脐带来源间充质干细胞对脊柱关节炎患者受累关节局部白介素-23/Th17轴的抑制作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分白介素-23/Th17轴在脊柱关节炎患者受累关节局部的异常表达
     背景及目的:白介素-23(IL-23)是IL-12细胞因子家族的一个新的成员,主要由天然免疫细胞分泌。目前有研究报道HLA-B27诱发未折叠蛋白反应,上调IL-23的表达。IL-23与IL-23R结合,促进Th17细胞的产生。IL-23/Th17轴参与多种慢性炎性疾病的发生,如银屑病、炎性肠病等。本研究通过评估IL-23/Th17轴在脊柱关节炎(SpA)患者受累关节局部的表达,验证IL-23/Th17轴在SpA中的致病作用。
     方法:(1)选取2012年9月至2013年1月中国人民解放军总医院风湿科门诊接受关节腔穿刺抽液及注射药物治疗的SpA及膝骨关节炎(OA)患者;(2)无菌条件下抽取关节液,以密度梯度离心法分离关节液单个核细胞(SFMCs);(3)利用流式分选技术分选出CD14~~+单核细胞,在LPS(100ng/ml)刺激下体外培养24h;(4)SFMCs在PHA(1μg/ml)刺激下体外培养72h;(5)细胞内染色及流式细胞仪检测CD14~~+IL-23~~+及CD3~~+CD4~~+IL-17~~+(Th17)细胞比例,采用FlowJo软件分析流式数据;(6)应用SPSS16.0软件进行统计分析。两个样本之间的比较采用Mann-Whitneyu检验或t检验;计数资料的比较采用Fisher确切概率法;相关分析采用Spearman秩相关分析法,以P<0.05为差异有统计学意义。结果:(1)共纳入22例SpA患者,男性19例,女性3例,HLA-B27阳性16例,
     阴性6例,年龄20~45(32.4±8.4)岁;病程5~96月,中位数病程27.0(6.8,60.0)月;6例OA患者,男性2例,女性4例,HLA-B27均为阴性,年龄46~67(58.3±7.9)岁;病程18~120月,中位数病程43.0(22.5,75.0)月;(2)SpA患者关节液CD14~~+IL-23~~+细胞比例为1.49%(1.18,1.87),Th17细胞比例为4.15%(3.15,5.63),均分别高于OA患者关节液中CD14~~+IL-23~~+细胞比例[0.68%(0.48,1.11)]及Th17细胞比例[1.11%
     (0.81,1.69)],两组比较差异具有统计学意义(P<0.05);(3)HLA-B27阳性SpA
     患者关节液CD14+IL-23+细胞比例为1.60%(1.24,2.11),HLA-B27阴性SpA患者关
     节液中CD14+IL-23+细胞比例为1.26%(0.88,1.59),两组比较差异无统计学意义(P>0.05);(4)SpA患者关节液CD14+IL-23+细胞比例与Th17细胞比例呈正相关关系(r=0.67,P<0.01);但二者与患者的病程、ESR、CRP、BASDAI、BASFI、BASMI及VAS均无相关性。
     结论:SpA患者关节液中表达IL-23的单核细胞及Th17细胞较OA患者明显增多,且二者之间存在正相关关系,提示IL-23/Th17轴在SpA中具有致病作用。
     第二部分脐带来源间充质干细胞对脊柱关节炎患者受累关节局部白介素-23/Th17轴的体外抑制作用
     背景及目的:间充质干细胞(MSCs)是存在于正常人体多种组织中具有多向分化潜力的非造血干细胞,同时具有强大的抗炎及免疫调节作用。近年MSCs已在多种慢性炎性及自身免疫性疾病的治疗中显示了一定的疗效及安全性。SpA是一组以天然免疫反应为驱动的慢性炎性疾病,近年研究显示IL-23/Th17轴在SpA的发病中发挥重要作用。本研究通过观察脐带来源MSCs(UCMSCs)对SpA患者受累关节局部IL-23/Th17轴的抑制作用,为UCMSCs应用于SpA的临床治疗提供理论依据。
     方法:(1)选取2012年9月至2013年1月中国人民解放军总医院风湿科门诊接受关节腔穿刺抽液及注射药物治疗的SpA患者;(2)无菌条件下抽取关节液,以密度梯度离心法分离SFMCs;(3)利用流式分选技术将SFMCs分为CD14~+单核细胞和去CD14~+-SFMCs两部分;(4)SFMCs贴壁分选出单核细胞,与UCMSCs在LPS(100ng/ml)刺激下共培养4h,利用流式分选技术分选出CD14~+单核细胞,即CD14~+单核细胞(UCMSCs预处理);(5)CD14~+单核细胞在LPS(100ng/ml)
     刺激下单独培养或与UCMSCs共培养24h,细胞内染色和流式细胞仪检测CD14~+IL-23~+细胞比例,ELISA检测细胞培养上清IL-23的浓度;(6)去CD14~+-SFMCs在PHA(1μg/ml)刺激下单独培养,或分别与CD14~+单核细胞(未处理)或CD14~+单核细胞(UCMSCs预处理)共培养72h,细胞内染色和流式细胞仪检测Th17细胞比例;(7)在CD14~+单核细胞存在或缺席下,去CD14~+-SFMCs单独培养或与UCMSCs共培养72h,细胞内染色和流式细胞仪检测Th17细胞比例;(8)应用SPSS16.0软件进行统计分析;采用Wilcoxonsignedrank检验进行两个配对样本之间的比较,采用Friedman检验进行多个相关样本比较;以P<0.05为差异有统计学意义。
     结果:(1)共纳入9例SpA患者,男性7例,女性2例,HLA-B27阳性8例,阴性1例,年龄21~44(31.1±8.3)岁;病程6~96(39.7±31.9)月;(2)SpA患者关节液CD14~+单核细胞体外培养(LPS,100ng/ml)24h,CD14~+IL-23~+细胞比例为1.55%(1.32,2.61);UCMSCs与CD14~+单核细胞直接接触共培养,CD14~+IL-23~+细胞比例下降至1.06%(0.80,1.81),两组比较差异具有统计学意义(P<0.05);CD14~+单核细胞单独培养,上清中IL-23浓度为205.6pg/ml(182.8,256.7),与UCMSCs共培养,上清中IL-23浓度为121.1pg/ml(111.1,195.0),两组比较差异具有统计学意义(P<0.01);(3)去CD14~+-SFMCs在PHA(1μg/ml)刺激下体外培养72h,Th17细胞比例为0.86%(0.22,0.94);培养体系中加入CD14~+单核细胞(未处理),Th17细胞比例升至2.71%(0.65,3.31);加入CD14~+单核细胞(UCMSCs预处理),Th17细胞比例2.26%(0.40,2.66),三组比较差异具有统计学意义(P<0.01);(4)去CD14~+-SFMCs在PHA(1μg/ml)刺激下单独培养72h,Th17细胞比例为2.71%(1.80,3.05),UCMSCs共培养使Th17细胞比例降至1.59%(1.20,2.67),两组比较差异具有统计学意义(P<0.01);CD14~+单核细胞(未处理)与去CD14~+-SFMCs混合后培养72h,Th17细胞比例为3.10%(2.81,5.49),UCMSCs共培养使Th17细胞比例降至2.20%(1.52,2.95),两组比较差异具有统计学意义(P<0.01);在CD14~+单核细胞(未处理)存在下,UCMSCs对Th17的抑制率由18.0%(11.6,32.5)升至40.3%(25.8,51.6),两组比较差异具有统计学意义(P<0.05)。
     结论:UCMSCs对SpA患者受累关节局部IL-23/Th17轴具有抑制作用,显示其对SpA患者体内天然免疫应答及获得性免疫应答反应具有平衡及协调作用,在SpA患者的临床治疗中具有一定的应用前景。
PART I Local activation of the interleukin-23/Th17axis in patients with spondyloarthritis
     Background and Objective. Interleukin-23(IL-23), a new member of IL-12family, is mainly produced by innate immune cells. It has been shown that HLA-B27misfolding leads to activation of the unfolded protein response, which significantly enhances the expression of IL-23in macrophages. Binding to IL-23receptor, IL-23favors the generation of Th17cells. Growing evidence shows that the IL-23/Th17axis may play an important role in the pathogenesis of several chronic immune-mediated inflammatory diseases, such as psoriasis, inflammatory bowel disease. In order to evaluate the pathogenic role of the IL-23/Th17axis in spondyloarthritis (SpA), we investigated the expression of the IL-23/Th17axis in involved joints of patients with SpA.
