中空纤维透析膜的制备、传质特性及其在低温保存中应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜分离技术广泛应用于血液透析,血液净化等生物医学相关领域。常用膜组件的形式为中空纤维式的透析器,结构与管壳式的换热器非常类似。研究也主要集中在三个方面,中空纤维膜本身的研究、膜组件的传质过程的研究以及新的膜分离应用领域的开发。本文的研究工作也围绕这样一条主线完成。
     (1)本文首先制备中空纤维膜。浸没沉淀相转化法是最主要的制备中空纤维膜的方法,采用相转化干-湿纺丝工艺,以PAN/DMF/水(聚丙烯腈/二甲基甲酰胺/水)为三元制膜体系,以聚乙二醇PEG400作为成孔添加剂,运用自行加工设计的芯液桶、喷丝头等关键部件,实验制备了可以用于血液透析的聚丙烯腈中空纤维膜。通过显微镜观察中空纤维膜内径、外径、壁厚等宏观结构:用扫描电镜观察膜横断面及表面其他微观结构。探讨了纺丝液的压力、喷丝头尺寸、芯液压力以及卷绕速率等对中空纤维膜宏观结构(外径和壁厚)的影响。结合相转化法成膜理论,分析目前存在大孔缺陷的原因,找到改良中空纤维膜结构,避免缺陷的基本方法。结果表明:喷丝头尺寸对膜宏观结构起决定性影响,喷丝头尺寸越大,所得的中空纤维膜的尺寸也越大;纺丝液压力增大,纤维膜的内、外径、壁厚均增加;芯液压力增大,纤维膜的内外径增加,壁厚减少;适当增大喷丝头尺寸,减小纺丝液和芯液压力,可以减少纤维表面的穿孔,改善纤维膜的结构性能。
     (2)本文其次使用Matlab软件,同时考虑透析器外壳内壁面的影响和中空纤维随机排布的影响,通过假定恒定中空纤维表面浓度和恒定浓度流量两种类比传热问题中经常采用的边界条件,数值模拟了管外流场充分发展情况下,中空纤维透析器的管外传质,计算了透析器管外流场及浓度场分布以及不同填充密度情况下透析器管外传质系数,考察了壁面、中空纤维的随机排布方式、填充密度、管外流体的平均流速等对管外传质的影响,并与忽略壁面影响的结果进行比较。模拟结果表明:受中空纤维随机排布的影响,管外流场存在沟流现象,局部填充密度的不同导致流场分布不均匀;随机排布的方式对传质系数有较大的影响,但相比忽略壁面影响时的影响要小;管外流速越大,传质系数也越大;在所研究的中空纤维填充密度范围内(10%~50%),随着填充密度的增大,透析器的管外传质系数先增大,后减小,变化幅度均较小,存在一个最佳的填充密度;与忽略壁面影响时的值比较发现,在填充密度较小时,壁面对传质有促进作用,填充密度较大时,则相反。
     (3)本文最后将透析膜分离方法应用到低温生物学领域,特别是细胞低温保存过程中低温保护剂的去除。成功搭建实验装置,研究各种因素对细胞溶液中渗透压变化的影响,结果表明:透析液侧预填充亚高渗的低温保护剂溶液或者高渗的盐水溶液,能够有效减缓初始时的渗透压突变。随着清洗过程进行,逐步加速血液和透析液的流速可以增大清洗效率,缩短清洗所需要的时间。两者结合可以得到最佳的清洗程序。
     分别运用透析法和常规离心方法做了去除红细胞低温保护剂甘油的实验,新方法冰冻-复温-洗涤后的红细胞计数回收率(%)为89.71±2.46(平均值±标准偏差),血红蛋白回收率(%)为84.93±4.64,上清游离血红蛋白的含量(g/L)为0.66±0.13,所得冰冻-复温-洗涤后的红细胞悬液的渗透压(残余甘油的含量)为340.33±20.56mOsm,与传统离心方法所得结果相当,均达到了国家对冰冻洗涤红细胞的质量标准要求。清洗一个单位冰冻红细胞需要用时30-40分钟,远小于离心方法所需要的约2个小时。结果表明:与常规的离心洗涤法比较而言,本文方法能够快速有效安全地去除低温保存细胞悬浮液中的低温保护剂。
     设计自动控制的清洗系统,初步调试结果验证了其可行性和潜力,表明该系统将在医院、血液中心和细胞库等部门有很广阔的应用前景。
Membrane separation has been widely used in biomedical related areas such as hemodialysis and hemopurification. The most commonly used membrane system is hollow fiber module whose configuration is similar to that of tube-shell heat exchanger. Investigations were mainly focused on the hollow fiber membrane preparation, mass transfer of hollow fiber modules and extending of its application. All the research work in this thesis will be explored around this topic.
