纳米体系自旋极化和输运性质的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自旋电子学主要研究固体中电子自旋的作用以及对电子自旋的有效控制和操作,是一门结合磁学和与微电子学的交叉学科。由于符合人们开发利用电子自旋性质的工业发展需求,自旋电子学在近年来成为了一个非常热门的研究领域。自旋-轨道耦合效应则是自旋电子学领域中的一个重要研究分支。自旋-轨道耦合将电子的轨道运动和电子的自旋联系在了一起,为人们提供了一种有可能利用外电场来调控电子的运动、进而调控电子自旋的手段。这样一种全电学、不需要外磁场或磁性材料就能调控自旋的方法,引起了人们的广泛兴趣和研究热情。而由自旋-轨道耦合所导致的自旋霍尔效应的发现更是推动了人们对自旋-轨道耦合效应以及自旋电子学的研究。另一个有可能给现今电子产业带来革命性发展的研究领域就是分子电子学,它试图从下到上,从原子、分子出发构建新一代电子器件。随着扫描隧道显微镜、自组装技术、劈裂结技术等实验技术的发展以及密度泛函第一性原理计算等理论研究方法的进步,分子电子学也在近年来得到了迅速的发展。在实验和理论上,人们通过电、磁、力、光、化学、电化学等的作用来调控电子在分子结中的输运过程,以期望能在分子尺度上实现电子器件的功能。在自旋电子学和分子电子学的相关领域内,本文从理论上研究了纳米体系的自旋-轨道耦合效应、自旋极化特征以及自旋输运性质等。
     第一章简要介绍了自旋电子学和分子电子学这两个倍受人们关注的研究领域。与自旋电子学相关的自旋-轨道耦合效应以及自旋霍尔效应也分别作了介绍。
     第二章介绍了本文所用的一些理论研究方法,包括:平而波展开的模型研究方法、密度泛函理论和非平衡格林函数方法。
     第三章分析了Rashba自旋-轨道耦合所引起的自旋极化现象。平衡态下,由于时间反演不变性,自旋-轨道耦合并不会引起任何的自旋极化。而在稳衡态下,由于体系几何结构和哈密顿量的对称性,自旋极化分布具有一定的对称性。我们主要研究了Rashba弹道体系在稳衡态下,衰减波对其自旋极化的影响。衰减波的考虑将有助于提高数值计算的准确度和可靠性,从而保证体系在线性响应近似下所应具有的“左右”对称性。虽然衰减波局域于界面附近,由于衰减波与平面波的耦合作用,其对自旋极化的影响还具有长程性。衰减波对自旋极化的影响还与电子的入射能量有着很密切的关系。最后,我们也讨论了衰减波对自旋流的影响。
     第四章研究了广延态和局域态对自旋霍尔极化的影响。虽然纯粹的衰减波对自旋霍尔极化的贡献几乎可以忽略,但是局域态和广延态的混合项对自旋霍尔极化有着很大的影响。在Rashba窄带体系中,混合项对自旋霍尔极化的影响占主导;而在较宽的体系中,则是以广延态的贡献为主。由于这两项之间的竞争,随着体系宽度或者Rashba耦合强度的变化,自旋霍尔极化将发生翻转。自旋翻转的宽度与体系的特征Rashba长度有着密切的关系。在半无限体系中,随着Rashba耦合强度的变化,这种自旋翻转现象并不存在。
     第五章首先简要介绍了单层石墨,然后研究了单层石墨在Ni(111)、Au(111)及Ag(111)金属衬底上的自旋-轨道耦合效应。置于Ni(111)衬底上的单层石墨确实存在着自旋-轨道耦合效应;但是,单层石墨能带的Rashba劈裂只有10 meV左右的大小。这种自旋-轨道耦合效应来源于单层石墨与金属衬底在界面附近的相互作用。在单层石墨/Au(111)的稳定体系中,单层石墨能带的自旋-轨道耦合劈裂可以达到25 meV左右。我们并没有发现单层石墨的自旋-轨道耦合效应与体系的电荷转移有直接的关系,界面附近的局域电场模型并不适合用来解释这个效应。
     第六章利用第一性原理计算方法研究了可由单层石墨经过琢刻而成的碳原子链的磁性及其自旋极化输运性质。孤立而较短的碳原子链可能有着非常有趣的磁性特征。C2。纯碳原子链具有2μB的总磁矩,其磁性主要分布于原子链的末端。而对于氮参杂的碳原子链NC2n+1N和CnNCn,其基态的磁性具有类似于自旋密度波的分布形式。原子链C2n+1和NC2nN则不具有磁性。所有这些原子链的磁性特征都可以通过各原子链中原子间的成键方式以及体系的未配对电子态而得到很好的解释。当这些原子链置于非磁金属电极之间以形成输运体系时,其磁性都将受到极大的削弱。但是,通过一定的拉伸作用,置于两个金电极间的氮参杂碳原子链可以实现极好的自旋过滤效应。对于本身具有和本身没有磁性的碳原子链,它们的费米电导有着不同的自旋极化特征。即使考虑了自旋极化,碳原子链总电导的奇偶振荡现象依然存在。
     第七章是本文的一个简要总结。
Spintronics is a multi-disciplinary field combining nano-electronics with magnet-ics; its central theme is about the spin-interaction and the active manipulation of spin in solid-state systems. Due to the possible applications in the electronic industry, spin-tronics has become an active research field. One of the research interest in spintronics is about the spin-orbit coupling. The spin-orbit coupling connects the momentum of an electron with its spin, so that one can possibly use the external electronic field to ma-nipulate the spin of electron. It may allow for purely electric manipulation of spin, i.e. magnetic material or external magnetic field is not required, and results in considerable interest of study. The discovery of the spin Hall effect induced by spin-orbit coupling further arouses the study of the spin-orbit effect and the development of spintronics. Another active related research field is molecular electronics, which may also lead to a revolutionary development of the present electronic industry. The