     Methods. SpA patients and osteoarthritis (OA) patients with knee effusion seen at outpatient clinic of Department of Rheumatology, Chinese PLA General Hospital between September2012and January2013, were recruited in the study. Synovial fluid mononuclear cells (SFMCs) were isolated from all subjects by density gradient centrifugation on Ficoll-paqueTM-Plus. CD14+monocytes were separated from SFMCs by fluorescence activated cell sorting. The frequencies of CD14+IL-23+cells and Th17cells were analyzed by intracellular staining and flow cytometry.
     Results.(1) Twenty-two SpA patients (19men and3women) and6knee OA patients (2men and4women) were enrolled in the study. All SpA patients had a mean (SD) age of32.4(8.4) years. The median disease duration of the SpA patients was27.0months ((interquartile range, IQR),6.8to60.0) and all patients'Bath Ankylosing Spondylitis Disease Activity Indices were≥4. OA patients with knee involvement had a mean (SD) age of58.3(7.9) years. Their median disease durations were43.0months (IQR,22.5to75.0). Sixteen out of22SpA patients were positive for HLA-B27, while none of6OA patients was HLA-B27positive.(2) SpA patients had a higher frequency of CD14+IL-23+cells in SF compared with OA patients (median1.49%in SpA patients vs0.68%in OA patients, P<0.05). Frequency of Th17cells from SF of patients with SpA was greater than that from OA patients (median4.15%in SpA patients vs1.11%in OA patients, P<0.05).(3) HLA-B27-positive SpA patients had a higher frequency of CD14+IL-23+cells (1.60%(IQR,1.24to2.11)) compared with HLA-B27-negative SpA patients (1.26%(IQR,0.88to1.59)), although the difference did not reach statistical significance (P>0.05).(4) There was a strong positive association between the frequency of CD14+IL-23+cells and Th17cells in SF of SpA patients.
     Conclusions. Our findings indicate that local activation of IL-23/Th17axis exists in SpA, suggesting that IL-23/Th17axis may contribute to the pathogenesis of SpA.
     PART Ⅱ Inhibitory effect of umbilical cord-derived mesenchymal stem cells on local interleukin-23/Th17axis in spondyloarthritis patients
     Background and Objective. Mesenchymal stem cells (MSCs) are adult multipotent non-hematopoietic stem cells which are now shown to reside in various tissues of normal human body. These cells possess not only multiple differentiation potential, but also potent immunoregulatory and anti-inflammatory properties. Recent studies have shown that MSCs have therapeutic potential in several autoimmune diseases and chronic inflammatory disease. SpA belong to a group of chronic immune-mediated inflammatory diseases. In order to explore the fesibility of MSCs transplantation applied to the treatment for SpA, we evaluated the effect of human umbilical cord-derived MSCs (UCMSCs) on local IL-23/Th17axis, which may play an important role in the pathogenesis of SpA.
     Methods. SpA patients with knee effusion seen at outpatient clinic of Department of Rheumatology, Chinese PL A General Hospital between September2012and January2013, were recruited in the study. After isolated from all subjects by density gradient centrifugation on Ficoll-paqueTM-Plus, SFMCs were divided into two subsets:CD14+monocytes and CD14+-depleted SFMCs by fluorescence activated cell sorting. CD14+monocytes or CD14+-depleted SFMCs were cultured in the absence or presence of UCMSCs. Celluar interactions between CD14+monocytes and CD14+-depleted SFMCs were investigated simultaneously. The frequencies of CD14+IL-23+cells and Th17cells were analyzed by intracellular staining and flow cytometry.