     (1) Firstly, immersion precipitation is one of the most important methods for the production of hollow fiber membranes. In this paper dry-wet spinning technique was used during the preparation of dialysis hollow fiber membranes, three-component solution PAN/DMF/Water was chosen as the basic materials, PEG400 was chosen as the pore forming agent. The macro-morphology such as inner and outer diameter and wall thickness of the hollow fibers were observed by microscopy; the micro-morphology of the membrane surface and cross-section ware observed by SEM. The influence of some important spinning parameters such as spinning pressure, nonsolvency pressure, spinneret aperture and rolling rate were investigated. The appearance of some big bores in the hollow fiber surface was discussed based on phase transition theory. Some suggestions for avoiding the defects were presented and the optimized conditions for membrane formation were obtained.
     The results show that: the spinneret aperture is the key factor that determines the membrane macro-structure, the bigger the spinneret aperture the bigger the fiber size; the membrane inner ,outer diameter and it's wall thickness increase with the spinning pressure; the membrane inner ,outer diameter increase and the wall thickness decrease with the nonsolvency pressure; with proper spinneret aperture, spinning and nonsolvency pressure, satisfactory fibers were obtained.
     (2) Secondly, Mass transfer coefficient is an important parameter to evaluate the performance of hollow fiber modules. With the help of Matlab software, the shell-side flow field was simulated numerically under the condition of well developed fluid flow. The theoretical model considers the effects of both the inner wall of the module shell and the random distribution of the hollow fibers on the shell-side mass transfer performance. For different packing density of hollow fibers, the concentration field and the shell-side mass transfer coefficients of dialyzers were obtained with the concentration boundary conditions of constant wall flux and constant wall concentration which are similar to the boundary conditions often used in heat transfer problems. Also the influence of flow rate to the mass transfer coefficient was studied. It was found that, because of the random distribution of hollow fibers channel flow exists in the shell-side flow field, The mass transfer coefficient increases with flow rate. Different packing patterns of hollow fibers result in different mass transfer coefficient values. This effect comes out more remarkable when neglecting the module wall effect. By varying the packing density from 10% to 50%, mass transfer coefficient increases first and then decreases experiencing a maximum value. Comparing to that with no wall effect, we found that, the wall effect promotes the mass transfer in a relatively low packing density but comes to the contrary as the packing density getting higher.
     (3) Lastly the dialysis membrane separation process is used in the field of cryobiology, especially in the process of removal cryoprotective agents(CPA) from cryopreserved cells.
     The experimental setup was established successfully to study the factors that affect the osmolality change(residual CPA concentration) in the cell suspension. The experimental results show that: i) during the initial time period, the sudden decrease of the osmolality can be avoided by prepriming the dialysate side with sub-hypertonic CPA solution or hypertonic saline solution. ii) As the washing process goes on, the residual CPA decreases slower and the washing efficiency decreases, this problem can be solved by increasing the blood flow rate and the dialysate flow rate. Through experiments the optimum procedure for removing CPA was found which can decrease both the osmotic shock to the cells and the wahing time.
     Further more experiments of the removal of glycerol from cryopreserved RBCs were done using the novel hollow fiber module dialysis method and traditional centrifugal method. Using the new method the Freeze-Thaw-Wash(FTW) RBC count recovery(%) is 89.71±2.46 (Mean±SD), hemoglobin recovery(%) is 84.93±4.64, the free hemoglobin concentration (g/L) is 0.66±0.13, and the osmolality of the FTW RBC suspension(the residual glycerol concentration) is 340.33±20.56mOsm .There is no significant difference between the results of centrifugal method. All these results satisfy the requirements of the national quality standards for freeze-thaw-wash RBCs . It takes only 30-40 minutes to wash one unit of frozen RBCs using the new method, which is much less than the 2 hours of the centrifugal method. The results show that compared to the traditional centrifugal method, this method is more efficient and safe.
     An automated washing system was designed based on the above progress. It was demonstrated that the new device has great potential to be used in hospitals, blood centers and cell banks et.al.