central goal of mole-cular electronics is to construct the electronic device in the scale of molecule. Both the experimental improvement in instruments (such as STM, self-assembly and break junction) and the progress in theoretical methods (such as the non-equilibrium Green function method) lead to the great development of molecular electronics. In molecular junctions, electron transport through molecules may be controlled electrically, mag-netically, optically, mechanically, chemically or electrochemically, leading to possible applications of molecular devices. In this dissertation, we investigate the spin-orbit ef-fect, the spin polarization and the spin transport of nano-systems in the relative fields of spintronics and molecular electronics.
     In chapterⅠ, spintronics and molecular electronics are briefly introduced. The spin-orbit coupling and the spin Hall effect are especially presented in detail.
     In chapterⅡ, the theoretical methods used in the thesisit are presented. There are plane wave expanding, density function theory and non-equilibrium Green function method.
     In chapterⅢ, the spin polarization induced by Rashba spin-orbit coupling is in-vestigated. In equilibrium, spin-orbit coupling would not result in any spin polarization due to the time-reversal invariance of systems. However, in steady states, the spin polar-ization would have some symmetrical properties because of the symmetry in geometry and hamiltonian. We focus on the influence of evanescent waves on the spin polariza-tion in a ballistic Rashba bar. The consideration of the evanescent waves can improve the calculation results and be in favor of the symmetry of the spin polarization. The evanescent waves can also lead to obvious changes of the pattern of spin polarization not only in the regions near the interfaces but also in the middle region of a long sam-ple due to different mechanisms. The contribution of pure evanescent waves to spin polarization is found to depend sensitively on the incident energy. We also discuss its influence on spin current.
     In chapterⅣ, we investigate the effects of extended and localized states on spin Hall polarization in ballistic Rashba structures. The contribution from pure evanescent waves to the total spin Hall polarization is negligible while the contribution of the mixing terms from the evanescent and extended waves is comparable to that of the pure extended waves. In a narrow Rashba strip, the mixing terms are found to contribute dominantly to the total polarization. It is, however, the extended states that determine the behavior of total polarization in a wide sample. Due to the competition of the two kinds of contributions, spin flipping of the spin Hall polarization is obtained with the variation of the sample width or Rashba strength. The width of spin flipping is found to be closely related to the characteristic Rashba length of the system. No spin flipping is found in the semi-infinite system.
