超临界流体色谱分离EPA-EE和DHA-EE的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
EPA和DHA是人体必须的ω-3不饱和脂肪酸,在治疗和防治心脑血管疾病、炎症、抑制肿瘤以及预防老年痴呆等方面具有较好的疗效。但是EPA与DHA的功效不同,有必要将二者分离成纯品,以充分发挥各自的功效。从文献中已经提出的分离方法中,超临界流体色谱(SFC)是比较有前景的。虽然有少数几篇有关的文献,但是内容属于工艺的初步探索。有必要在超临界色谱的理论基础方面(吸附等温线、扩散、传质和色谱动态特性等)作系统的研究,使色谱分离的研发建筑在坚实的工程原理基础上。从学术研究角度来看,至今还没有系统研究上述理论问题的报道,所以这一工作也有学术意义。本论文的具体工作如下。
     扩散系数测定采用Taylor提出的峰扩展法(CPB)测定了AA-EE、EPA-EE和DHA-EE在308.15 K至338.15 K和8.42 MPa至29.95 MPa条件范围内,在无限稀释条件下的扩散系数。这三种脂肪酸乙酯在超临界CO_2中的扩散系数范围分别为(5.54至13.47)×10~(-5)cm~2·s~(-1),(5.54至13.80)×10~(-5)cm~2·s~(-1)和(5.40至12.80)×10~(-5)cm~2·s~(-1)。它随CO_2密度的升高和温度的降低而降低,主要受CO_2密度和粘度的影响:在相同的密度条件下,D_(12)/T基本相同。相同的条件下,脂肪酸的扩散系数比其甲酯或乙酯的扩散系数要小。采用预测模型Scheibel、Catchpole-King和He-Yu-Su模型得到的预测结果与实验值相比,平均相对偏差均小于2%。
     吸附平衡的研究建立了一套可以在线检测的、消耗样品量比较少的静态测定吸附平衡数据装置。并在318.15 K至338.15 K温度范围内和9.98 MPa至21.97MPa压力范围内,研究了超临界CO_2中EPA-EE和DHA-EE在C18键合硅胶上的吸附平衡关系。实验结果表明,超临界CO_2中EPA-EE和DHA-EE在C18键合硅胶上的吸附量随温度的上升和CO_2密度的增大而减少,并且其吸附等温线可用BET方程来描述。实验条件范围内,两种脂肪酸乙酯在C18键合硅胶上的单分子层饱和吸附量范围分别为(0.039至0.048)mmol·g~(-1)和(0.040至0.063)mmol·g~(-1)。两种脂肪酸乙酯在C18键合硅胶上的吸附热随着吸附量的增大和密度的增大而减小,直至达到一个最低值(约为10 kJ·mol~(-1))。此外,还采用特征点洗脱法(ECP),在319.15 K至340.45 K温度范围内和0.668 g·ml~(-1)至0.734 g·ml~(-1)密度范围内研究了超临界CO_2中,两种脂肪酸乙酯在硅胶上的吸附平衡关系。实验结果表明,EPA-EE和DHA-EE在硅胶上的吸附等温线可用Langmuir方程来描述。平衡常数随着密度的增大和温度的上升而减小。在实验条件范围内,两种脂肪酸乙酯在硅胶上的单分子层饱和吸附量范围分别为(0.125至0.144)mmol·g~(-1)和(0.113至0.131)mmol·g~(-1)。两种脂肪酸乙酯在单位面积C18键合硅胶和硅胶上的单分子层饱和吸附量相差不大在(2.8x10~(-7)至3.9×10~(-7))mol·m~(-2)范围内。
     色谱过程动态特性的模型采用速率模型方程描述EPA-EE和DHA-EE在超临界流体中色谱分离过程。利用流出曲线拟合的方法研究了CO_2流速、温度和压力对EPA-EE和DHA-EE在色谱柱内传质的影响。实验结果表明,N随流速的增大有极大值,k_f先随流速的增大而增大,然后趋于一定值。压力的增大和温度的下降会导致理论塔板数减少,并使总传质系数变小。轴向弥散系数在超临界流体色谱中对理论塔板高度的贡献在3.2%至16.9%之间,并且随着温度的降低和压力的增大而减小。
     超临界流体色谱法从鱼油中分离提纯EPA-EE和DHA-EE建立了一套适合半制各型超临界流体色谱的馏分收集方法(固相收集法),在固相收集柱内压力为4 MPa至6 MPa时,收集过程的回收率超过95%。采用此方法,研究了不同上载量和CO_2流速下超临界CO_2中EPA-EE和DHA-EE在C18柱(250mm×10mm I.D.)上进行分离时的动态曲线。结果表明,EPA-EE和DHA-EE相互之间的分离很好,原料中硬脂酸乙酯、油酸乙酯和AA-EE与EPA-EE不能分离,AA-EE,二十二碳四烯酸乙酯和二十二碳五烯酸乙酯与DHA-EE不能分离。根据动态曲线,研究了上载量和CO_2流速对生产能力、回收率和流动相消耗的影响。结果表明,产品含量要求为90%时,色谱柱的生产能力随着流速的增大而增大;随载量的增大而增大,但载量过大则生产能力又会减小。回收率随载量的增大而明显减小,CO_2消耗量随载量的变化有最低点,在载量为4.076 mL·L~(-1)时为最小。适宜载量为7.13 mL·L~(-1),流动相流速为3.928 g·min~(-1)。降低鱼油原料中难分离杂质的含量,并对半制备结果在制备柱(250mm×50mm I.D.)上进行放大。结果表明,采用不同的鱼油原料制备的结果是不同的。
     反相高效液相色谱分离EPA-EE和DHA-EE研究了甲醇/水配比,流速,柱温对分离的影响。选取甲酵/水(v/v)=88:12作为适宜流动相配比,在制备柱上进行放大。
EPA (Eicosapentaenoic acid ) and DHA (Docosahexaeonoic acid) are two ω -3 fatty acids. They are vital for the retina of the human eyes and for the nervous system, and can reduce the risk of cardiovascular disease and inflammatory disease as well. However, the functions of EPA-EE and DHA-EE are different, so it is significant to separate them into their pure compound form. Among the separation techniques in the review, supercritical fluid chromatography(SFC) is regarded as a promising one. Though some investigations on separation of EPA-EE and DHA-EE by SFC have been made, all of them focused mainly on the process itself. Thus, it is necessary to make fundmental researches on supercritical fluid chromatography (such as adsorption equilibria, diffusion and mass transfer) systematically, making the separation process base on a reliable fundamental. To date, there is nearly no systematic research about the above issues, so it is of great value, in a sense of academe, to research the fundamental of separation EPA-EE and DHA-EE by SFC. Some basic researches have been conducted in this work. It includes the following aspects:
    Diffusion Measurement. The binary diffusion coefficients (D_(1,2)) of AA-EE, EPA-EE and DHA-EE in supercritical carbon dioxide were studied by Taylor capillary peak broadening (CPB) method at 308.15 K to 338.15 K under 8.42 MPa to 29.95 MPa. The D_(1,2)s were in the ranges of (5.54 to 13.47)×10~(-5)cmV, (5.54 to 13.80)× 10~(-5) cm~2·s~(-1) and (5.40 to 12.80)× 10~(-5)cm~2·s~(-1) respectively. It decreased with the increasing density of carbon dioxide and temperature. The curves of D_(1,2)/T vs. density of carbon dioxide almost coincided with each other. The D_(1,2)s for the esters of the three fatty acids are greater than those of the fatty acids themselves. The Scheibel, Catchpole-King, and He-Yu-Su equations predicted the experimental data quite well with average deviations smaller than 2 %.