     Results.(1) Nine SpA patients (7men and2women) were enrolled in the study. All SpA patients had a mean (SD) age of31.1(8.3) years. The mean (SD) disease duration of the SpA patients was39.7(31.9) months and all patients' Bath Ankylosing Spondylitis Disease Activity Indices were≥4.(2) UCMSCs significantly diminished the frequency of CD14+IL-23+cells (absence of UCMSC,1.55%(IQR,1.32,2.61) vs presence of UCMSC,1.06%(IQR,0.80,1.81), P<0.05). Moreover, the concentration of IL-23in cell supernatant of coculture of CD14+monocytes and UCMSCs were significantly lower than that of CD14+monocytes cultured alone (coculture of CD14+monocytes and UCMSCs,121.1pg/ml (IQR,111.1,195.0) vs CD14+monocytes cultured alone,205.6pg/ml (IQR,182.8,256.7), P<0.05).(3) The presence of untreated monocytes significantly increased the frequency of Th17cells in CD14+-depleted SFMCs (absence of monocytes,0.86%(IQR,0.22,0.94) vs presence of untreated monocytes,2.71%(IQR,0.65,3.31), P<0.05). The ability of monocytes to drive Th17cells generation was downregulated by UCMSCs treatment (untreated monocytes, 2.71%(IQR,0.65,3.31) vs UCMSCs-treated monocytes,2.26%(IQR,0.40,2.66), P<0.05).(4) In the absence of monocytes, the frequency of Thl7cells was diminished from2.71%(IQR,1.80,3.05) to1.59%(IQR,1.20,2.67) by the coculture of UCMSCs. In the presence of monocytes, UCMSCs diminished the frequency of Th17cells from3.10%(IQR,2.81,5.49) to2.20%(IQR,1.52,2.95). The inhibitory rate of UCMSCs on Th17cells generation was enhanced from18.0%(IQR,11.6,32.5) to40.3%(IQR,25.8,51.6) by the addition of monocytes (P<0.05).
     Conclusion. These results show that monocytes from SF of SpA patients have a enhanced ability to produce IL-23, which may contribute to excessive generation of Th17cells. IL-23/Th17axis that may play an important role in the pathogenesis of SpA, could be inhibited by UCMSCs, which may be applied to the treatment for SpA.
引文
[1]黄烽.《强直性脊柱炎》.人民卫生出版社.2011年,第1版:1-1.
    [2]Zhang S, Li Y, Deng X, et al. Similarities and differences between spondyloarthritis in Asia and other parts of the world. Curr Opin Rheumatol.2011,23(4):334-338.
    [3]Karaderi T, Harvey D, Farrar C, et al. Association between the interleukin23receptor and ankylosing spondylitis is confirmed by a new UK case-control study and meta-analysis of published series. Rheumatology.2009,48(4):386-389.
    [4]Kadi A, Izac B, Said-Nahal R, et al. Investigating the genetic association between ERAPl and spondyloarthritis. Ann Rheum Dis.2013,72(4):608-613.
    [5]Braun J, van den Berg R, Baraliakos X, et al.2010update of the ASAS/EULAR recommendations for the management of ankylosing spondylitis. Ann Rheum Dis.2011,70(6):896-904.
    [6]Huang Z, Huang F. Update on the management of spondyloarthritis in Asia countries. Cur Rheum Rev.2012,8(1):39-44.
    [7]邓小虎,黄烽.强直性脊柱炎的目标治疗.中华医学杂志.2011,91(11):725-729.
    [8]Yang HK, Moon SJ, Shin JH, et al. Regression of syndesmophyte after bone marrow transplantation for acute myeloid leukemia in a patient with ankylosing spondylitis:a case report. J Med Case Rep.2012,6(1):250.
    [9]Jantunen E, Myllykangas-Luosujarvi R, Kaipiainen-Seppanen O, et al. Autologous stem cell transplantation in a lymphoma patient with a long history of ankylosing spondylitis. Rheumatology (Oxford).2000,39(5):563-564.
    [10]Tyndall A. Successes and failures of stem cell transplantation in autoimmune diseases. Hematology Am Soc Hematol Educ Program.2011,2011:280-284.
    [11]Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy.2006,8(4):315-317.
    [12]Bassi EJ, Aita CAM, Saraiva Camara NO. Immune regulatory properties of multipotent mesenchymal stromal cells:Where do we stand? World J Stem Cells.2011,3(1):1-8.
    [13]Griffin MD, Ritter T, Mahon BP. Immunological aspects of allogeneic mesenchymal stem cell therapies. Hum Gene Ther.2010,21:1641-1655.
    [14]Maggin J, Mirkin G, Bognanni L, et al. Mouse Bone Marrow-Derived Mesenchymal Stromal Cells Turn Activated Macrophages into a Regulatory-Like Profile. PLoS ONE.2010,5(2):e9252.
    [15]Augello A, Tasso R, Negrini SM, et al. Cell Therapy Using Allogeneic Bone Marrow Mesenchymal Stem Cells Prevents Tissue Damage in Collagen-Induced Arthritis. Arthritis Rheum.2007,56(4):1175-1186.
    [16]Gonzalez MA, Gonzalez-Rey E, Rico L, et al. Treatment of Experimental Arthritis by Inducing Immune Tolerance With Human Adipose-Derived Mesenchymal Stem Cells. Arthritis Rheum.2009,60(4):1006-1019.
    [17]Liu Y, Mu R, Wang S, et al. Therapeutic potential of human umbilical cord mesenchymal stem cells in the treatment of rheumatoid arthritis. Arthritis Res Ther.2010,12(6):R210.
    [18]] Zhou B, Yuan J, Zhou Y, et al. Administering human adipose-derived mesenchymal stem cells to prevent and treat experimental arthritis. Clin Immunol.2011,141(3):328-337.
    [19]Mokbel AN, El Tookhy OS, Shamaa AA, et al. Homing and reparative effect of intra-articular injection of autologus mesenchymal stem cells in osteoarthritic animal model. BMC Musculoskelet Disord.2011,12:259.
    [20]Toghraie FS, Chenari N, Gholipour MA, et al. Treatment of osteoarthritis with infrapatellar fat pad derived mesenchymal stem cells in Rabbit. The Knee.2011,18(2):71-75.
    [21]Ra JC, Kang SK, Shin IS, et al. Stem cell treatment for patients with autoimmune disease by systemic infusion of culture-expanded autologous adipose tissue derived mesenchymal stem cells. J Transl Med.2011,9:181.
    [22]Liang J, Li X, Zhang H, et al. Allogeneic mesenchymal stem cells transplantation in patients with refractory RA. Clin Rheumatol,2012;31:157-161.
    [23]王秦,马丽辉,李军霞,等.异基因脐带间充质干细胞移植治疗类风湿关节炎一例.中华风湿病学杂志.2012,16(5):356-357.
    [24]Varma HS, Dadarya B, Vidyarthi A. The new avenues in the management of osteo-arthritis of knee--stem cells. J Indian Med Assoc.2010,108(9):583-585.
    [25]Davatchi F, Abdollahi BS, Mohyeddin M, et al. Mesenchymal stem cell therapy for knee osteoarthritis. Preliminary report of four patients. Int J Rheum Dis.2011,14(2):211-215.