     In chapterⅤ, we give a brief introduction to graphene first, and then investigate the spin-orbit splitting of graphene on Ni(111), Au(111) and Ag(111) metals. The monolayer graphene does have Rashba splitting when it is deposited on Ni(111) sur-face. However, the Rashba splitting is just about 10 meV. The spin-orbit splitting of graphene on metals is just from the interaction between graphene and a few layer met-als near the interface. For the practical G/Au(111) structure, the spin-orbit splitting of graphene can be up to about 25 meV. We don't find an obvious relationship between the spin-orbit splitting and charge transfer. Thus, the effective electric field model is not suitable to be used to explain the Rashba splitting of graphene.
     In chapterⅥ, we investigate the magnetic properties of pure and nitrogen-doped carbon atomic wires using ab initio methods. The isolated and short carbon atomic wires may have very interesting magnetic properties, although the magnetism is sig-nificantly diminished when the wires are contacted by non-magnetic metal leads. In particular, for C2n atomic wires a total magnetic moment of 2μB was obtained. The magnetism is mostly localized at the terminals of the wires due to unpaired states. For nitrogen-doped wires, NC2n+1N and CnNCn, the ground state magnetic structure mim-ics a (spin density wave)SDW-like state. No magnetism is found for the wires of C2n+1 and NC2nN. The magnetic behaviors in the wires can be understood by the bonding patterns and the existence of unpaired states. Perfect spin filtering effect was obtained in the nitrogen-doped carbon wires sandwiched between Au leads by stretching the wires slightly. For the wires with or without intrinsic magnetism, different conducting mechanisms were found. The even-odd oscillatory behavior of the total conductance is seen for these atomic wires even after spin polarized transport occurs in the systems.
     In chapterⅦ, a brief summary of the thesis is presented.
引文
[1]G. A. Prinz, Science 282,1660 (1998).
    [2]S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova and D. M. Treger, Science 294,1488 (2001).
    [3]I. Zutic, J. Fabian and S. D. Sarma, Rev. Mod. Phys.76,323 (2004).
    [4]N. J. TAO, Nature Nanotech.1,173 (2006).
    [5]董浩,邓宁,陈培毅.世界科技研究与发展27(3),1(2005).
    [6]陈灏.物理36卷,910(2007).
    [7]D. D. Awschalom, M. E. Flatte, Nature Phys.3,153 (2007).
    [8]F. Kuemmeth, S. Ilani, D. C. Ralph, and P. L. McEuen, Nature 452,448 (2008).
    [9]S. D. Sarma, Am. Sci.89,516 (2001).
    [10]M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett.61,2472 (1988).
    [11]S. S. P. Parkin, N. More, and K. P. Roche, Phys. Rev. Lett.64,2304 (1990).
    [12]沈顺清.物理37卷,16(2008).
    [13]游彪,盛雯婷,孙亮,张维,杜军,胡安.自然杂志25卷,220(2003).
    [14]S. Datta and B. Das, Appl. Phys. Lett.56,665 (1990).
    [15]S. Murakami, N. Nagaosa, S. C. Zhang, Science 301,1348 (2003).
    [16]A. E. Popescu and R. Ionicioiu, Phys. Rev. B 69,245422 (2004).
    [17]苏汝铿.量子力学(第二版) [M].北京:高等教育出版社,2002:429.
    [18]Y. A. Bychkov and E. I. Rashba, J. Phys. C 17,6039 (1984).
    [19]G. Dresslehaus, Phys. Rev.100,580 (1955).
    [20]J. M. Luttinger, Phys. Rev.102,1030 (1956).
    [21]W. K. Tse and S. D. Sarma, Phys. Rev. Lett.96,056601 (2006).
    [22]M. I. Dyakonov and V. I. Perel, Sov. Phys. JETP 33,467 (1971).
    [23]J. E. Hirsch, Phys. Rev. Lett.83,1834 (1999).
    [24]G. Vignale, J. Supercond. Nov. Magn.23,3 (2010).
    [25]Y. K. Kato, R. C. Myers, A. C. Gossard and D. D. Awschalom, Science,306,1910 (2004).
    [26]J. Wunderlich, B. Kaestner, J. Sinova, and T. Jungwirth, Phys. Rev. Lett.94, 047204 (2005).
    [27]N. P. Stern, S. Ghosh, G. Xiang, M. Zhu, N. Samarth, and D. D. Awschalom, Phys. Rev. Lett.97,126603 (2006).
    [28]S. O. Valenzuela and M. Tinkham, Nature 442,176 (2006).
    [29]A. Aviram and M. A. Ratner, Chem. Phys. Lett.,29,277 (1974).