引文
[1] 任建新主编,膜分离技术及其应用,化学工业出版社,北京,2003.
    [2] M.Mulder著,李琳译,膜技术基本原理(第二版),北京:清华大学出版社。1999。
    [3] 刘家琪,传质分离过程,高等教育出版社,北京,2005
    [4] R Rautenbach 著,王乐夫译,膜工艺—组件和装置设计基础,化学工业出版社,北京,2001.
    [5] 汪锰,王湛,李政雄,膜材料及其制备,化学工业出版社,北京,2003.
    [6] 刘茉娥,膜分离技术,化学工业出版社,北京,2001.
    [7] 王学松编著,现代膜技术及其应用指南,化学工业出版社,北京,2005.
    [8] 郑巨孟,中空纤维膜及膜接触器传质特性的研究,浙江大学博士论文,2003.
    [9] Loebs, Sourirajan. High flow porous membranes for separating water from saline solutions[P]. USP: 3133132, 1964-05-12.
    [10] Leos Zeman, Timothy Fraser. Formation of air-cast cellulose acetate membranes. Part Ⅰ. Study ofmacrovoid formation. J Membr Sci, 1993, 84: 93-106.
    [11] Leos Zeman, Timothy Fraser. Formation of air-casting cellulose acetate membrane Part Ⅱ. Kinetics of demixing and macrovoid growth. J Membr Sci, 1994, 87: 267-279.
    [12] Strathmann H, Koch K , The formation mechanism of phase inversion membranes[J]. Desalination, 1977, 21: 241-249.
    [13] Kesting RE. Phase inversion membranes[J], ACS SympSer, 1985, 269: 131-152.
    [14] Castro A J, Preparation of microporous polymer membranes via thermal inverse phase separation. US. Patent. 4247498. October l4. 1981.
    [15] Lloyd DR, Kinzer K E, Tseng H S , Microporous membrane formation via thermally induced phase separation (1), Solid—liquid phase separation [J], J Membr Sci, 1990 52:239-261.
    [16] Lloyd D R, Kim S S, Kinzer K E. Microporous Membrane formation Via Thermally Induced Phase separation Ⅰ. Liquid-liquid phase separation. J. Membrane Sci, 1991,64:1-11.
    [17] Kim S S, Lloyd. D R. Microporous Membrane formation Via Thermally Induced Phase Separation Ⅱ. Effect of thermodynamic interaction on the structure of isotactic polypropylene membranes. J.Membrane Sci., 1991,84:13-29。
    [18] 潘波,李文俊,热致相分离聚合物微孔膜,膜科学与技术,1995,15(1),1-7.
    [19] Van de Witte P, Dijkstra P J, Van de Berg J W A, et al. Phase separation processes in polymer solutions in relation to membrane formation. J. Membr. Sci. 1996,117:1-31.
    [20] 李战胜,李恕广,江成璋.浸入凝胶法聚合物膜形成机理的研究现状,膜科学与技术,2002,22(2):29-30
    [21] Kang Y S, Kim H J, Kim UY. Asymmetric membrane formation via immersion precipitation method. Ⅰ. Kinetic effect. Journal of Membrane Science,1991, 60: 219-232.
    [22] Claude Cohen, G. B. Tanny, Stephen Prager .Diffusion-controlled formation of porous structure in ternary polymer systems[J]. Journal of Polymer Science: Polymer Physics, 1979,17(3) :477-489.
    [23] Klaus Kimmerle and Heiner Strathmann, Analysis of the structure- determining orocess of ohase inversion membranes, Desalination, 1990,79(2-3): 283-302.
    [24] 李凭力,热致相分离聚丙烯中空纤维膜及其萃取特性的研究,天津大学博士论文,2002。
    [25] 王庆瑞,陈雪英,何春菊.高分子膜材料及人工脏器.膜科学与技术,2003,(4):151-155.
    [26] 裴玉新,沈新元,王庆瑞。血液净化用高分子膜的现状及发展.膜科学与技术,1998,(1):11-12.
    [27] 孙俊芬,王庆瑞。中空纤维分离膜在人工脏器中的应用,合成纤维,2002,31(3):18-21。
    [28] Cussler E L. Diffusion Mass Transfer in Fluid System(扩散 流体系统中的传质). 2nd ed. Wang Yuxin(王宇新), trans. Beijing: Chemical Industry Press, 2002.69-75.
