大豆蛋白质塑料的结构和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油价格上涨以及非降解塑料造成的环境污染日益严重,直接威胁人类的生存、健康与可持续发展。因此,可再生植物资源将成为21世纪重要化工原料,并已列为高分子科学和材料科学的前沿领域之一。大豆蛋白质是大豆榨油后的副产物,其来源广泛且产量丰富。近二十年,“工业大豆蛋白质塑料”的研究和开发已经成为材料领域中的新兴课题。然而,蛋白质材料的聚集态结构尚不清楚,而且其耐水性较差,从而限制了它的研究、开发及应用。本论文主要从高分子物理的角度研究甘油增塑大豆分离蛋白(SPI)塑料的玻璃化转变行为、微区结构及其相互作用。同时,为了提高其力学性能和耐水性,通过溶液插层、原位生成以及溶液共混等方法制备出SPI/蒙脱土(MMT)、SPI/氧化铝水合物(AlOH)和SPI/羟丙基木质素(HPL)等蛋白质纳米复合物,并研究它们的结构与性能的关系。
     本论文的主要创新之处包括:(1)首次提出甘油增塑的SPI塑料存在两个玻璃化转变温度,分别归属于材料的富甘油微区和富蛋白质微区;(2)弄清了大气中水份引起的SPI增塑发生在富甘油微区,导致蛋白质-水微区的出现以及材料性能的显著改变;(3)揭示蛋白质分子在富蛋白微区和富甘油微区分别为紧缩盘状和疏松链状构象; (4)用SPI与MMT成功制备出高度剥离的纳米复合材料,其力学性能和热性能显著提高;(5)建立水介质中原位合成SPI /AlOH纳米复合物的新方法;(6)成功制备出性能优良的耐水性SPI塑料,通过反应挤出和模压成型用SPI与ε-己内酯(CL)、甘油发生接枝和交联反应。
     本论文主要研究内容和结论包括以下几个部分。首先,我们制备出一系列不同甘油含量的SPI塑料。示差扫描量热分析(DSC)结果指出,甘油增塑的SPI塑料存在两个玻璃化转变温度(Tg1和Tg2)。当甘油含量在25 ~ 50 wt%范围内时,位于-28.5 ~ -65.2 oC的Tg1和44 oC左右的Tg2同时存在,分别归属于试片中富甘油微区和富蛋白微区的玻璃化转变。由耐压密封盘示差扫描量热分析(DSC)和傅立叶变换红外光谱(TGA-FTIR)的联用测量结果证明,普通DSC曲线上100 ~ 120 oC范围内的吸热峰主要是试片中残留水份和甘油的挥发引起的,并不是蛋白质的变性。当甘油含量高于25 wt%时,小角X-射线散射(SAXS)测得的富蛋白微区的旋转半径(Rg)大约在60 nm左右,表明富蛋白微区是由紧缩蛋白质链构成的无定形结构。这些实验结果表明,SPI中存在与甘油亲和性差异较大的两类蛋白质,从而导致两个玻璃化转变以及富甘油和富蛋白微区的出现。
     普通铝盘和密封盘DSC的实验结果证明,在较高的相对湿度(RH)环境下,甘油增塑的SPI塑料试片中存在三个不同的玻璃化转变温度(Tg1、Tg2和Tg3),分别位于-12.7 ~ -83.8 oC、65.8 ~ 53.1 oC和3.7 ~ 1.5 oC的范围内。它们依次对应于富甘油微区、富蛋白微区和蛋白质?水微区。同时,蛋白质?水微区的Tg3在RH值大于35%时出现。空气中的水份主要分布在蛋白质链结构疏松且甘油含量高的富甘油微区。Tg2和Tg3值随着RH值上升而缓慢下降,而且表观Rg值基本稳定,由此表明富蛋白微区和蛋白质?水微区是相对稳定的紧缩蛋白质聚集体结构。动态力学热分析(DMTA)、TGA-FTIR和拉伸测试的结果进一步证实甘油增塑的大豆蛋白质对空气中的水份非常敏感,蛋白质材料吸水后导致Tg1急剧下降和Tg3的出现以及材料热稳定性和力学性能显著改变。
     我们通过DSC、原子力显微镜(AFM)、透射电子显微镜(TEM)和13C固体核磁共振(13C NMR)系统地研究了甘油增塑SPI塑料中的微区结构和相互作用。实验的结果表明SPI /甘油体系中确实存在两个玻璃化转变温度。它们位于1.5 ~ -47.6 oC和70 oC左右,分别归属于富甘油微区和富蛋白微区。富蛋白微区是紧缩的盘状蛋白质聚集体,而富甘油微区则是疏松的链状结构。随着蛋白质塑料中甘油含量的提高,富甘油微区中的蛋白质分子被迅速地稀释,分子间空隙明显增大。13C NMR的结果表明甘油与蛋白质之间存在强烈的氢键,并且这种键合作用受蛋白质链上氨基酸残基的影响很大。含非极性侧基的蛋白质链段与甘油相容性较差,从而形成富蛋白微区,它保持紧缩的结构。换而言之,富蛋白微区主要由具有较长烷烃侧基或芳环侧基的氨基酸构成,而带极性基团或较短非极性侧基的蛋白质链段则组成富甘油微区。