    [30]M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour, Science 278,252 (1997).
    [31]M. Di Ventra, S. T. Pantelides and N. D. Lang, Phys. Rev. Lett.84,979 (2000).
    [32]J. Taylor, H. Guo, and J. Wang, Phys. Rev. B 63,245407 (2001).
    [33]J. Reichert, R. Ochs, D. Beckmann, H. B. Weber, M. Mayor, and H. v. Lohneysen, Phys. Rev. Lett.88,176804 (2002).
    [34]Y. Y. Liang, Y. X. Zhou, H. Chen, R. Note, H. Mizuseki, and Y. Kawazoe, J. Chem. Phys.129,024901 (2008).
    [35]W. Sheng, Z. Y. Li, Z. Y. Ning, Z. H. Zhang, Z. Q. Yang and H. Guo, J. Chem. Phys.131,244712(2009).
    [36]A. H. Flood, J. F. Stoddart, D. W Steuerman, and J. R. Heath, Science 306,2055(2004).
    [37]C. R. Martin and L. A. Baker, Science 309,67(2005).
    [1]Y. A. Bychkov and E. I. Rashba, J. Phys. C 17,6039 (1984).
    [2]谢希德,陆栋.固体能带理论[M].上海:复旦大学出版社,1998.
    [3]M. Born, and K. Huang, Dyanmical Theory of Crystal Lattice, Oxford:Oxford University Press,1954.
    [4]D. R. Hartree, Proc. Cam. Phil. Soc.24,89 (1928)
    [5]V. Z. Fock, Physik.61,126 (1930).
    [6]P. Hohenberg, and W. Kohn, Phys. Rev.136, B864 (1964).
    [7]W. Kohn, and L. J. Sham, Phys. Rev.140, A1133 (1965).
    [8]A. K. Rajagopal and J. Callaway, Phys. Rev. B 7,1912 (1973).
    [9]Y. Wang, and J. P. Perdew, Phys. Rev. B 44,13298 (2001).
    [10]H. Hellmann, Einfuhrung in die Quantumchemic (Deuticke, Leipzig 1937).
    [11]R. P. Feynman, Phys. Rev.56,340 (1939).
    [12]J. Taylor, H. Guo, and J. Wang, Phys. Rev. B 63,245407 (2001).
    [13]S. Datta, Electronic Transport in Mesoscopic Systems (New York:Cambridge University Press),1995.
    [1]E. Merzbacher, Quantum mechanics (John Wiley& Sons Inc.,1998).
    [2]W. Kohn, Phys. Rev.115,809 (1959); V. Heine, Proc. Phys. Soc. London 81,300 (1963).
    [3]M. F. H. Schuurmans and G. W.'t Hooft, Phys. Rev. B 31,8041 (1985).
    [4]G. Edwards and J. C. Inkson, Semicond. Sci. Technol.9,310 (1994).
    [5]Ph. Mavropoulos, N. Papanikolaou, and P. H. Dederichs, Phys. Rev. Lett.85,1088 (2000).
    [6]D. Stoeffler, J. Phys.:Condens. Matter 16,1603 (2004).
    [7]J. K. Tomfohr and O. F. Sankey, Phys. Rev. B 65,245105 (2002).
    [8]J. E. Hirsch, Phys. Rev. Lett.83,1834 (1999).
    [9]S. Zhang, Phys. Rev. Lett.85,393 (2000).
    [101 Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, Science 306,1910 (2004).
    [11]J.Wunderlich, B. Kaestner, J. Sinova, and T. Jungwirth, Phys. Rev. Lett.94, 047204 (2005).
    [12]N. P. Stern, S. Ghosh, G. Xiang, M. Zhu, N. Samarth, and D. D. Awschalom, Phys. Rev. Lett.97,126603 (2006).
    [13]B. K. Nikolic, S. Souma, L. P. Zarbo, and J. Sinova, Phys. Rev. Lett.95,046601 (2005).
    [14]J.Yao and Z. Q. Yang, Phys. Rev. B 73,033314 (2006).
    [15]曾谨言.量子力学卷Ⅱ(第四版) [M]. 北京: 科学出版社,2007:368.
    [16]J. Wang, K. S. Chan, and D. Y. Xing, Phys. Rev. B 73,033316 (2006).