    [29] 丁卫平,中空纤维人工肾的传质研究.中国科学技术大学博士论文,2004.
    [30] Wu J, Chen V. Shell_side Mass Transfer Performance of Ranmomly Packed Hollow Fiber Modules [J] ,J.Membr.Sci., 2000, 172:59-74.
    [31] Qin Y.J., Cabral J.M.S., Lumen mass transfer in hollow-fiber membrane processes with constant external resistances, AIChE J. 43 (1997) 1975-1988.
    [32] Qin Y.J., Cabral J.M.S., Lumen mass transfer in hollow-fiber membrane processes with nonlinear boundary conditions, AIChE J. 44 (1998) 836-848.
    [33] Elmore S.,Lipscomb G.G., Analytical approximations of the effect of a fiber size distribution on the performance of hollow fiber membrane separation devices, J. Membr. Sci. 98 (1995) 49-56.
    [34] Crowder R.O., Cussler E.L., Mass transfer in hollow-fiber modules with non-uniform hollow fibers, J. Membr. Sci. 134 (1997) 235-244.
    [35] Lemanski J., Liu B., Lipscomb G.G., Effect of fiber variation on the performance of cross-flow hollow fiber gas separation modules, J. Membr. Sci. 153 (1999) 33-43.
    [36] Klein E., Holland F.F., Lebeouf A., Donnaud A., Smith K.K., Transport and mechanical properties of hemodialysis hollow fibers, J. Membr. Sci. 1(1976) 371-396.
    [37] Klein E., Holland F.F., Donnaud A., Lebeouf A., Eberle K., Diffusive and hydraulic permeabilities of commercially available cellulosic hemodialysis films and hollow fibers, J. Membr. Sci. 2 (1977) 349-364.
    [38] Klein E., Holland F.F., Eberle K., Comparison of experimental and calculated permeability and rejection coefficients for hemodialysis membranes, J. Membr. Sci. 5 (1979) 173-188.
    [39] Wendt R.P., Klein E., Bresler E.H., Holland F.F., Serino R.M., Villa H., Sieving properties in hemodialysis membranes, J. Membr. Sci. 5 (1979) 23-49.
    [40] Kanamori T., Shinbo T., Mass trsnsfer of a solute by diffusion with convection around a single hollow-fiber membrane for hemodialysis, Desalination 129 (2000) 217-225.
    [41] Yang M C, Cussler E L, Designing hollow fiber contactors [J], AIChE J. 1986,32: 1910-1916.
    [42] Prasad R, Sirkar K K. Dispersion-free Extraction with Microporous Hollow Fibre Modules [J], AIChE J.,1988,34:177-188.
    [43] Costello M J,Fane A G, Hogan P A. The Effect of Shell Side Hydrodynamics on The Performance of Axial Flow Hollow Fibre Modules [J], J. Membr. Sci.,1993,80: 1-11.
    [44] Costello M.J., Shell-side fluid dynamics and mass transfer through hollow fibre membrane modules, PhD Thesis, University of New South Wales, 1995.
    [45] 王玉军,陈飞,王岩,等.中空纤维膜萃取苯酚的传质及流动特性[J].高校化学工程学报.2002,16(5)484-489.
    [46] 丁卫平,何立群,赵刚,等.中空纤维透析器中纤维管填充密度对传质影响的数值模拟[J],化工学报,2004,55(3):356-359.
    [47] Noda I, Gryte C C, Mass transfer in regular arrays of hollow fibers in countercurrent dialysis [J], AIChE J. 1979,25:113-122.
    [48] Happel J, Viscous flow relative to arrays of cylinders, AIChE J. 1959,5:174-177.
    [49] Carlo Gostoli and Alceo Gatta, Mass transfer in a hollow fiber dialyzer, Journal of Membrane Science, 1980; 6:133-148.
    [50] Bao L, Lipscomb G G, Mass transfer in axial flows through randomly packed fiber bundles with constant wall concentration [J], J. Membr. Sci. 2002, 204: 207-220.
    [51] Bao L, Liu B, Lipscomb G G, Entry mass transfer in axial flows through randomly packed fiber bundles [J], AIChE J. 1999 45: 2346-2356.
    [52] Bao L, Lipscomb G G. Well-developed Mass Transfer in Axial Flows Through Randomly Packed Fiber Bundles With Constant Wall Flux, Chem. Eng. Sci., 2002, 57: 125-132.