     用SPI和MMT通过中性水介质中的溶液插层方法成功制备了具有高度剥离结构或插层结构的可生物降解性纳米复合塑料。TEM结果指出,当MMT含量低于12 wt%时,MMT被剥离成厚度约为1 ~ 2 nm的独立片层;当MMT含量高于12 wt%时,插层结构在SPI/MMT复合物中占主导地位。表面静电势计算的结果表明,大豆蛋白质分子表面正电荷分布的不均匀性引起带负电的蛋白质分子对同样带负电的MMT的插层和剥离作用。基于ζ-电势分析和FTIR的结果表明,SPI /MMT体系中至少存在两种相互作用力,即蛋白质分子表面上正电荷富集区与带负电MMT片层间的静电吸引以及–NH和Si–O基团间的氢键相互作用,它们导致SPI对MMT的插层和剥离。由于MMT片层高度无序的分散及其对蛋白质链段的有效限制,使该SPI纳米复合材料的力学强度和热稳定性明显提高。通过水介质中AlCl3和NH3?H2O原位反应的方法成功制备出SPI/AlOH纳米复合物。FTIR实验结果表明蛋白质肽键与氧化铝水合物之间存在氢键相互作用。它对促进AlOH和SPI之间的高亲和性以及AlOH的均匀分布有重要作用。纳米复合物的结构和性能依赖于AlCl3的加入量。TEM以及力学性能表征的结果证明AlOH形成局部网络状分布,致使AlCl3加入量为8 wt%的SA-8试片显示出较高的透光性,良好的力学性能以及耐水性。当AlCl3加入量低于8 wt%时,AlOH纳米颗粒均匀的分散在大豆蛋白质基质中,其直径为10 ~ 50 nm。然而,当AlCl3加入量高于8 wt%时,体系出现明显的相分离。此外,玻璃化转变温度和α-力学松弛温度升高证明SPI与纳米颗粒间有很强的界面粘力,它有效地限制了蛋白质分子的链段运动。由此,提高了材料的拉伸强度和模量,降低材料在高相对湿度环境中的吸湿性。值得注意的是,SPI/AlOH复合物仍然保持良好的生物降解性。
     我们以GA为增容剂,利用溶液共混的方法,将纳米尺度的羟丙基木质素(HPL)分散到SPI中,以提高材料的力学性能。在所有试片中,添加3.3 wt% GA以及6 wt%HPL的H-6具有最好的力学性能。FTIR和X-射线衍射(XRD)的结果表明SPI/HPL复合物是无规交联网络结构,包括HPL与SPI之间的物理交联以及由GA引起的化学交联。TEM照片指出,由于GA的增容作用使HPL颗粒的直径稳定在大约为50 nm。该蛋白质塑料试片横截面的结构分析证明SPI/HPL复合物中存在较强的界面粘力。当HPL含量从0 wt%提高到6 wt%时,HPL纳米颗粒对网络结构的限制作用使试片的Tg从62.5 oC提高到70.4 oC。在这里,物理交联和化学交联网络的共同存在对SPI塑料的力学性能和热性能的提高起重要作用。
     通过反应挤出和模压成型的方法成功制备出CL/甘油二元增塑剂增塑的SPI塑料。FTIR和SEM结果说明CL在高温高剪切力挤出和成型过程中可以与SPI和甘油发生交联和接枝反应,导致各组分间有较好的相容性。当CL含量较低时(< 25 wt%),CL主要分布在富甘油微区中,与甘油发生交联反应;而当它含量较高时(> 25 wt%),CL主要分布在富蛋白微区与蛋白质发生接枝聚合反应。交联和接枝聚合反应形成了网络结构,致使材料的两个玻璃化转变温度和α-力学松弛温度均上升,而且材料的拉伸强度和杨氏模量以及耐水性明显提高。此外,各组分之间的化学反应还使SPI塑料的热稳定性提高,并且试片受热时甘油的挥发以及NH3和CO2的释放明显延缓。以大豆残渣(SD)为原料,在20 MPa和120 oC的条件下,以25 wt%的甘油作为增塑剂,6.8 wt%的GA作为交联剂,成功制得具有生物可降解性的大豆渣蛋白质塑料GSD-3。由于SD中纤维素、多糖和蛋白质之间强烈的相互作用,GSD-3试片显示出略高于SPI试片的拉伸强度、断裂伸长率和热稳定性。同时,GSD-3试片在念珠镰刀霉菌、橄榄毛壳菌和绿色木霉菌的作用下可以完全生物降解。此外,用蓖麻油基聚氨酯/硝化壳聚糖互穿聚合物网络涂层涂覆GSD-3试片,制备出耐水性蛋白质塑料,它们的界面存在较强的化学键合作用,显著改善了试片的拉伸强度和耐水性。
     上述研究成果不仅提出了大豆蛋白质塑料中微观结构和相互作用的新观点,而且为制备大豆蛋白质纳米复合物提供了一系列简便的新途径。同时,建立了新型大豆蛋白质纳米复合塑料的结构与性能之间的关系。尤其,本工作使用可再生资源——大豆渣为原料,通过绿色的工艺制备环境友好材料。因此,本工作具有理论意义和应用前景,并且符合可持续发展战略。
The increasing price of petroleum and the ever-increasing pollution from non-degraded plastic waste have directly threatened human being’s survival, health and development. Therefore, the natural renewable plant resources have the potential to be used as an alternative to petroleum and become one of the primary chemical materials in the 21st century, which has been one of the fronts of polymer science and material science. Soy protein, a by-product of the production of soy bean oil is a kind of widespread and abundant