    Adsorption Equilibria Research. A static apparatus which could determinate
    the adsorption equilibrium data on-line and cost fewer sample was set up. The adsorption equilibrium of EPA-EE and DHA-EE on C18-bonded silica gel from supercritical carbon dioxide was studied on this set-up. The temperature was in the range of 318.15 K to 338.15 K and the pressure was in the range of 9.98 MPa to 21.97 MPa. The results indicated that the loading of EPA-EE or DHA-EE decreased with increasing temperature and density, and the isotherms were fitted well by BET equations. Under the conditions in this work, the monomolecular saturated capacity of these two fatty acids were (0.039 to 0.048) mmol·g~(-1) and (0.040 to 0.063) mmol·g~(-1) respectively. The heat of these two fatty acids on C18-bonded silica gel decreased with greater loading and density until it leveled off (at about 10 kJ·mol~(-1)). The adsorption data of EPA-EE and DHA-EE on silica gel from supercritical carbon dioxide were measured by the method of elution by character point (ECP). The temperature was in the range of 319.15 K to 340.45 K and the density was in the range of 0.668 g·ml~(-1) to 0.734 g·ml~(-1). The results showed that the isotherms satisfied the Langmuir equation. The equilibrium constant K decreased with the increasing density and temperature. Under the conditions in this work, the monomolecular saturated capacity of EPA-EE and DHA-EE were in the ranges of (0.125 to 0.144) mmol·g~(-1) and (0.113 to 0.131) mmol·g~(-1) respectively. The monolayer saturated capacities per square meter for C18-bonded silica gel and silica gel were very close and were in the ranges of 2.8×10~(-7) mol·m~(-2) to 3.9×10~(-7) mol·m~(-2).
    Mass Transfer Research. The lump kinetic model was adopted to describe the chromatographic behavior of EPA-EE and DHA-EE in supercritical carbon dioxide. By fitting the experimental elution curves with the lump kinetic model, the effect of mobile phase flow rate, temperature and pressure on mass transfer kinetic was studied. The results indicated that the theoretical plate number (N) had a maximum value with the increasing flow rate and decreased with greater pressure and lower temperature. The lump mass transfer coefficient (k_f) increased with the increasing flow rate when the flow rate was small and then leveled off when the flow rate was great. Increasing pressure or decreasing temperature makes the theoretical plate number smaller. The contribution of axial dispersion to the theoretical plate height was in the range of 3.2
    % to 16.9% and decreased with greater pressure and lower temperature.
    SFC Separate EPA-EE and DHA-EE. An effective fraction collection method (solid trapping) for semi-preparative supercritical fluid chromatography was developed. The recovery exceeded 95 % when the pressure in the collection column was in the range of 4 to 6 MPa. By this method, chromatographic characteristics on a semi-preparative chromatographic column (250mm×10mm I.D.) under various loadings offish oil and flow rate of carbon dioxide were determined. It was found that EPA-EE and DHA-EE were well separated, but other esters of fatty acids presented in the feed could not be separated. By appropriately cutting the effluent, EPA-EE with 90 % content and DHA-EE with 75 % content were obtained. Based on the chromatographic curves, the effect of loading and flow rate of mobile phase on the performance of the column was studied. At EPA-EE content greater than 90 %, recovery of EPA-EE decreased remarkably as the loading increased. The relationship between CO_2 consumption and loading had a minimum consumption at loading of 4.076 ml·l~(-1). The optimal loading and flow rate for preparation of 90 % EPA-EE were 7.13 ml·l~(-1) and 3.928 g·min~(-1) under 12.1 MPa and 55℃. Chromatographic conditions were scaled up directly on a preparative column (250mmx50mm I.D.) loading feed with fewer impurities. The results showed that the component of the feed affected the product greatly.
    RP-HPLC Separate EPA-EE and DHA-EE, EPA-EE and DHA-EE were separated by reverse-phase HPLC. The effect of ratio of methanol/water, flow rate and column temperature on separation were studied. The optimal ratio is methanol/water (v/v) = 88:12. The chromatographic conditions were scaled up on a preparative column. Economic analyses and comparisons for separation by HPLC and SFC were conducted.
引文
[1]. Dyerberg, J.; Bang, H. O.; Hjorne, N. Fatty acid composition of the plasma lipids in Greenland Eskimos. Am. J. Clin. Nutr. 1975, 28, 958-966.
    [2]. Dyerberg, J.; Bang, H. O.; Stoffersen, E.; Moncada, S.; Vane, J. R. Eicosapentaenoic acid and prevention of thrombosis and atherosclerosis. Lancet, 1978, 8081, 117-119.
    [3]. Bang, H. O.; Dyerberg, J.; Sinclair, H. M. The composition of the Eskimo food in north western Greenland. Am. J. Clin. Nutr., 1980, 33, 2657-2661.
    [4]. Jorgensen, K. A.; Dyerberg, J. Platelets and atherosclerosis-A review on the role ofplatelets in atherosclerosis with special reference to the role ofpolyunsaturated 20 carbon fatty acids. Danish medical bulletin, 1980, 27, 253-259.
    [5]. Dyerberg, J. Linolenate-derived polyunsaturated fatty acids and prevention of atherosclerosis. Nutr. Re. 1986, 44, 125-134.
    [6]. Kristensen, S. D.; Schmidt, E. B.; Dyerberg, J. Dietary supplementation with n-3 polyunsaturated fatty acids and human platelet function: a review with particular emphasis on implications for cardiovascular disease. J. Inter. Med. (Supplement) 1989, 731, 141-150.
    [7]. Ohshima, T. Marine nutraceuticals and functional foods in Japan. Seafoods - Quality, Technology and Nutraceutical Applications, [Biennual European Conference on Fish Processing], 3rd, Grimsby, United Kingdom, 1999, 205-220.