    [53] Bao L, Lipscomb G G, Effect of random fiber packing on the performance of shell-fed hollow-fiber gas separation modules, Desalination 146 (2002) 243-248.
    [54] Miyatake O, Iwashita H. Laminar-flow Heat Transfer to A Fluid Flowing Axially Between Cylinders With A Uniform surface temperature [J], Int. J. Heat Mass Tran., 1990, 33: 417-425.
    [55] O Miyatake, H Iwashita. Laminar-flow Heat Transfer to A Fluid Flowing Axially Between Cylinders With A Uniform Wall Heat Flux, Int. J. Heat Mass Tran., 1991, 34: 322-327.
    [56] Chan D Y C, Hughes B D, Paterson L. Fluid Capacity Distribution of Random Porous Media, Transp. Porous Media, 1988,3:81-94.
    [57] Chen V, Hlavacek M. Application of Voronoi Tessellation for Modeling Randomly Packed Hollow Fiber Bundles [J], AIChE J., 1994, 40: 606-612.
    [58] Rogers J D, Long R. Modeling Hollow Fiber Membrane Contactors Using Film Theory, Voronoi Tessellations, and Facilitation Factors for Systems with Interface Reactions, J. Membr. Sci., 1997, 134: 1-17.
    [59] Wang Y.J., Chen F., Wang Y., Luo G.S., Dai Y.Y., Effect of random packing on shell-side flow and mass transfer in hollow fiber module described by normal distribution function, J. Membr. Sci. 216 (2003) 81-93.
    [60] 陈桂红,周育瑾,陈仲悦。非生物型人工肝在肝肾功能衰竭治疗中的应用。中国现代医药科技,2004,4(4):79-82。
    [61] 张琳 王道标,人工肾代替人工肺治疗急性呼吸窘迫综合征,中国血液净化,2004,3(9)517-518:。
    [62] 马鸿杰,刘梅主编。临床血液透析学,天津科学技术出版社,天津,2001
    [63] Pinnau I, Koros W J .Structures and gas separation properties of asymmetric polysulfone membranes made by dry, wet and dry/wet phase inversion. J. Appl. Polym. Sci, 1991, 43:1491-1502.
    [64] Pinnau I, Koros W J .A qualitative skin layer formation mechanism for membrane made by dry/wet phase inversion . Journal of Polymer Science: Polymer Physics. 1993, 31:410-427.
    [65] 武利顺,王庆瑞,干湿法相转化制膜过程对膜结构的影响,纺织学报,2001,22(5):314-316.
    [66] 罗庆涛,相转化法制膜过程的膜结构形态调控与优化,郑州大学硕士论文,2005.
    [67] 俞三传,高从堦,浸入沉淀相转化法制膜,膜科学与技术,20(2000)36-41.
    [68] 陈立新,沈新元.相转化法的湿法成膜机理.膜科学与技术.1997,17(3):1-6.
    [69] Tompa H, Polymer solutions[M] London: Butter worths, 1956,183-185.
    [70] Altena F W, Smolder C A.Calculation of liquid-liquid phase separation in a ternary system of a polymer in a mixture of a solvent and a non-solvent [J]. Macromolecules,1982,15:1491-1498.
    [71] Reuvers, Van den Berg J.W.A. and Smolders C. A.. Formation of membranes by means of immersion precipitation : Part Ⅰ. A model to describe mass transfer during immersion precipitation. J.Membr. Sci. 1987,34:45-65.
    [72] Reuvers A.J. and Smolders C. A. Formation of membranes by means of immersion precipitation : Part Ⅱ. the mechanism of formation of membranes prepared from the system cellulose acetate-acetone-water. J. Membr.Sci.,34 (1987):67-86
    [73] 赵晓勇,曾一鸣,施艳荞,陈观文.相转化法制备超滤和微滤膜的孔结构控制,功能高分子学报,2002,15(4):487-495.
    [74] Chien-Hsueh Shih, Mechanism of Microporous Hollow Fiber Membrane Formation by Isothermal Precipitation of Semicrystalline Polymers form Solutions, PhD dissertation, Columbia University, 2001.