    [26]Yanfeng Wu, Mingliang Ren, Rui Yang, et al. Reduced immunomodulation potential of bone marrow-derived mesenchymal stem cells induced CCR4+CCR6+Th/Treg cell subset imbalance in ankylosing spondylitis. Arthritis Res Ther.2011,13(1):R29.
    [27]Yeremenko N, Noordenbos T, Cantaert T, et al. Disease-specific and inflammation-independent stromal alterations in spondylarthritis synovitis. Arthritis Rheum.2013,65(1):174-85.
    [28]Liang J, Zhang H, Wang D, et al. Allogeneic mesenchymal stem cell transplantation in seven patients with refractory inflammatory bowel disease. Gut.2012,61(3):468-469.
    [29]Mei Y, Pan F, Gao J, et al. Increased serum IL-17and IL-23in the patient with ankylosing spondylitis. Clin Rheumatol.2011,30(2):269-273.
    [30]Shen H, Goodall JC, Hill Gaston JS, et al. Frequency and phenotype of peripheral blood Th17cells in ankylosing spondylitis and rheumatoid arthritis. Arthritis Rheum.2009,60(6):1647-56.
    [31]Layh-Schmitt Q Colbert RA. The IL-23/IL-17Axis in Spondyloarthritis. Curr Opin Rheumatol.2008,20(4):392-397.
    [32]Oppmann B, Lesley R, Blom B, et al. Novel p19protein engages IL-12p40to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity.2000,13(5):715-725.
    [33]McKenzie BS, Kastelein RA, Cua DJ. Understanding the IL-23-IL-17immune pathway. Trends Immunol.2006,27(1):17-23.
    [34]Liu W, Ouyang X, Yang J, et al. AP-1Activated by Toll-like Receptors Regulates Expression of IL-23p19. J Biol Chem.2009,284(36):24006-24016.
    [35]Sheibanie AF, Tadmori I, Jing H, et al. Prostaglandin E2induces IL-23production in bone m arrow derived dendritic cells. FASEB J.2004,18(11):1318-1320.
    [36]Kocieda VP, Adhikary S, Emig F, et al. Prostaglandin E2-induced IL-23p19subunit is regulated by cAMP-responsive element-binding protein and C/AATT enhancer-binding protein β in bone marrow-derived dendritic cells. J Biol Chem.2012,287(44):36922-36935.
    [37]Kalim KW, Groettrup M. Prostaglandin E2inhibits IL-23and IL-12production by human monocytes through down-regulation of their common p40subunit. Mol Immunol.2013,53(3):274-282.
    [38]Poloso NJ, Urquhart P, Nicolaou A, et al. PGE2differentially regulates monocyte-derived dendritic cell cytokine responses depending on receptor usage (EP2/EP4). Mol Immunol.2013,54(3-4):284-295.
    [39]Parham C, Chirica M, Timans J, et al. A Receptor for the Heterodimeric Cytokine IL-23Is Composed of IL-12Rβ1and a Novel Cytokine Receptor Subunit, IL-23R. J Immunol.2002,168(11):5699-5708.
    [40]Zhai J, Rong J, Li Q, et al. Immunogenetic study in Chinese population with ankylosing spondylitis:are there specific genes recently disclosed? Clin Dev Immunol.2013,2013:419357.
    [41]Chen C, Zhang X, Li J, et al. Associations of IL-23R polymorphisms with ankylosing spondylitis in East Asian population:a new case-control study and a meta-analysis. Int J Immunogenet.2012,39(2):126-130.
    [42]Park H, Li Z, Yang XO, et al. A distinct lineage of CD4T cells regulates tissue inflammation by producing interleukin17. Nat Immunol.2005,6(11):1133-1141.
    [43]Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17and regulatory T cells. Nature.2006,441(7090):235-238.
    [44]Veldhoen M, Hocking RJ, Atkins CJ, et al. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity.2006,24(2):179-189.
    [45]Mangan PR, Harrington LE, O'Quinn DB, et al. Transforming growth factor-beta induces development of the T(H)17lineage. Nature.2006,441(7090):231-234.
    [46]McGeachy MJ, Bak-Jensen KS, Chen Y, et al. TGF-beta and IL-6drive the production of IL-17and IL-10by T cells and restrain T(H)-17cell-mediated pathology. Nat Immunol.2007,8(12):1390-1397.
    [47]Lee Y, Awasthi A, Yosef N, et al. Induction and molecular signature of pathogenic TH17cells. Nat Immunol.2012,13(10):991-999.
    [48]Langrish CL, Chen Y, Blumenschein WM, et al. IL-23drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med.2005,201(2):233-240.
    [49]Elson CO, Cong Y, Weaver CT, et al. Monoclonal Anti-Interleukin23Reverses Active Colitis in a T Cell-Mediated Model in Mice. Gastroenterology.2007,132(7):2359-2370.
    [50]McGeachy MJ, Chen Y, Tato CM, et al. Interleukin23receptor is essential for terminal differentiation of effector T helper type17cells in vivo. Nat Immunol.2009,10(3):314-324.
    [51]Murphy CA, Langrish CL, Chen Y, et al. Divergent pro-and antiinflammatory roles for IL-23and IL-12in joint autoimmune inflammation. J Exp Med.2003,198(12):1951-1957.
    [52]Cua DJ, Sherlock J, Chen Y, et al. Interleukin-23rather than interleukin-12is the critical cytokine for autoimmune inflammation of the brain. Nature.2003, 421(6924):744-748.
    [53]Yen D, Cheung J, Scheerens H, et al. IL-23is essential for T cell-mediated colitis and promotes inflammation via IL-17and IL-6. J Clin Invest.2006,116(5):1310-1316.
    [54]DeLay ML, Turner MJ, Klenk EI, et al. HLA-B27Misfolding and the Unfolded Protein Response Augment IL-23Production and are Associated with Thl7Activation in Transgenic Rats. Arthritis Rheum.2009,60(9):2633-2643.
    [55]Chen WS, Chang YS, Lin KC, et al. Association of serum interleukin-17and interleukin-23levels with disease activity in Chinese patients with ankylosing spondylitis. J Chin Med Assoc.2012,75(7):303-308.
    [56]Toussirot E. The IL23/Thl7pathway as a therapeutic target in chronic inflammatory diseases. Inflamm Allergy Drug Targets.2012,11(2):159-168.
    [57]Rudwaleit M, van der Heijde D, Landewe R, et al. The development of Assessment of SpondyloArthritis international Society classification criteria for axial spondyloarthritis (part Ⅱ):validation and final selection. Ann Rheum Dis.2009,68(6):777-783.