    [8]. Nakamura, T. et al. Serum fatty acid composition in normal Japanese and its relation -ship with dietary fish and vegetable oil contents and blood lipid levels. Annals of Nutr. & Met. 1995, 39, 261-70.
    [9]. Ogunleiye, A. J. et al. Effect of fish oil and safflower oil in common Japanese diet on human plasma fatty acid composition. J. Nutr. Sci. and Vitaminology, 1990, 36, 423-30.
    [10].卢定强.鱼油中二十五碳五烯酸和二十二碳六烯酸的代谢和生理机能.江苏理工大学报.1998,5,29-35.
    [11]. Das, U. N. COX-2 inhibitors and metabolism of essential fatty acids. Med. Sci. Monitor, 2005, 11, RA233-RA237.
    [12]. Simopoulos A. P. Omega-3 fatty acids in health and disease and in growth and development. Am. J. Clin. Nutr. 1991, 54, 438-463.
    [13]. Hamazaki, K. et al. n-3 long-chain FA decrease serum levels of TG and remnant-like particle-cholesterol in humans. Lipids, 2003, 38, 353-358.
    [14]. Breslow, J. L. n-3 fatty acids and cardiovascular disease. Am. J. Clin. Nutr. 2006, 83, 1477S-1482S.
    [15]. von Schacky, C. A review of omega-3 ethyl esters for cardiovascular prevention and treatment of increased blood triglyceride levels. Vascular Health and Risk Management, 2006, 2, 251-262.
    [16]. von. Schacky, C.; William S. H. Cardiovascular benefits of omega-3 fatty acids. Cardiovascular Research, 2007, 73, 310-315.
    [17]. Trevor A. M.; Richard, J. W. The independent effects of eicosapentaenoic acid and docosahexaenoic acid on cardiovascular risk factors in humans. Current Opinion in Clin. Nutr. and Met. Care, 2006, 9, 95-104.
    [18].董伟.ω-3多不饱和脂肪酸与炎性疾病.中国海洋药物,1997,4,34-39.
    [19]. Cleland, L. G.; James, M. J.; Proudman, S. M. The role of fish oils in the treatment of rheumatoid arthritis. Drugs, 2003, 63, 845-853.
    [20]. Simopoulos, A. P. Omega-3 fatty acids in inflammation and autoimmune diseases. J. Am. Col. Nutr. 2002, 21, 495-505.
    [21]. Larsson, S. C.; Kumlin, M.; Ingelman-Sundberg, M.; Wolk, A. Dietary long-chain n-3 fatty acids for the prevention of cancer: A review of potential mechanisms. Am. J. Clin. Nutr. 2004, 79, 935-945.
    [22]. Collett, E. D.; Davidson, L. A.; Lupton, J. R.; Chapkin, R. S. Dietary fish oil reduces colon cancer risk. Current Org. Chem. 2000, 4, 1157-1168.
    [23]. Ellis, L. A. Polyunsaturated fatty acids for treatment of dementia and pre-dementia -related conditions. PCT Int. Appl. 2007, pp.78
    [24]. Bryhn, M. Effects of omega-3 fatty acids on mental health. NutraCos, 2003, 2, 32-34.
    [25]. Matsumura, H.; Sawada, K.; Uchino, T.; Yazawa, K. Docosahexaenoic acid and/or eicosapentae -noic acid as antidementia medicines for animals. Jpn. Kokai Tokkyo Koho, 1999, pp. 4
    [26]. Das, U. N. Long-chain polyunsaturated fatty acids in the growth and development of the brain and memory. Nutr. 2003, 19, 62-65.
    [27].卢定强.二十二碳六烯酸和脑的健康.江苏理工大学学报,1996,9,10-15.
    [28]. Guesnet, P.; Alessandri, J.; Vancassel, S.; Denis, I.; Lavialle, M. Omega-3 fatty acids and brain function. Nutr. Clin. Met. 2005, 19, 131-134.
    [29]. SanGiovanni, J. P.; Chew, E. Y. The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina. Progress in Retinal and Eye Research, Volume Date 2005, 24, 87-138.
    [30]. Plakas, S. P.; Guarino, A. M. Omega-3 fatty acids and fish oils: Is the news all good? In: Proceeding of the llth Annual Tropical and Subtropical Fisheries Conference of the Americas. Ward, D. R. and Smith, B. A. (eds). Texas Agricultural Extension Service, Marine Service Program. 1986.
    [31].萧家捷.DHA和EPA的功能综述.中国营养与食品.1996,2,8-11.
    [32] 汪秋安.EPA和DHA的开发与应用.粮油食品科技,1998,3,16-17.
    [33].翁新楚,董新伟,任国谱.EPA和DHA的生理功能及其氧化稳定性.生物工程进展,1994,14,56-60.
    [34].张菊珍,秦金平,云志等.双液相萃取植物油脂和鱼油油脂的脂肪酸成分分析.中国油脂,1995,10,47-49.
    [35]. Nilsson, W. B.; Ganglitz, E. J. Jr.; Hudson, J. K. Fraction of menhaden oil ethyl esters using supereritical fluid CO_2. JAOCS, 1988, 65, 109-117.
    [36]. Eisenbach, W. Supercdtical fluid extraction: A film demonstrain. Ber. Bunsenges. Phys. Chem. 1984, 88, 882-887.
    [37]. Staby, A.; Mollerup, J. Solubility of rich oil fatty acid ethyl esters in sub and supercritical CO_2. JAOCS, 1993, 70, 583-588.
    [38]. Amstrong, S. G.; Wyllic, S. G.; Leach, D. N. Effects of season and location fo catch of the fatty acid composition of some Australian fish species. Food Chem. 1994, 51, 295-301.
    [39]. Rawdah, T. N. Fatty-acid composition of three commercially important fish of the Arabian Gulf. Food Chem. 1994, 51, 1993-196.
    [40]. Seto, A. H.; Wang, H. L.; Hesseltine, C. W., Culture conditions affect eicosapentaenoic acid content of Chlorella minutissima. JAOCS, 1984, 61, 892-894.
    [41] Yongrnanitchai, W.; Ward, O. P. ω-3 Fatty acids. Alternative sources of production. Process Biochem. 1989, 8, 117-125.
    [42]. Shimizu, 5; Shinmen, Y.; Kawashima, H. Akimoto, K.; Yamada, H. Production of C-20 polyunsaturated fatty acids by fungi. In: Proceeding of World Conference on Biotechnoloy for the Fats and Oils Industry, pp. 1000-1006. JAOCS, Champaign, 1L.1987
    [43]. Molina, G. E.; Garcia, C. F.; Acien Fernandez, F. G. Production of EPA from Phaeodactylum tricornutum, in: Cohen Z (ed.), Chemicals from Microalgae. Taylor Francis, Surrey, pp. 1999, 57-92.