    [75] Bumsuk Jung, Preparation of hydrophilic polyacrylonitrile blend membranes for ultrafiltration,, Journal of Membrane Science 229 (2004) 129-136
    [76] Boom R.M., Wienk I.M., Boomgaard T., Smolders C.A., Microstructures in phase inversion membranes. Part 2. The role of a polymeric additive, J. Membr. Sci. 73 (1992) 277-292.
    [77] Lafreniere L.Y., Talbot F., Matsuura T., Sourirajan S., Effect of polyvinylpyrrolidone additive on the performance of polyethersuifone ultrafiltration membranes, Ind. Eng. Chem. Res. 26 (1987) 2385-2389.
    [78] Marchese J, Ponce M., Ochoa N.A., Prádanos P., Palacio L., Hernátndez A., Fouling behaviour of polyethersulfone UF membranes made with different PVP, J. Membr. Sci. 211 (2003) 1-11.
    [79] 张翠兰,聚丙烯中空纤维微孔膜热致相分离法制备及其性能测试,天津大学硕士论文,2001.
    [80] 沈新元,朱新远,王庆瑞,UHMW-PAN中空纤维膜的研制及应用(4)—UHMW-PAN中空纤维膜的制备工艺,膜科学与技术,2006,26(2):13-17.
    [81] Welty J R, Wicks C E, Wilson R E, Fundamentals of Momentum, Heat, and Mass Transfer [M], 3rd Ed. John Wiley & Sons, NY, 1984, pp. 803.
    [81] 华泽钊,任禾盛。低温生物医学技术,北京:科学出版社(1994)。
    [82] 李广武,郑从仪,唐兵。低温生物学,长沙:湖南科学技术出版社(1998)。
    [83] Polge C, Smith AU, and Parkes AS. Revival of spermatozoa after vitrification and dehydration at low temperature. Nature, 1949; 164:666-676.
    [84] Rey L., May J. Freeze-drying/Lyophilization of Pharmaceutical and Biological Products. AAI, Inc., Wilmington, North Carolina, USA 1999.
    [85] Jennings TA. Lyophilization:introduction and basic principles, Interpharm Press, Denver, Colorado. 1999.
    [86] Mazur P. Freezing of living cells: mechanisms and implications. Am. J. Physiol. 143:C125-142 (1984).
    [87] Gao D Y, Critser J K. Mechanisms of cryoinjury in living cells. ILAR J., 41(4): 187-196 (2000)
    [88] Mazur P. Cryobiology: the freezing of biological systems. Science 1970;168:939-949.
    [89] Meryman HT. Cryopretective agents. Cryobiology 8, 173-183( 1971).
    [90] 王沛涛.细胞和组织的深低温保存,中国科学技术大学博士论文.2004.
    [91] Lovelock, J.E., Bishop,M.W.H. Prevention of freezing damage to living cells bu dimethylsulphoxide. Nature 183:1394.
    [92] 舒志全.人的红细胞与精子冷冻干燥保存实验研究,中国科学技术大学博士论文.2006.
    [93] Johnson M H, Picketing S J. The effects of dimethylsulfoxide on the microtubular system of the mouse oocyte. Development, 100:313-324 (1987).
    [94] Joly C, Behini O, Boulekbache H, Testart J, Maro B. Effects of 1,2-propanediol on the cytoskeletal organizaton of the mouse oocyte. Hum. Reprod., 7:374-378 (1992).
    [95] Watson PF. The preservation of semen in mammals. In: Finn CA, ed. Oxford Reviews of Reproductive Biology. London: Oxford University Press. p 283-350 (1979).
    [96] Sherman JK. Improved methods of preservation of human spermatozoa by freezing and freezing-drying. Fertil Steril, 14: 49-64(1964).
    [97] David, N. A. (1972) The pharmacology of dimethyi sulfoxide. Annual Revues of Pharmacology 2: 353-374.
    [98] Rowley, S. D. (1992) Haematopoietic stem cell cryopreservation. A review of current techniques. Journal of Hematotherapy 1: 233-250.
    [99] Hoyt, R., Szer, J., Grigg, A . (2000) Neurological events associated with the infusion of cryopreserved bone marrow and/or peripheral blood progenitor cells. Bone Marrow Transplantation 25: 1285-1287.
    [100] Woods EJ, Liu J, Pollok K,et al. A theoretically optimized method for cord blood stem cell cryopreservation. J of Hemato & Stem Cell Res, 2003, 12: 341-350.