    [58]Rudwaleit M, van der Heijde D, Landewe R, et al. The Assessment of SpondyloArthritis International Society classification criteria for peripheral spondyloarthritis and for spondyloarthritis in general. Ann Rheum Dis.2011,70(1):25-31.
    [59]Altman R, Asch E, Bloch D, et al. Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee. Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association. Arthritis Rheum.1986,29(8):1039-1049.
    [60]Ambarus C, Yeremenko N, Tak PP, et al. Pathogenesis of spondyloarthritis: autoimmune or autoinflammatory? Curr Opin Rheumatol.2012,24(4):351-358.
    [61]Girschick HJ, Guilherme L, Inman RD, et al. Bacterial triggers and autoimmune rheumatic diseases. Clin Exp Rheumatol.2008,26(1Suppl48):S12-S17.
    [62]Benjamin M, McGonagle D. The enthesis organ concept and its relevance to the spondyloarthropathies. Adv Exp Med Biol.2009,649:57-70.
    [63]Appel H, Maier R, Bleil J, et al. In situ analysis of IL-23and IL-12positive cells in the spine of patients with ankylosing spondylitis. Arthritis Rheum2013Mar18. doi:10.1002/art.37937.
    [64]Ciccia F, Bombardieri M, Principato A, et al. Overexpression of Interleukin-23, but Not Interleukin-17, as an Immunologic Signature of Subclinical Intestinal Inflammation in Ankylosing Spondylitis. Arthritis Rheum.2009,60(4):955-965.
    [65]Carmody RJ, Ruan Q, Liou HC, et al. Essential roles of c-Rel in TLR-induced IL-23p19gene expression in dendritic cells. J Immunol.2007,178(1):186-191.
    [66]Mise-Omata S, Kuroda E, Niikura J, et al. A proximal kappaB site in the IL-23p19promoter is responsible for RelA-and c-Rel-dependent transcription. J Immunol.2007,179(10):6596-6603.
    [67]Qian BF, Tonkonogy SL, Sartor RB. Aberrant innate immune responses in TLR-ligand activated HLA-B27transgenic rat cells. Inflamm Bowel Dis.2008,14(10):1358-1365.
    [68]Stebbings SM, Taylor C, Tannock GW, et al. The immune response to autologous bacteroides in ankylosing spondylitis is characterized by reduced interleukin10production. J Rheumatol.2009,36(4):797-800.
    [69]Zeng L, Lindstrom MJ, Smith JA. Ankylosing spondylitis macrophage production of higher levels of interleukin-23in response to lipopolysaccharide without induction of a significant unfolded protein response. Arthritis Rheum.2011,63(12):3807-3817.
    [70]Kirkham BW, Lassere MN, Edmonds JP, et al. Synovial membrane cytokine expression is predictive of joint damage progression in rheumatoid arthritis:a two-year prospective study (the DAMAGE study cohort). Arthritis Rheum.2006,54(4):1122-1131.
    [71]Mudigonda P, Mudigonda T, Feneran AN, et al. Interleukin-23and interleukin-17:importance in pathogenesis and therapy of psoriasis. Dermatol Online J2012,18(10):1.
    [72]Kim SW, Kim ES, Moon CM, et al. Genetic polymorphisms of IL-23R and IL-17A and novel insights into their associations with inflammatory bowel disease. Gut.2011,60(11):1527-1536.
    [73]Wendling D, Cedoz JP, Racadot E, et al. Serum IL-17, BMP-7, and bone turnover markers in patients with ankylosing spondylitis. Joint Bone Spine.2007,74(3):304-305.
    [74]Wang X, Lin Z, Wei Q, et al. Expression of IL-23and IL-17and effect of IL-23on IL-17production in ankylosing spondylitis. Rheumatology Int.2009,29(11):1343-1347.
    [75]Singh R, Aggarwal A, Misra R. Th1/Th17cytokine profiles in patients with reactive arthritis/undifferentiated spondyloarthropathy. J Rheumatol.2007,34(11):2285-2290.
    [76]Jandus C, Bioley Q Rivals JP, et al. Increased numbers of circulating polyfunctional Th17memory cells in patients with seronegative spondylarthritides. Arthritis Rheum.2008,58(8):2307-2317.
    [77]Appell H, Maier R, Wu P, et al. Analysis of IL-17+cells in facet joints of patients with spondyloarthritis suggests that the innate immune pathway might be of greater relevance than the Th17-mediated adaptive immune response. Arthritis Res Ther.2011,13:R95.
    [78]Egan PJ, van Nieuwenhuijze A, Campbell KI, et al. Promotion of the Local Differentiation of Murine Th17Cells by Synovial Macrophages During Acute Inflammatory Arthritis. Arthritis Rheum.2008,58(12):3720-3729.
    [79]Prockop DJ, Oh JY. Mesenchymal stem/stromal cells (MSCs):role as guardians of inflammation. Mol Ther.2012,20(1):14-20.
    [80]Ortiz LA, Dutreil M, Fattman C, et al. Interleukin1receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci USA.2007,104(26):11002-11007.
    [81]Choi H, Lee RH, Bazhanov N, et al. Anti-inflammatory protein TSG-6secreted by activated MSCs attenuates zymosan-induced mouse peritonitis by decreasing TLR2/NF-κ B signaling in resident macrophages. Blood.2011,118(2):330-338.
    [82]Nemeth K, Leelahavanichkul A, Yuen PS, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10production. Nat Med.2009,15(1):42-49.
    [83]Jiang XX, Zhang Y, Liu B, et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood.2005,105(10):4120-4126.
    [84]English K, Ryan JM, Tobin L, et al. Cell contact, prostaglandin E2and transforming growth factor beta1play non-redundant roles in human mesenchymal stem cell induction of CD4+CD25Hlgh forkhead box P3+regulatory T cells. Clin Exp Immunol.2009,156(1):149-160.
    [85]Wang Q, Sun B, Wang D, et al. Murine bone marrow mesenchymal stem cells cause mature dendritic cells to promote T-cell tolerance. Scand J Immunol.2008,68(6):607-615.
    [86]Ghannam S, Pene J, Torcy-Moquet Q et al. Mesenchymal stem cells inhibit human Th17cell differentiation and function and induce a T regulatory cell phenotype. J Immunol.2010,185(1):302-312.
    [87]Ra JC, Kang SK, Shin IS, et al. Stem cell treatment for patients with autoimmune disease by systemic infusion of culture-expanded autologous adipose tissue derived mesenchymal stem cells. J Transl Med.2011,9:181.