    [44]. Guil-Guerrero, J. L.; EI-Hassan B. & M. M. Rebolloso-Fuentes. Eicosapentaenoic and arachidonic acids purification from the red microalga Porphyridium cruentum. Bioseparation, 2001, 9, 299-306.
    [45].狄济乐.EPA和DHA的研究和进展.四川粮油科技,1997,53,29-32.
    [46].李勇.精制鱼油及产品开发现状.中国油脂,1997,22,34-35.
    [47].姜悦,陈峰.ω-3多元不饱和脂肪酸在食品中的应用.中国食品,1994,4,42-43.
    [48].李兆龙.日本EPA和DHA的开发.今日科技,1995,6,7-8.
    [49].黄惠琴,鲍时翔.多价不饱和脂肪酸分离与纯化技术进展.中国油脂,1999,24,32-34.
    [50].曾晓雄,杨红旗,罗泽民.鱼油中DHA与EPA的开发应用研究Ⅰ.鱼油精制与鱼油中DHA和EPA的GS/MS.GC分析.湖南农学院学报,1994,20,249-254.
    [51].杨村,于宏奇,冯武文.分子蒸馏技术.化学工业出版社.2003.
    [52].郑弢.分子蒸馏提纯三种天然产物及理论模型的研究.硕士学位论文.天津大学.2004.
    [53]. Domart, C.; Miyauchi, D. T.; Sumerwell, W. N. The fractionation of marine oil fatty acids with urea. JAOCS, 1955, 32, 483.
    [54].雷启俊,曹雅槐.尿素包合法制备鱼油多烯脂肪酸的探讨.中国海洋药物,1993,12,18-21
    [55].李国文,邱榕.尿素包合法预浓缩鱼油生理活性组分的研究.农业工程学报,1997,13,198-201.
    [56].朱世云等.尿素包合法富集鱼油中的EPA和DHA的研究.中国油脂,1997,22,54-56.
    [57].赵亚平,吴守一.鱼油中提取分离高纯度EPA和DHA的实验研究.农业工程学报,1997,13,198-202.
    [58] 陶遵威,解红武,周运琴,刘惠芝.从鱼油中提纯高含量DHA、EPA的方法.。中国专利,CN1478875,03150169.9
    [59] Bottino, N. R.; Vandenburg, G. A.; Reiser, R. Kesistance of certain long-chain polyunsaturated fatty acids of marine oils to pancreatic lipase hydrolysis. Lipid, 1967, 2, 489-493.
    [60]. Shimada Y.; Sugihara, A.; Nakano, H. Purification of docosahexaenoic acid by selective esterification fatty acids from tuna oil with Rhizopus delemar lipase. J. Am. Oil Chem. Soc. 1997, 74, 97-101.
    [61]. Cerdan L. E.; Medina, A. R.; Gimenez, A. G. Synthesis of polyunsaturated fatty acid-enriched triglycerides by lipase-catalyzed esterification. J. Am. Oil Chem. Soc. 1998, 75, 1329-1337.
    [62] Shirnada Y.; Maruyama K.; Sugihara, A. Purification of docosahexaenoic acid from tuna oil by a two step enzymatic method: hydrolysis and selective esterification. J. Am. Oil Chem. Soc. 1997, 74, 1441-1446.
    [63]. Haraldsson, G. G.; Kristinsson, B. Separation of eicosapentaenoic acid and docosahexanaenoic acid in fish oil by kinetic resolution using lipase. J. Am. Oil Chem. Soc. 1998, 75, 1551-1556.
    [64] McNeill, G. P.; Ackman, R. G. Moore, S. R. Lipase-catalyzed enrichment of long-chain polyunsaturated fatty acid. J. Am. Oil Chem. Soc. 1996, 73, 1403-1407.
    [65] Haraldsson, G. G.; Kristinsson, B. Sigurdardottir, R. The preparation of concentration of EPA and DHA by lipase-catalyzed transesterification of fish oil with ethanol. J. Am. Oil Chem. Soc. 1997, 74, 1419-1424.
    [66] Breivik, H.; Haraldsson, G. G.; Krisitinsson, B. Preparation of highly purified concentration of eicosapentaenoic acid and docosahexaenoic acid. J. Am. Oil Chem. Soc. 1997, 74, 1425-1429.
    [67] Wanasundara, U.; Shahidi, F. Lipase-assisted concentration of n-3 polyunsaturated fatty acid in acyl-glycerols from marine oil. J. Am. Oil Chem. Soc. 1998, 75, 945-951.
    [68]. Kojima, Y.; Sakuradani, E.; Shimizu, S. Different specificity of two types of Pseudomonas lipases for C20 fatty acids with a A5 unsaturated double bond and their application for selective concentration of fatty acids. J. Biosci. Bioeng. 2006, 101, 496-500.
    [69]. Okada, T.; Morrissey, M. T. Production of n-3 polyunsaturated fatty acid concentrate from sardine oil by lipase-catalyzed hydrolysis. Food Chem. 2007, 103, 1411-1419
    [70]. Shimada, Y.; Maruyama, K.; Sugihara, A. Purification of ethyl docosahexaenoate by selective alcoholysis of fatty acid ethyl esters with immobilized Rhizomueor meihei lipase. J. Am. Oil Chem. Soc. 1998, 75, 1565-1571.
    [71]. He, Y. H.; Shahidi, F. Enzymatic esterification of ω-3 fatty acid concentrations from seal blubber oil with glycerol. J. Am. Oil Chem. Soc. 1997, 74, 1133-1136.
    [72]. Hita, E. Robles, A.; Camacho, B.; Ramirez, A.; Esteban, L.; JimerLz, M. J.; Munio, M. M.; Gonzalez, P. A.; Molina, E. Production of structured triacylglycerols (STAG) rich in docosahexae -noic acid (DHA) in position 2 by acidolysis of tuna oil catalyzed by lipases. Proc. Biochem. 2007, 42, 415-422.
    [73]. Nilsson, W. B.; Seaborn, G. T.; Hudson, J. K. Partition coefficients for fatty acid esters in supercritical fluid CO2 with and without ethanol. JAOCS. 1992, 69, 305-308.
    [74]. Bharath, R.; Inomate, H.; Arai, K. Vapour-Liquid equilibria for binary mixtures of CO2 and fatty acid ethyl esters. Fluid Phase Equilibria. 1989, 50, 315-327.