    [101] Calmels B, Houze P, Hengesse, JC et al. (2003) Preclinical evaluation of an automated closed fluid management device: CytomateTM for washing out DMSO from hematopoietic stem cell grafts after thawing. Bone Marrow Transplantation 31: 823-828.
    [102] Woods E J, Liu J, Gilmore J A, Reid T J, Gao D Y, and Critser J K. Determination of Human Platelet Membrane Permeability Coefficients Using the Kedem-Katchalsky Formalism: Estimates from Two- vs Three-Parameter Fits. Cryobiology, 38: 200-208(1999).
    [103] Jun Liu, Michael A J Zieger, Jonathan RT Lakey, Erik J Woods, and John K. Critser. The Determination of Membrane Permeability Coefficients of Canine Pancreatic Islet Cells and Their Application to Islet Cryopreservation. Cryobiology, 35: 1-13 (1997).
    [104] Gao D Y, Liu J, Liu C, McGann L E, Watson P F, Kieinhans F W, Mazur P, Critser E S and Critser J K. Prevention of osmotic injury to human spermatozoa during addition and removal of glycerol. Human Reproduction, 10(5): 1109-1122 (1995).
    [105] Papanek T H. The water permeability of the human erythrocyte in the temperature range +25℃ to -10℃. Massachusetts institute of technology, PhD thesis(1978).
    [106] Meryman HT, Hornblower M. A method for freezing and washing red blood cells using a high glycerol concentration.Transfusion, 1972,12(3):145-156.
    [107] 王赤林,袁继荣,李双.冰冻红细胞制备过程中若干问题探讨.中国输血杂志 2004,17(1):21-22.
    [108] 朱发明,何吉,姜侃等.细胞洗地机自动洗涤解冻红细胞的探讨.临床输血与检验,2003,5(1):32-33.
    [109] 金志坚,王拥军,徐芳等.细胞洗涤机去甘油化技术的应用.中国输血杂志,2006,19(1):55-56.
    [110] Valeri CR, Pivacek LE, Cassidy GP, Ragno G, In vitro and in vivo measurements of human RBCs frozen with glycerol and subjected to various storage temperatures before deglycerolization and storage at 4℃ for 3 days. Transfusion, 2001,41 (3):401-405.
    [111] 张晰,陆瑶,周晨等,Haemontics215型血液处理机与手工处理的效果比较,临床输血与检验.2006,8(1):33-34.
    [112] Syme, R., Bewick, M., Stewar, D., et al. (2004) The role of depletion of dimethyl sulfoxide before autografting: on hematologic recovery, side effects and toxicity. Biology of Blood and Marrow Transplantation 10:135-141.
    [113] Tetsuo Iijima.Thermal analysis of crypprotective solutions for red blood cells.Cryobiology, 1998(36): 165-173.
    [114] Rowe AW, Eyster E, Kellner A.Liquid nitrogen preservation of red blood cells for transfusion: a low glycerol-rapid freeze procedure. Cryobiology, 1968;5: 119-28.
    [115] Valeri CR, Ragno G, Pivacek LE, et al. An experiment with glycerol-frozen red blood cells stored at -80∞ C for up to 37 years.Vox Sang, 2000; 79: 168-74.
    [116] Rapatz G and Luyet B. Electron microscope study of erythrocytes in rapidly cooled suspensions containing various concentrations of glycerol. Biodynamica, 10:193-210 (1968).
    [117] Charles C.M. Lelkens, Femke Noorman,et al. Stability after thawing of RBCs frozen with the high- and low-glycerol method. Transfusion 43:157-164,(2003).
    [118] Silva MMC, Madeira VMC, Almeida LM, Custodio JBA. Hemolysis of human erythrocytes induced by tamoxifen is related to disruption of membrane structure. Biochimica Et B iophysica Acta-B iomembranes,2000,1464(1):49-61.
    [119] Yu JP, Liu JH, Pu LQ, et al. Freeze-drying of human red blood cells: influence of carbohydrates and their concentrations. Cell Preservation Technology, 2004,2(4): 270-275.
    [120] 舒志全,罗昭锋,张毅,等.红细胞在保护剂添加和洗涤时的非平衡渗透响 应实验研究冲国生物医学工程学报,2006,25(1):25-29.
    [121] 周仁郁主编,SPSS13.0统计软件,成都:西南交通大学出版社,2005.
    [122] 邱燕,主编.中华人民共和国国家标准.全血及成分质量要求[S].GB18469-2001:8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700