    [88]Liang J, Li X, Zhang H, et al. Allogeneic mesenchymal stem cells transplantation in patients with refractory RA. Clin Rheumatol.2012,31(1):157-161.
    [89]Ciccocioppo R, Bernardo ME, Sgarella A, et al. Autologous bone marrow-derived mesenchymal stromal cells in the treatment of fistulising Crohn's disease. Gut.2011,60(6):788-798.
    [90]Liang J, Zhang H, Wang D, et al. Allogeneic mesenchymal stem cell transplantation in seven patients with refractory inflammatory bowel disease. Gut.2012,61(3):468-469.
    [91]Baeten D, Kruithof E, De Rycke L, et al. Infiltration of the synovial membrane with macrophage subsets and polymorphonuclear cells reflects global disease activity in spondyloarthropathy. Arthritis Res Ther.2005,7(2):R359-R369.
    [92]Brown KL, Davidson J, Rotondo D, et al. Characterisation of the prostaglandin E2-ethanolamide suppression of tumour necrosis factor-a production in human monocytic cells. Biochim Biophys Acta.2013,1831(6):1098-1107.
    [93]Chen D, Ma F, Xu S, et al. Expression and role of Toll-like receptors on human umbilical cord mesenchymal stromal cells. Cytotherapy.2013,15(4):423-433.
    [94]Zhang L, Li YQ Li YH, et al. Increased frequencies of Th22cells as well as Th17cells in the peripheral blood of patients with ankylosing spondylitis and rheumatoid arthritis. PLoS One.2012,7(4):e31000.
    [95]Limon-Camacho L, Vargas-Rojas MI, Vazquez-Mellado J, et al. In vivo peripheral blood proinflammatory T cells in patients with ankylosing spondylitis. J Rheumatol.2012,39(4):830-835.
    [96]Xueyi L, Lina C, Zhenbiao W, et al. Levels of circulating Th17cells and regulatory T cells in ankylosing spondylitis patients with an inadequate response to anti-TNF-a therapy. J Clin Immunol.2013,33(1):151-161.
    [97]Cutler AJ, Limbani V, Girdlestone J, et al. Umbilical Cord-Derived Mesenchymal Stromal Cells Modulate Monocyte Function to Suppress T Cell Proliferation. J Immunol.2010,185(11):6617-6623.
    [1]Yang C, Huang F. Management of Spondyloarthropathy in Asian Countries. Curr Rheum Rev2008;4(2):1-4.
    [2]Rudwaleit M, Jurik AG, Hermann KG, et al. Defining active sacroiliitis on magnetic resonance imaging (MRI) for classification of axial spondyloarthritis:a consensual approach by the ASAS/OMERACT MRI group. Ann Rheum Dis2009;68(10):1520-7.
    [3]Rudwaleit M, van der Heijde D, Landewe R, et al. The development of Assessment of SpondyloArthritis international Society classification criteria for axial spondyloarthritis (part Ⅱ):validation and final selection. Ann Rheum Dis2009;68(6):777-83.
    [4]Rudwaleit M, van der Heijde D, Landewe R, et al. The Assessment of SpondyloArthritis International Society classification criteria for peripheral spondyloarthritis and for spondyloarthritis in general. Ann Rheum Dis2011;70(1):25-31.
    [5]Castillo-Gallego C, Aydin SZ, Marzo-Ortega H. Clinical utility of the new ASAS criteria for spondyloarthritis and the disease activity score. Curr Rheumatol Rep2011;13(5):395-401.
    [6]Zeidler H, Amor B. The Assessment in Spondyloarthritis International Society (ASAS) classification criteria for peripheral spondyloarthritis and for spondyloarthritis in general:the spondyloarthritis concept in progress. Ann Rheum Dis2011;70(1):1-3.
    [7]Zhang SL, Li Y, Deng XH, Huang F. Similarities and differences between spondyloarthritis in Asia and other parts of the world. Curr Opin Rheumatol2010;23(4):334-8.
    [8]Liao Z, Gu J, Huang F, Lin Z, Zhao L, Yu B. Verification of Berlin algorithm for diagnosing undifferentiated spondyloarthropathy patients in Chinese population. Joint Bone Spine2009;76(2):146-9.
    [9]Liao Z, Lin Z, Xu M, et al. Clinical features of axial undifferentiated spondyloarthritis (USpA) in China:HLA-B27is more useful for classification than MRI of the sacroiliac joint. Scand J Rheumatol2011;40(6):439-43.
    [10]Slobodin Q Reyhan I, Avshovich N, et al. Recently diagnosed axial spondyloarthritis:gender differences and factors related to delay in diagnosis. Clin Rheumatol2011;30(8):1075-80.
    [11]Chung HY, Lau CS, Wu KP,Wong WS, MOK MY. Comparison of performance of the Assessment of Spondyloarthritis International Society, the European Spondyloarthropathy Study Group and the modified New York criteria in a cohort of Chinese patients with spondyloarthritis. Clin Rheumatol2011;30(7):947-53.
    [12]Braun R, van den Berg R, Baraliakos X, et al.2010update of the ASAS/EULAR recommendations for the management of ankylosing spondylitis. Ann Rheum Dis2011;70(6):896-904.
    [13]Leung YY, Tam LS, Lee KW, Leung MH, Kun EW, Li EK. Involvement, satisfaction and unmet health care needs in patients with psoriatic arthritis. Rheumatology(Oxford)2009;48(1):53-6.
    [14]Karapolat H, Eyigor S, Zoghi M, Akkoc Y, Kirazli Y, Keser G. Are swimming or aerobic exercise better than conventional exercise in ankylosing spondylitis patients? A randomized controlled study. Eur J Phys Rehabil Med2009;45(4):449-57.
    [15]Giinendi Z, Dincel AS, Erdogan Z, et al. Does exercise affect the antioxidant system in patients with ankylosing spondylitis? Clin Rheumatol2010;29(10):1143-7.
    [16]Benhamou M, Gossec L, Dougados M. Clinical relevance of C-reactive protein in ankylosing spondylitis and evaluation of the NSAIDs/coxibs'treatment effect on C-reactive protein. Rheumatology (Oxford)2010;49(3):536-41.
    [17]Song IH, Hermann K, Haibel H, et al. Effects of etanercept versus sulfasalazine in early axial spondyloarthritis on active inflammatory lesions as detected by whole-body MRI (ESTHER):a48-week randomised controlled trial. Ann Rheum Dis2011;70(4):590-6.