    [17]A. Reynoso, Gonzalo Usaj, and C. A. Balseiro, Phys. Rev. B 73,115342 (2006).
    [18]G. Usaj and C. A. Balseiro, Europhys. Lett.72,631 (2005).
    [19]Y. Jiang, Phys. Rev. B 74,195308 (2006).
    [20]Q. Wang and L. Sheng, Int. J. Mod. Phys. B,19,4135 (2005).
    [21]Y. A. Bychkov and E. I. Rashba, J. Phys. C 17,6039 (1984).
    [22]T. Matsuyama, C.-M. Hu, D. Grundler, G. Meier, and U. Merkt, Phys. Rev. B 65, 155322(2002).
    [23]Q-F Sun and X. C. Xie, Phys. Rev. B 71,155321 (2005).
    [24]Yun-Juan Bao, Huai-Bing Zhuang, Shun-Qing Shen, and Fu-Chun Zhang, Phys. Rev. B 72,245323 (2005).
    [1]M. I. D'yakonov and V. I. Perel', JETP Lett.13,467 (1971); J. E. Hirsch, Phys. Rev. Lett.83,1834 (1999); S. Zhang, Phys. Rev. Lett.85,393 (2000).
    [2]Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, Science 306,1910 (2004); J. Wunderlich, B. Kaestner, J. Sinova, and T. Jungwirth, Phys. Rev. Lett. 94,047204 (2005); N. P. Stern, S. Ghosh, G. Xiang, M. Zhu, N. Samarth, and D. D. Awschalom, Phys. Rev. Lett.97,126603 (2006).
    [3]S. O. Valenzuela and M. Tinkham, Nature 442,176 (2006).
    [4]D. D. Awschalom and M. E. Flatte, Nature Physics 3,153 (2007).
    [5]V. Sih, W. H. Lau, R. C. Myers, V. R. Horowitz, A. C. Gossard, and D. D. Awschalom, Phys. Rev. Lett.97,096605 (2006).
    [6]Yanxia Xing, Qing-feng Sun, and Jian Wang, Phys. Rev. B 73,205339 (2006).
    [7]I. Adagideli and G. E. W. Bauer, Phys. Rev. Lett.95,256602 (2005).
    [8]V. A. Zyuzin, P. G. Silvestrov, and E. G. Mishchenko, Phys. Rev. Lett.99,106601 (2007).
    [9]J. Sinova, S. Murakami, S. Q. Shen, and M. S. Choi, Solid State Comm.138,214 (2006) and references therein.
    [10]Y. A. Bychkov and E. I. Rashba, J. Phys. C 17,6039 (1984).
    [11]J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, Phys. Rev. Lett.78,1335 (1997); S. Giglberger, L. E. Golub, V. V. Bel'kov, S. N. Danilov, D. Schuh, C. Gerl, F. Rohlfing, J. Stahl, W. Wegscheider, D. Weiss, W. Prettl. and S. D. Ganichev, Phys. Rev. B 75,035327 (2007).
    [12]B. K. Nikolic, S. Souma, L. P. Zarbo, and J. Sinova, Phys. Rev. Lett.95,046601 (2005).
    [13]J. Yao and Z. Q. Yang, Phys. Rev. B 73,033314 (2006).
    [14]J. Wang, K. S. Chan, and D. Y. Xing, Phys. Rev. B 73,033316 (2006).
    [15]Y. Jiang, Phys. Rev. B 74,195308 (2006).
    [16]A. Reynoso, Gonzalo Usaj, and C. A. Balseiro, Phys. Rev. B 73,115342 (2006).
    [17]Z. Y. Li and Z. Q. Yang, Phys. Rev. B 76,033307 (2007).
    [18]B. K. Nikolic and S. Souma, Phys. Rev. B 71,195328 (2005).
    [1]K. S. Novoselov, A. K. Geim, S.V. Morozov, D. Jiang, M. I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, and A. A. Firsov, Nature (London) 438,197 (2005).
    [2]Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature (London) 438,201 (2005).
    [3]M. I. Katsnelson, K. S. Novoselov and A. K. Geim, Nature Phys.2,620 (2006).
    [4]N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman, and B. J. van Wees, Nature (London) 448,571 (2007).
    [5]B. Trauzettel, D. V. Bulaev, D. Loss and G. Burkard, Nature Phys.3,192 (2007).
