.CAN总线混合调度算法在HEV控制系统中的应用[J].电子测量与仪器学报.2012(1),31-36.
    [169]周时莹.CAN网络控制系统的智能调度研究[D].吉林:吉林大学,2009.
    [170]许红巧.基于CAN总线控制网络的实时调度研究[D].天津:天津理工大学,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700