    [75]. Riha, V.; Brunner, G. Phase equilibrium of fish oil ethyl esters with supercritical carbon dioxide. J. Supercrit. Fluids, 1999, 15, 33-50.
    [76]. Jaubert, Jean-Noel; Borg, P.; Coniglio, L.; Barth, D. Phase equilibria measurements and modeling of EPA and DHA ethyl esters in supercritical carbon dioxide. J. Supercrit. Fluids, 2001, 20, 145-155.
    [77]. Krukonis, V. J. in Supercritical extraction and chromatography. ACS Symposium Siries 366, edited by Charpentier, B. A. and Sevenants, M. R. Am. Chem. Soc. Washington, DC. 1988, 90
    [78]. Saito, S. Supercritical gas extraction of food and natural products I. Application to condensation of ethanol and separation of PUFAs. Kakaku to Seibutsn, 1986, 24, 201-210.
    [79]. Suzuki, Y.; Konno, M.; Arai, K.; Saito, S. Fraction of PUFAs by urea adduct formation using supercritical CO_2 as solvent. Kagaku Kogaku Ronbunshu, 1990, 16, 38-45.
    [80]. Eisenbach, W. Supereritical fluid extraction: A film demonstrain. Ber. Bunsenges. Phys. Chem. 1984, 88, 882-887.
    [81]. Nilsson, W. B.; Gauglitz E. J. Jr; Hudson, J. K. Fractionation of Menhaden oil ethyl esters using supercritical fluid CO_2. JAOCS, 1988, 65, 109-117.
    [82]. Suzuki, Y.; Konno, M.; Arai, K.; Saito, S. Fractionation of mono esters derived from fish oil using supercritical fluid extraction tower. Kagaku Kogaku Ronbunshu, 1989, 15, 439-445.
    [83]. Nilsson, W. B.; Gauglitz E. J. Jr; Hudson, J. K. Supercritical fluid fractionation of fish oil esters using increamental pressure programming and a temperature gradient. JAOCS, 1989, 669, 1596-1600.
    [84]. Riha, V.; Brunner, G. Separation of fish oil ethyl esters with supercritical carbon dioxide. J. Supercrit. Fluids, 2000, 17, 55-64.
    [85]. Corey, E. J.; Wright, S. W. Convenient method for the recovery of eicosapentaenoic acid from cod liver oil. J. Org. Chem. 1988, 53, 5980-5981.
    [86]. Wrigth, S. W.; Kuo, E. Y.; Corey, E. J. An effective process for the isolation of docosahexaenoic acid in quantity from cod liver oil. J. Orgo Chem. 1987, 52, 4399-4401.
    [87].王学彤;张书圣:白洁洪;刘澄凡.高效液相色谱法分离制备鱼油中的EPA和DHA.分析试验室,1999,13,42-45.
    [88]. Beebe, J. M.; Brown, P. R.; Turcotte, J. G. Preparative-scale high-performance liquid chromatography of omega-3 polyunsaturated fatty acid esters derived from fish oil. J. Chromatogr. 1988, 459, 369-78.
    [89]. Perrut, M. Purification of polyunsaturated fatty acid (EPA and DHA) ethyl esters by preparative high performance liquid chromatography. LC-GC, 1988, 6, 914, 916, 920.
    90]. Hidajat, K.; Ching, C. B.; Rao, M. S. Preparative-scale liquid chromatographic separation of ω-3 fatty acids from fish oil sources. J. Chromatogr. A, 1995, 702, 215-221.
    [91].荣会,胡秀丽,牟峻,刘丽.二十碳五烯酸甲酯标准样品的研制.吉林农业在学学报.2006,28,103-107.
    [92]. Adlof, R. O.; Emken, E. A. The isolation of omega-3 polyunsaturated fatty acids and methyl esters of fish oils by silver resin chromatography. JAOCS, 1985, 62, 1592-1595.
    [93].张万宽;李润等.用于分离EPA和DHA的新型HPLC固定相(Ⅱ).清华大学学报:自科版.2001,41,24-27.
    [94]. Molina Grima, E.; Robles Medina, A.; Gimenez Gimenez, A.; Ibanez Gonzalez, M. J.; Gram-scale purification of eicosapentaenoic acid (EPA, 20:5n-3) from wet Phaeodactylum tricornutum UTEX 640 biomass. J. Appl. Phycol. 1996, 8, 359-367.
    [95]. Robles Medina, A.; Gimenez Gimenez, A.; Garcia Camacho, F.; Sinchez Perez, J. A.; Molina Grima, E. and Contreras Gomez, A. Concentration and purification of stearidonic, eicosapentaenoic, and docosahexaenoic acids from cod liver oil and the marine microalga lsochrysis galbana. J. Am. Oil Chem. Soc. 1995, 72, 575-583.
    [96]. Cohen, Z.; Cohen, S. Preparation of eicosapentaenoic acid (EPA) concentrate from Porphyridium cruentum. J. Am. Oil Chem. Soc. 1991, 68, 16-19.
    [97]. Cartens, M., Molina Grima, E., Robles Medina, A., Gimenez Gimenez, A. and Ibanez Gonzalez, M. J. Eicosapentaenoic acid (20:5n-3) from the marine microalga Phaeodactylum tricornutum. J. Am. Oil Chem. Soc. 1996, 72, 1-7.
    [98]. Perrut, M. Advances in supercritical fluid chromatographic processes. J. Chromatogr. A, 1994, 658, 293-313.
    [99]. Perrut, M. Nicoud, R. M.; Brevik, H. Process for chromatographic fractionation of fatty acids and their derivatives. US Patent no 5719302. 1998.
    [100]. Pettinello, G.; Bertucco, A.; Pallado, P.; Stassi, A. Production of EPA enriched mixtures by supercritical fluid chromatography: from the laboratory scale to the pilot plant. J. Supercrit. Fluids, 2000, 19, 51-60.
    [101]. Alkio, M.; Gonzlez, C.; Jantti, M.; Aaltonen, O. Purification of polyunsaturated fatty acid esters from tuna oil with supercritical fluid chromatography. JAOCS, 2000, 77, 315-321.
    [102]. Yamaguchi, M.; Kadota, Y.; Tanaka, I.; Ohtsu. Y. Separation method of high-purity DHA by supercritical fluid chromatography. Japan Oil Chemists'Society, 1999, 48, 1169-1176
    [103]. Higashidate, S.; Yamauchi, Y.; Saito, M. Enrichment of eicospentaenoie acid and docosahexaenoic acid esters from esterified fish oil by programmed extraction-elution with supercritical carbon dioxide. J. Chromatogr. 1990, 515, 295-303.