    [18]Braun J, van der Horst-Bruinsma IE, Huang F, et al. Clinical efficacy and safety of etanercept versus sulfasalazine in patients with ankylosing spondylitis:a randomized, double-blind trial. Arthritis Rheum2011;63(6):1543-51.
    [19]Zhu J, Huang F, Zhang JL. The efficacy and safety of long-term thalidomide in the treatment of ankylosing spondylitis. Zhonghua Nei Ke Za Zhi2010;49(8):667-70.
    [20]Yang PT, Xiao WG, Qin L, Zhao LJ, He LM, Ito M. A pilot study on changes of macrophage colony stimulating factor and transforming growth factor β1in male patients with ankylosing spondylitis taking thalidomide. Ann Rheum Dis2010;69(4):781-2.
    [21]Braun J, Rau R. An update on methotrexate. Curr Opin Rheumatol2009;21(3):216-23.
    [22]Zhang GL, Huang F, Zhang JL, Li XF. A clinical study of leflunomide and methotrexate therapy in psoriatic arthritis. Zhonghua Nei Ke Za Zhi2009;48(7):570-4.
    [23]Wang Y, Lian F, Li JP, et al. Radiological progression and life quality analysis in ankylosing spondylitis patients using etanercept/methotrexate combination therapy. Zhonghua Yi Xue Za Zhi2011;91(15):1022-5.
    [24]Sandhya P, Danda D, Mathew J, Gattani A. Outcome of patients with seronegative spondyloarthritis continuing sulphasalazine and methotrexate after a short course of infliximab therapy—experience from a tertiary care teaching hospital in South India. Clin Rheumatol2011;30(7):997-1001.
    [25]Li EK, Tam LS, Tomlinson B. Leflunomide in the treatment of rheumatoid arthritis. Clin Ther2004;26(4):447-59.
    [26]Li DX, Shuai ZW, Chen SY, et al. A clinical study on leflunomide in the treatment of refractory ankylosing spondylitis with peripheral arthritis. Acta Universitatis Medicinalis Anhui2011;46(10):1056-9.
    [27]Spies CM, Burmester GR, Buttgereit F. Analyses of similarities and differences in glucocorticoid therapy between rheumatoid arthritis and ankylosing spondylitis-a systematic comparison. Clin Exp Rheumatol2009;27(4Suppl55):S152-8.
    [28]Sadreddini S, Noshad H, Molaeefard M, Ardalan MR, Ghojazadeh M, Shakouri SK. Unguided sacroiliac injection:effect on refractory buttock pain in patients with spondyloarthropathies. Presse Med2009;38(5):710-6.
    [29]Huang F, Zhang J, Huang JL, et al. A multicenter, double-blind, placebo-controlled, randomized, phase III clinical study of etanercept in treatment of ankylosing spondylitis. Zhonghua Nei Ke Za Zhi2010;49(9):741-5.
    [30]Chou CT, Tsai CY, Liang TH, et al. Better short-term clinical response to etanercept in Chinese than Caucasian patients with active ankylosing spondylitis. Mod Rheumatol2010;20(6):580-7.
    [31]El Maghraoui A. Extra-articular manifestations of ankylosing spondylitis: prevalence, characteristics and therapeutic implications. Eur J Intern Med2011;22(6):554-60.
    [32]Torii H, Nakagawa H; Japanese Infliximab Study investigators. Infliximab monotherapy in Japanese patients with moderate-to-severe plaque psoriasis and psoriatic arthritis. A randomized, double-blind, placebo-controlled multicenter trial. J Dermatol Sci2010;59(1):40-9.
    [33]Syngle A, Vohra K, Sharma A, Kaur L. Endothelial dysfunction in ankylosing spondylitis improves after tumor necrosis factor-alpha blockade. Clin Rheumatol2010;29(7):763-70.
    [34]Li KP, Zhang JL, Zhu J, Zhao W, Huang F. Delayed hypersensitivity to infliximab retreatment in two patients and literature review. Zhonghua Nei Ke Za Zhi2011;50(1):52-4.
    [35]Kobayashi S, Harigai M, Mozaffarian N, et al. A multicenter, open-label, efficacy, pharmacokinetic, and safety study of adalimumab in Japanese patients with ankylosing spondylitis. Mod Rheumatol [serial on the Internet].2011Dec29;[cited2012January15];21:[about9screens]. Available from: http://www.springerlink.com/content/f4h2rj046w52q28q/.
    [36]Deng XH, Huang F, Zhang JL, Zhang J, Zhang YM. Thalidomide successfully maintains remission in ankylosing spondylitis after discontinuing etanercept treatment. Chin J Rhematol2009;13(11):765-8.
    [37]Liang DF, Huang F, Zhang JL, et al. A randomized, single-blind, parallel, controlled clinical study on single intra-articular injection of etanercept in treatment of inflammatory knee arthritis. Zhonghua Nei Ke Za Zhi2010;49(11):930-4.
    [38]Cui Y, Xiao Z, Shuxia W, et al. Computed tomography guided intra-articular injection of etanercept in the sacroiliac joint is an effective mode of treatment of ankylosing spondylitis. Scand J Rheumatol2010;39(3):229-32.
    [39]Huang Z, Cao J, Li T, Zheng B, Wang M, Zheng R. Efficacy and safety of ultrasound-guided local injections of etanercept into entheses of ankylosing spondylitis patients with refractory Achilles enthesitis. Clin Exp Rheumatol2011;29(4):642-9.
    [40]Santra Q Sarkar RN, Phaujdar S, Banerjee S, Siddhanta S. Assessment of the efficacy of pamidronate in ankylosing spondylitis:an open prospective trial. Singapore Med J2010;51(11):883-7.
    [41]Li WG, Tu Q, Gu XJ. Effect on content of serum inflammatory cytokines of patients with ankylosing spondylitis in early stage treated by long snake moxibustion at Governor Vessel and functional exercise. Zhongguo Zhen Jiu2010;30(3):200-2.
    [42]Tian YS, Wang LS, Wang XY, Sun WQ. Clinical observation on ankylosing spondylitis treated with acupoint catgut embedding combined vessel pricking therapy. Zhongguo Zhen Jiu2011;31(7):601-4.
    [43]Xu M, Lin Z, Deng X, et al. The Ankylosing Spondylitis Disease Activity Score is a highly discriminatory measure of disease activity and efficacy following tumour necrosis factor-a inhibitor therapies in ankylosing spondylitis and undifferentiated spondyloarthropathies in China. Rheumatology (Oxford)2011;50(8):1466-72.