    [6]A. K. Geim and K. S. Novoselov, Nat. Mater.6,183 (2007).
    [7]W.Y. Kim and K. S. Kim, Nature Nanotech.3,408 (2008).
    [8]Wei Han, W. H. Wang, K. Pi, K. M. McCreary, W. Bao, Yan Li, F. Miao, C. N. Lau, and R. K. Kawakami, Phys. Rev. Lett,102,137205 (2009).
    [9]M. Koshino, Y. Arimura, and T. Ando, Phys. Rev. Lett,102,177203 (2009).
    [10]A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, Rev. Mod. Phys.81,109 (2009).
    [11]Y. G. Semenov, K. W. Kim, and J. M. Zavada, Appl. Phys. Lett.91,153105 (2007).
    [12]C. L. Kane and E. J. Mele, Phys. Rev. Lett.95,226801 (2005); S. Murakami, N. Nagaosa, and S.-C. Zhang, Phys. Rev. Lett.93,156804 (2004).
    [13]Y. Yao, F. Ye, X.-L. Qi,2 S.-C. Zhang, and Z. Fang, Phys. Rev. B 75,041401(R) (2007).
    [14]Yu. S. Dedkov, M. Fonin, U. Rudiger, and C. Laubschat, Phys. Rev. Lett.100, 107602(2008).
    [15]O. Rader, A. Varykhalov, J. Sanchez-Barriga, D. Marchenko, A. Rybkin, and A. M. Shikin, Phys. Rev. Lett.102,057602 (2009).
    [16]P. R. Wallace, Phys. Rev.71,622 (1947).
    [17]G. Kresse and J. Furthmuller, Phys. Rev. B 54,11169 (1996); G. Kresse and J. Hafner, Phys. Rev. B 49,14251 (1994).
    [18]J. P. Perdew and Y. Wang, Phys. Rev. B 45,13244 (1992).
    [19]G. Kresse, D. Joubert, Phys. Rev. B 59,1758 (1999).
    [20]G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink, and P. J. Kelly, Phys. Rev. Lett.101,026803, (2008); P. A. Khomyakov, G. Giovan-netti, P. C. Rusu, G. Brocks, J. van den Brink, and P. J. Kelly, Phys. Rev. B,79, 195425(2009).
    [21]V. M. Karpan, G. Giovannetti, P. A. Khomyakov, M. Talanana, A. A. Starikov, M. Zwierzycki, J. van den Brink, G. Brocks, and P. J. Kelly, Phys. Rev. Lett.99, 176602,(2007).
    [22]G. Nicolay, F. Reinert, S. Hiifner and P. Blaha, Phys. Rev. B 65,033407 (2001).
    [23]E. I. Rashba, Sov. Phys. Solid State 2,1109 (1960); Yu. A. Bychkov and E. I. Rashba, JETP Lett.39,78 (1984).
    [24]S. LaShell, B. A. McDougall, and E. Jensen, Phys. Rev. Lett.77,3419 (1996). J Henk, M Hoesch, JOsterwalder, A Ernst and P Bruno, J. Phys.:Condens. Matter 16,7581 (2004).
    [25]A. Yamakage, K.-I. Imural, J. Cayssol and Y. Kuramoto, Europhys. Lett.87, 47005 (2009).
    [26]A. Varykhalov, J. Sanchez-Barriga, A. M. Shikin, C. Biswas, E. Vescovo, A. Ry-bkin, D. Marchenko, and O. Rader, Phys. Rev. Lett.101,157601 (2008).
    [271 G. Dresselhaus, Phys. Rev.100,580 (1955).
    [1]D. D. Awschalom, M. E. Flatte, Nature Phys.3,153 (2007); F. Kuemmeth, S. Ilani, D. C. Ralph, and P. L. McEuen, Nature 452,448 (2008).
    [2]S. Sahoo, T. Kontos, J. Furer, C. Hoffmann, M. Graber, A. Cottet, and C. Schonenberger, Nature Phys.1,99 (2005).
    [3]N. Tombros, S. J. van der Molen, and B. J. van Wees, Phys. Rev. B 73,233403 (2006).
    [4]N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman, and B. J. van Wees, Nature, 448,571(2007).
    [5]J. A. Furst, M. Brandbyge, A. P. Jauho, and K. Stokbro, Phys. Rev. B 78,195405 (2008).