    [104].王宪达.超临界流体色谱制备EPA-EE和DHA-EE.硕士学位论文,浙江大学,2003.
    [105].童景山.《流体的热物理性质》,中国石化出版社,1996.
    [106].王绍亭,陈涛.《化工传递过程基础》,化学工业出版社,1997.
    [107]. Wilke, C. R.; Chang, P. Correlation of diffusion coefficients in dilute solution. AIChE J. 1955, 1, 264
    [108]. Scheibel, E. G. Liquid diffusivities. Ind. Eng. Chem. 1954, 46, 2007-2008.
    [109]. Lusis, M. A.; Rateliff, G. A. Diffusion in binary liquid mixtures at infinite dilute. Can. J. Chem. Eng. 1968, 46, 385.
    [110]. Reddy. K. A.; Doraiswamy, L. K. Ind. Eng. Chem. Fundam. 1967, 6, 77.
    [111]. Hayduk, W.; Minhas, B. S. Correlation of prediction of molecular diffusivities in liquids. Can. J. Chem. Eng. 1982, 60, 295.
    [112]. He, C. H. Infinite-dilution diffusion coefficients in supercritical and high-temperature liquid solvents. Fluid Phase Equilib. 1998, 147, 309-317.
    [113]. Chapman, S.; Cowling, T. G. The mathematical theory of nonuniform gases. 2nd ed. P.245, Cambridge Univ. Press, London, 1952.
    [114]. Bertucci, S. J.; Flygare, W. H. Rough hard sphere treatment of diffusion in binary liquid mixtures. J. Chem. Phy. 1975, 63, 1-9.
    [115]. Chandler, D. Rough hard sphere theory of the self-diffusion constant for molecular liquids. J. Chem. Phy. 1975, 62, 1358-1363.
    [116]. Dymond, J. H. Corrected Enskog Theory and the Transport Coefficients of Liquids. J. Chem. Phys. 1974, 60, 969.
    [117]. Catchpole, O. J.; King, M. B. Measurement and correlation of binary diffusion coefficients in near critical fluids. Ind. Eng. Chem. Res. 1994, 33, 1828-1837.
    [118]. Funazukuri, T.; Wakao, N. Application of rough hard sphere model to binary diffusion coeffcients of organic compounds in dense CO_2. Kagaku Kogaku Ronbunshu, 1995, 21, 204-211.
    [119]. Bondi, A. van der Waals volumes and radii. J. Phy. Chem. 1964, 68, 441-451.
    [120]. Fei, W. Y.; Bart, H. J. Prediction of Diffusivities in Liquids, Chem. Eng. Technol. 1998, 21, 659-665.
    [121]. Matthews, M. A.; Akgerman, A. Diffusion coefficients for binary alkane mixtures to 573 K and 3.5 MPa. AIChEJ. 1987, 33, 881.
    [122]. He, C. H.: Yu, Y. S.; Su, W. K. Tracer diffusion coefficients of solutes in supercritical solvents. Fluid Phase Equilib. 1998, 142, 281-286.
    [123]. Liu, H. Q.; Silva, C. M.; Macedo, E. A. New equations for tracer diffusion coefficients of solutes in supercritical and liquid solvents based on the Lennard-Jones fluid model, Ind. Eng. Chem. Res. 1997, 36, 246-252
    [124]. Yang X. N; Coelho L. A. F.; Matthews M. A. Near-critical behavior of mutual diffusion for five solutes in supercritical carbon dioxide, Ind. Eng. Chem. Res. 2000, 39, 3059-3068.
    [125]. Liu, H. Q.; Ruckenstein, E. Predicting the diffusion coefficients in supercritical fluids, Ind. Eng. Chem. Res. 1997, 36, 888-895.
    [126]. Taylor, G. Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. London 1953, 219, 186.
    [127]. Taylor, G. Condition under which dispersion of a solute in a stream of solvent can be used to measure molecular diffusion. Proc. R. Soc. London 1954, 225, 473.
    [128]. Aris, R. On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. London 1956, 235, 67
    [129]. Umezawa, S.; Nagashima, A. Measurement of the diffusion coefficients of acetone, benzene, and alkane in supercritical CO2 by the Taylor dispersion method. J. Supercrit. Fluids 1992, 5, 242-250.
    [130]. Bueno, J. L.; Suarez, J. J.; Medina, I. Experimental binary diffusion coefficients of benzene and derivatives in supercritical carbon dioxide and their comparison with the values from the classic correlations. Chem. Eng. Sci. 2001, 56, 4309-4319.
    [131]. Gonzalez, L. M.; Bueno, J. L.; Medina, I. Determination of binary diffusion coefficients of anisole, 2,4-dimethylphenol, and nitrobenzene in supercritical carbon dioxide. Ind. Eng. Chem. Res. 2001, 40, 3711-3716.
    [132]. Gonzalez, L. M.; Bueno, J. L.; Medina, I. Measurement of diffusion coefficients for 2-nitroanisole, 1,2-dichlorobenzene and tert-butylbenzene in carbon dioxide containing modifiers. J. Supercrit. Fluids 2002, 24, 219-229.
    [133]. Swaid, I; Schneider, G. M. Determination of binary diffusion coefficients of benzene and alkylbenzene in supercritical CO2 between 308 and 328K in the pressure range 80 to 160 bar with supercritical fluid chromatography (SFC). Ber. Bunsenges. Phys. Chem. 1979, 83, 869-974.
    [134]. Silva, C. M.; Filho, C. A.; Quadri, M. B.; Macedo, E. A. Binary diffusion coefficients of α-pinene and β-pinene in supcrcritical carbon dioxide. J. Supercrit. Fluids 2004, 32, 167-175.
    [135]. Filho, C. A.; Silva, C. M.; Quadri, M. B.; Macedo, E. A. Infinite dilution diffusion coefficients of linalool and benzene in supercritical carbon dioxide. J. Chem. Eng. Data 2002, 47, 1351-1354.
    [136]. Filho, C. A.; Silva, C. M.; Quadri, M. B.; Macedo, E. A. Tracer diffusion coefficients of citral and D-limonene in supercritical carbon dioxide. Fluid Phase Equilibria. 2003, 204, 65-73.
    [137]. Dahmen, N.; Kordikowski, A.; Schneider, G. M. Determination of binary diffusion coefficients of organic compounds in supercritical carbon dioxide by supercritical fluid chromatography. J. Chromatogr. 1990, 505, 169-178.
    [138]. Funazukuri, T.; Kong, C. Y.; Kagei, S. Infinite-dilution binary diffusion coefficients of 2-propanone, 2-butanone, 2-pentanone, and 3-pentanone in CO_2 by the Taylor dispersion technique from 308.15 to 328.15K in the pressure range from 8 to 35MPa. Int. J. Thermophys. 2000, 21, 1279-1290.