    [44]Nas K, Yildirim K, Cevik R, et al. Discrimination ability of ASDAS estimating disease activity status in patients with ankylosing spondylitis. Int J Rheum Dis2010;13(3):240-5.
    [45]Lin Z, Gu J, He P, et al. Multicenter validation of the value of BASFI and BASDAI in Chinese ankylosing spondylitis and undifferentiated spondyloarthropathy patients. Rheumatol Int2011;31(2):233-8.
    [1]Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy,2006,8:315-317.
    [2]Griffin MD, Ritter T, Mahon BP. Immunological aspects of allogeneic mesenchymal stem cell therapies. Hum Gene Ther,2010,21:1641-1655.
    [3]Maggin J, Mirkin G, Bognanni L, et al. Mouse Bone Marrow-Derived Mesenchymal Stromal Cells Turn Activated Macrophages into a Regulatory-Like Profile. PLoS ONE,2010,5:e9252.
    [4]Bassi EJ, Aita CAM, Saraiva Camara NO. Immune regulatory properties of multipotent mesenchymal stromal cells:Where do we stand? World J Stem Cells,2011,3:1-8.
    [5]丁志,杨松林.间充质干细胞生物学特性及其分化潜能.中国组织工程研究与临床康复,2011,15:147-150.
    [6]Jones E, Churchman SM, English A, et al. Mesenchymal stem cells in rheumatoid synovium:enumeration and functional assessment in relation to synovial inflammation level. Ann Rheum Dis,2010,69:450-457.
    [7]Zheng ZH, Li XY, Ding J, et al. Allogeneic mesenchymal stem cell and mesenchymal stem cell-differentiated chondrocyte suppress the responses of type II collagen-reactive T cells in rheumatoid arthritis. Rheumatol,2008,47:22-30.
    [8]Gonzalez-Rey E, Gonzalez MA, Varela N, et al. Human adipose-derived mesenchymal stem cells reduce inflammatory and T cell responses and induce regulatory T cells in vitro in rheumatoid arthritis. Ann Rheum Dis,2010,69:241-248.
    [9]Augello A, Tasso R, Negrini SM, et al. Cell Therapy Using Allogeneic Bone Marrow Mesenchymal Stem Cells Prevents Tissue Damage in Collagen-Induced Arthritis. Arthritis Rheum,2007,56:1175-1186.
    [10]Gonzalez MA, Gonzalez-Rey E, Rico L, et al. Treatment of Experimental Arthritis by Inducing Immune Tolerance With Human Adipose-Derived Mesenchymal Stem Cells. Arthritis Rheum,2009,60:1006-1019.
    [11]Liu Y, Mu R, Wang S, et al. Therapeutic potential of human umbilical cord mesenchymal stem cells in the treatment of rheumatoid arthritis. Arthritis Res Ther,2010,12:R210.
    [12]Zhou B, Yuan J, Zhou Y, et al. Administering human adipose-derived mesenchymal stem cells to prevent and treat experimental arthritis. Clin Immunol,2011,141:328-337.
    [13]Schurgers E, Kelchtermans H, Mitera T, et al. Discrepancy between the in vitro and in vivo effects of murine mesenchymal stem cells on T-cell proliferation and collagen-induced arthritis. Arthritis Res Ther,2010,12:R31.
    [14]Wu CC, Wu TC, Liu FL, et al. TNF-a inhibitor reverse the effects of human umbilical cord-derived stem cells on experimental arthritis by increasing immunosuppression. Cell Immunol,2012,273:30-40.
    [15]Ra JC, Kang SK, Shin IS, et al. Stem cell treatment for patients with autoimmune disease by systemic infusion of culture-expanded autologous adipose tissue derived mesenchymal stem cells. J Transl Med,2011,9:181.
    [16]Liang J, Li X, Zhang H, et al. Allogeneic mesenchymal stem cells transplantation in patients with refractory RA. Clin Rheumatol,2012,31:157-161.
    [17]王秦,马丽辉,李军霞,等.异基因脐带间充质干细胞移植治疗类风湿关节炎-例.中华风湿病学杂志,2012,16:356-357.
    [18]Mokbel AN, El Tookhy OS, Shamaa AA, et al. Homing and reparative effect of intra-articular injection of autologus mesenchymal stem cells in osteoarthritic animal model. BMC Musculoskelet Disord,2011,12:259.
    [19]Toghraie FS, Chenari N, Gholipour MA, et al. Treatment of osteoarthritis with infrapatellar fat pad derived mesenchymal stem cells in Rabbit. The Knee,2011,18:71-75.
    [20]Varma HS, Dadarya B, Vidyarthi A. The new avenues in the management of osteo-arthritis of knee--stem cells. J Indian Med Assoc,2010,108:583-585.
    [21]Davatchi F, Abdollahi BS, Mohyeddin M et al. Mesenchymal stem cell therapy for knee osteoarthritis. Preliminary report of four patients. Int J Rheum Dis,2011,14:211-215.
    [22]L. DeLay M, J. Turner M, I. Klenk E, et al. HLA-B27Misfolding and the Unfolded Protein Response Augment IL-23Production and are Associated with Th17Activation in Transgenic Rats. Arthritis Rheum,2009,60:2633-2643.
    [23]Bowness P, Ridley A, Shaw J, et al. Th17cells expressing KIR3DL2+and responsive to HLA-B27homodimers are increased in ankylosing spondylitis. J Immunol,2011,186:2672-2680.
    [24]Yanfeng Wu, Mingliang Ren, Rui Yang, et al. Reduced immunomodulation potential of bone marrow-derived mesenchymal stem cells induced CCR4+CCR6+Th/Treg cell subset imbalance in ankylosing spondylitis. Arthritis Res Ther,2011,13:R29.
    [25]Ghannam S, Pene J, Torcy-Moquet Q et al. Mesenchymal stem cells inhibit human Th17cell differentiation and function and induce a T regulatory cell phenotype. J Immunol,2010,185:302-312.
    [26]Ciccocioppo R, Bernardo ME, Sgarella A, et al. Autologous bone marrow-derived mesenchymal stromal cells in the treatment of fistulising Crohn's disease. Gut,2011,60:788-798.
    [27]Liang J, Zhang H, Wang D, et al. Allogeneic mesenchymal stem cell transplantation in seven patients with refractory inflammatory bowel disease. Gut,2012,61:468-469.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700