    [6]S. Dag, S. Tongay, T. Yildirim, E. Durgun, R. T. Senger, C. Y. Fong, and S. Ciraci, Phys. Rev. B 72,155444 (2005).
    [7]E. Durgun, R. T. Senger, H. Sevin(?)li, H. Mehrez, and S. Ciraci, Phys. Rev. B 74, 235413(2006).
    [8]C. K. Yang, Appl. Phys. Lett.92,033103 (2008).
    [9]W. Harneit, Phys. Rev. A 65,032322 (2002).
    [10]M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, J. Phys. Soc. Jpn.65, 1920(1996).
    [11]Y. W. Son, M. L. Cohen, and S. G. Louie, Nature,444,347 (2006).
    [12]J.J.Palacios, J. Fernandez-Rossier, and L. Brey, Phys. Rev. B 77,195428 (2008).
    [13]O. V. Yazyev and L. Helm, Phys. Rev. B 75,125408 (2007).
    [14]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva. A. A. Firsov, Science 306 666 (2004).
    [15]J. van Ruitenbeek, Physics 2,42 (2009).
    [16]N. D. Lang and Ph. Avouris, Phys. Rev. Lett.81,3515 (1998).
    [17]B. Larade, J. Taylor, H. Mehrez, and H. Guo, Phys. Rev. B 64,075420 (2001).
    [18]S. Tongay, R. T. Senger, S. Dag, and S. Ciraci, Phys. Rev. Lett.93,136404 (2004).
    [19]R. T. Senger, S. Tongay, S. Dag, E. Durgun, and S. Ciraci, Phys. Rev. B 71, 235406 (2005).
    [20]P. Redondo, C. Barrientos, and A. Largo, J. Phys. Chem. A,109,8594 (2005); A. Largo, P. Redondo, and C. Barrientos, J. Phys. Chem. A,108,6421 (2004).
    [21]R. Pati, M. Mailman, L. Senapati, P. M. Ajayan, S. D. Mahanti, and S. K. Nayak, Phys. Rev. B 68,014412 (2003).
    [22]Y. Wei, Y. Xu, J. Wang, and H. Guo, Phys. Rev. B 70,193406 (2004).
    [23]L. Senapati, R. Pati, M. Mailman, and S. K. Nayak, Phys. Rev. B 72,064416 (2005).
    [24]G. Roth and H. Fischer, Organometallics,15,5766, (1996); S. Eisler, A. D. Slep-kov, E. Elliott, T. Luu, R. McDonald, F. A. Hegmann, and R. R. Tykwinski, J. Am. Chem. Soc.127,2666 (2005).
    [25]T. Ogata, and Y. Tatamitani, J. Phys. Chem. A,112,10713 (2008).
    [26]G. Kresse and J. Furthmuller, Phys. Rev. B 54,11169 (1996); G. Kresse and J. Hafner, Phys. Rev. B 49,14251 (1994).
    [27]G. Kresse and D. Joubert, Phys. Rev. B 59,1758 (1999); P. E. Blochl, Phys. Rev. B50,17953(1994).
    [28]G. Kresse, D. Joubert, Phys. Rev. B 59,1758 (1999).
    [29]J. Taylor, H. Guo, and J. Wang, Phys. Rev. B 63,245407 (2001); 63,121104 (2001).
    [30]G. Q. Li, J. Cai, J. K. Deng, A. R. Rocha, and S. Sanvito, Appl. Phys. Lett.92, 163104(2008).
    [31]Y. J. Lee, M. Brandbyge, M. J. Puska, J. Taylor, K. Stokbro, and R. M. Nieminen, Phys. Rev. B 69,125409 (2004).
    [32]F. Chen, X. Li, J. Hihath, Z. Huang, and N. Tao, J. Am. Chem. Soc.128,15874 (2006); A. I. Yanson, G. R. Bollinger, H. E. van den Brom, N. Agrait, J. M. van Ruitenbeek, Nature 395,783 (1998).
    [33]D. Waldron, P. Haney, B. Larade, A. MacDonald, and H. Guo, Phys. Rev. Lett.96, 166804 (2006); R. Liu, S. H. Ke, W. Yang, and H. U. Baranger, J. Chem. Phys. 127,141104(2007).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700