    [139] Funazukuri, T.; Kong, C. Y.; Kagei, S. Binary diffusion coefficients of acetone in carbon dioxide at 308.2 and 313.2 K in the pressure range from 7.9 to 40 MPa. Int. J. Thermophys. 2000, 21, 651-669.
    [140]. Funazukuri, T.; Kong, C. Y.; Kagei, S. Measurements of binary diffusion coefficients for some low volatile compounds in supercritical carbon dioxide by input-output response technique with two diffusion columns connected in series. Fluid Phase Equilib. 2002, 197, 1169-1178.
    [141]. Funazukuri, T.; Kong, C. Y.; Murooka, N.; Kagei, S. Measurements of binary diffusion coefficients and partition ratios for acetone, phenol, α-tocopherol, and β-carotene in supercritical carbon dioxide with a poly(ethylene glycol)-coated capillary column. Ind. Eng. Chem. Res. 2000, 39, 4462-4469.
    [142]. Funazukuri, T.; Kong, C. Y.; Kagei, S. Binary diffusion coefficients, partition ratios and partial molar volumes at infinite dilution for β-carotene and α-tocopherol in supercritical carbon dioxide. J. Supercrit. Fluids, 2003, 27, 85-96.
    [143]. Funazukuri, T.; Ishiwata, Y. Diffusion coefficients of linoleic acid methyl ester, vitamin K_3 and indole in mixtures of carbon dioxide and n-hexane at 313.2 K, and 16.0 MPa and 25.0 MPa. Fluid Phase Equilib. 1999, 164, 117-129.
    [144]. Funazukuri, T.; Kong, C. Y.; Kagei, S. Infinite-dilution binary diffusion coefficients, partition ratio, and partial molar volume for ubiquinone CoQ10 in supercritical carbon dioxide. Ind. Eng. Chem. Res. 2002, 41, 2812-2818.
    [145]. Lai, C. C.; Tan, C. S. Measurement of molecular diffusion coefficients in supercritical carbon dioxide using a coated capillary column. Ind. Eng. Chem. Res. 1995, 34, 674-680.
    [146]. Higashi, H.; Iwai, Y.; Oda, T.; Nakamura, Y.; Arai, Y. Concentration dependence of diffusion coefficients for supercritical carbon dioxide + naphthalene system. Fluid Phase Equilib. 2002, 197, 1161-1167.
    [147]. Higashi, H.; Iwai, Y.; Uchida, H.; Arai, Y. Diffusion coefficients of aromatic compounds in supercritical carbon dioxide using molecular dynamics simulation. J. Supercrit. Fluids 1998, 13, 93-97.
    [148]. Higashi, H. H.; Iwai, Y.; Nakamura, Y.; Yamamoto, S.; Arai, Y. Correlation of diffusion coefficients for naphthalene and dimethylnaphthalene isomers in supercritical carbon dioxide. Fluid Phase Equilib. 1999, 166, 101 - 110.
    [149]. Tuan, D. Q.; Yener, M. E.; Zollweg, J. A.; Harriott, P.; Rizvi, S. S. H. Steady-state parallel plate apparatus for measurement of diffusion coefficient in supercritical carbon dioxide. Ind. Eng. Chem. Res. 1999, 38, 554-561.
    [150]. Tuan, D. Q.; Zollweg, J. A.; Rizvi , S. S. H. Concentration dependence of the diffusion coefficient of lipid in supercritical carbon dioxide. Ind. Eng. Chem. Res. 1999, 38, 2787-2793.
    [151]. Funazukuri, T.; Hachisu, S.; Wakao, N. Measurements of binary diffusion coefficients of C_(16)-C_(24) unsaturated fatty acid methyl esters in supercritical carbon dioxide. Ind. Eng. Chem. Res. 1991, 30, 1323-1329.
    [152]. Funazukuri, T.; Kong, C. Y.; Kagei, S. Effects of molecular weight and degree of unsaturation on binary diffusion coefficients for lipids in supercritical carbon dioxide. Fluid Phase Equilib. 2004, 219, 67-73.
    [153]. Funazukuri, T.; Kong, C. Y.; Kikuchi, T.; Kagei, S. Measurements of binary diffusion coefficient and partition ratio at infinite dilution for linoleic acid and arachidonic acid in supercritical carbon dioxide. J. Chem. Eng. Data, 2003, 48, 684-688.
    [154]. Funazukuri, T.; Kong, C. Y.; Kagei, S. Binary diffusion coefficient, partition ratio, and partial molar volume for docosahexaenoic acid, eicosapentaenoic acid and α-linolenic acid at infinite dilution in supercritical carbon dioxide. Fluid Phase Equilib. 2003, 206, 163-178.
    [155]. Kong, C. Y.; Withanage, N. R. W.; Funazukuri, T.; Kagei, S. Binary diffusion coefficients and retention factors for γ-linolenic acid and its methyl and ethyl esters in supercritical carbon dioxide. J. Supercrit. Fluids, 2006, 37, 63-71.
    [156]. Kong, C. Y.; Withanage, N. R. W.; Funazukuri, T.; Kagei, S. Binary diffusion coefficients and retention factors for long-chain triglycerides in supercritical carbon dioxide by the chromatographic impulse response method. J. Chem. Eng. Data, 2005, 50, 1635-1640.
    [157]. Liong, K. K.; Wells, P. A.; Foster, N. R. Diffusion coefficients of long-chain esters in supercritical carbon dioxide. Ind. Eng. Chem. Res. 1991, 30, 1329-1335.
    [158]. Liong, K. K.; Wells, P. A.; Foster, N. R. Diffusion of fatty acid esters in supercritical carbon dioxide. Ind. Eng. Chem. Res. 1992, 31,390-399.
    [159]. Rezaei, K. A.; Temelli, F. Using supercritical fluid chromatography to determine diffusion coefficients of lipids in supercritical CO_2. J. Supercrit. Fluids 2000,17, 35-44.
    [160]. Moulijn, J. A.; Spijker, R.; Kolk, J. F. M. Axial dispersion of gases flowing through coiled columns. J. Chromatogr. 1977, 142, 155.
    [161]. Span, R.; Wagner, W. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. J. Phys. Chem. Ref Data, 1996, 25, 1509-1596.
    [162]. Sovova, H.; Prochazka, J. Calculations of compressed carbon dioxide viscosities. Ind. Eng. Chem. Res. 1993, 32, 3162-3169.
    [163]. Kong, C. Y.; Funazukuri, T.; Kagei, S. Binary diffusion coefficients and retention factors for polar compounds in supercritical carbon dioxide by chromatography impulse response method. J. Supercrit. Fluids 2006, 37, 359-366.
    [164]. Reid, R. C.; Prausnitz, J. M.; Sherwood, T. K. The properties of gases and liquids. 3rd. McGraw-Hill, Singapore, 1977.
    [165]. Fuller, E. N.; Schettler, P. D.; Giddings, J. C. A new method for prediction of binary gas-phase diffusion coefficient. Ind. Eng. Chem. 1966, 58, 9-27.
    [166]. Ryu, Y. K.; Kim, K. L.; Lee, C. H. Adsorption and desorption of n-hexane, methyl ethyl ketone and toluene on an activated carbon fiber from supercritical carbon dioxide. Ind. Eng. Chem. Res. 2000, 39. 2510-2518.
    [167].谢兰英,李忠,奚红霞,李祥斌.超临界条件下苯酚在NKA-Ⅱ树脂上的吸附相平衡.化工学报.2002,53,798-803.
    [168]. Smirnova, I.; Mamic, J.; Arlt, W. Adsorption of drugs on silica aerogels. Langmuir, 2003, 19, 8521-8525.
    [169]. Lai, C. C.; Tan, C. S. Measurement of effective diffusivities of toluene in activated carbon in the presence of supercritical carbon dioxide. Ind. Eng. Chem. Res. 1993, 32, 1717-1722.
    [170]. Tan, C. S.; Liou, D. C. Adsorption equilibrium of toluene from supercritical carbon dioxide on activated carbon. Ind. Eng. Chem. Res. 1990, 29, 1412-1415.
    [171]. Harikrishnan, R.; Srinivasan, M. P.; Ching, C. B. Adsorption of ethyl benzene activated carbon from supercritical CO_2. AIChE J. 1998, 44, 2620-2627.
    [172]. Subra, P.; Vega-Bancel, A.; Reverchon, E. Breakthrough curves and adsorption isotherms of terpene mixtures in supercritical carbon dioxide. J. Supercrit. Fluids, 1998, 12, 43-57.
    [173] Gorner, T.; Fuchs, G; Perrut, M. A simple device for preparation of low concentration binary mobile phases in SFC. J. Supercrit. Fluids, 1995, 8, 66-70.
    [174]. Kikic, I.; Alessi, P.; Cortesi, A. An experimental study of supercritical adsorption equilibria of salicylic acid on activated carbon. Fluid Phase Equilb. 1996, 117, 304-331.
    [175].邢华斌.青蒿素的超临界流体吸附基础研究.硕士学位论文,浙江大学,2003.
    [176]. Macnaughton, S. J.; Foster, N. Supercritical adsorption and desorption behavior of DDT on activated carbon using carbon dioxide. Ind. Eng. Chem. Res. 1995, 34, 275-282.
    [177]. Bolten, D.; Johannsen, M. Influence of 2-propanol on adsorption equilibria of α-and β-tocopherol from supercritical carbon dioxide on silica gel. J. Chem. Eng. Data, 2006; 51, 2132-2137.
    [178]. Gluckauf, E. Adsorption isotherms from chromatographic measurement. Nature, 1945,156, 748-749.
    [179]. Cremer, E.; Huber, H. F. Measurement of adsorption isotherm by means of high-temperature elution gas chromatography. Gas Chromatog. Intern. Symp. 1962, 3, 169-82.
    [180]. Guan, H.; Stanley, B. J; Guiochon, G. Theoretical study of the accuracy and precision of the measurement of single-component isotherms by the elution by characteristic point method. J. Chromatography 1994, 659, 27-41.
    [181]. Miyabe, K.; Khattabi, S.; Cherrak, D. E.; Guiochon, G. Study on the accuracy of the elution by characteristic point method for determination of single component isotherms. J. Chromatography A, 2000, 872, 1-21.
    [182]. Lucas, S.; Cocero, M. J.; Zetzl, C.; Brunner, G. Adsorption isotherms for ethylacetate and furfural on activated carbon from supercritical carbon dioxide. Fluid Phase Equilib. 2004, 219, 171-179.
    [183]. Madras, G.; Erkey, C.; Akgerman, A. Supercritical fluid regeneration of activated carbon loaded with heavy molecular weight organics. Ind. Eng. Chem. Res. 1993, 32, 1163-1168.
    [184]. Yang, X. N.; Lira, C. T. Theoretical study of adsorption on activated carbon from a supercritical fluid by the SLD-ESD approach. J. Supercrit. Fluids, 2006, 37, 191-200.
    [185]. Yan, B.; Yang, X. N. Binary adsorption of benzene and supercritical carbon dioxide on carbon: density functional theory study. Ind. Eng. Chem. Res. 2004, 43, 6577-6586.
    [186]. Bharath, R.; Inomata, H.; Arai, K. Vapor-liquid equilibria for binary mixtures of carbon dioxide and fatty acid ethyl esters, Fluid Phase Equilib. 1989, 50, 315-327.
    [187]. Hansen, S. R.; Craig, R. P. The adsorption of aliphatic alcohols and acids from aqueous solutions by non-porous carbon, J. Phys. Chem. 1954, 58, 211-215.
    [188].任其龙.晴纶溶剂硫氮酸钠净化过程研究.博士学位论文.浙江大学.1997.
    [189]. Tan, C. S.; Liou, D. C.; Axial dispersion of supercritical carbon dioxide in packed beds. Ind. Eng. Chem. Res. 1989, 28, 1246.
    [190]. van Deemter, J. J.; Zuiderweg, F. J.; Klinkenberg, A. Chem. Eng. Sci. 1956, 5, 271.
    [191]. Jentoft, R. E.; Gouw, T. H. Apparatus for supercritical fluid chromatography with carbon dioxide as the mobile phase. Anal. Chem. 1972, 44, 681-686.
    [192]. Heaton, D. M.; Bartle, K. D.; Myers, P.; Clifford, A. A. Use of modifier as trapping fluid in preparative supercritical fluid chromatography. J. Chromatogr. A, 1996, 753, 306-311.
    [193]. Stone, M. A; Taylor, L. T. Improved solvent trapping of volatiles in supercritical fluid extraction by pressurizing the collection vial. Anal. Chem. 2000, 72, 1268-1274.
    [194]. Vejrosta, J.; Karasek, P.; Planteta, J. Analyte collection in off-line supercritieal fluid extraction. Anal. Chem. 1999, 71, 905-909.
    [195]. Lehotay, S. J.; Valverde-Carcia, A. Evaluation of different solid-phase traps for automated concetion and clean-up in the analysis of multiple pesticides in fruits and vegetables after supercritical fluid extraction. K. Chromatogr. A, 1997, 765, 69-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700