natural polymers. In the latest decade, developing biodegradable soy protein plastics has been a new topic in material science. However, the condensed structure for soy protein plastics lacks systemic understanding. Meanwhile, the water resistance of soy protein plastics is relative low, which limited their research, development and application. The main objectives of this thesis are to study the glass transition behaviour, microstructure and interaction of glycerol plasticized soy protein isolate (SPI) plastics, and to prepare SPI/montmorillonite (MMT), SPI/alumina hydrate (AlOH) and SPI/ hydroxypropyl alkaline lignin (HPL) nanocomposites via solution intercalation, in situ synthesis and solution blending methods, respectively. The interaction mechanism and the structure-properties correlation for these novel materials are clarified.
     The innovative achievements of this thesis are as follows. (1) For the first time, we suggested that there were two glass transition temperatures assigned to glycerol-rich and protein-rich domains in glycerol-plasticized SPI plastics. (2) It was clarified that the moisture obviously plasticized the glycerol-rich domains, leading to the occurrence of protein-water domains and the obvious changes of the material properties. (3) The protein-rich and glycerol-rich domains were of compact disk-like structure and loose chain-like structure, respectively. (4) We revealed that there were strong hydrogen bonding and electrostatic interaction between SPI and montmorillonite. These two interactions resulted in the high exfoliation of MMT layers and the significant improvements of mechanical properties and thermal stability. (5) A novel way to prepare the SPI/AlOH nanocomposites in aqueous media via in situ synthesis has been brought out, and it was revealed that the dispersion status of AlOH nanoparticles obviously influenced the material properties. (6) Theε-caprolactone (CL)/glycerol plasticized SPI plastics were successfully prepared through an extruding and compression molding process. It has been shown that grafting and crosslinking reactions occur among CL, glycerol and SPI.
     The main research contents and conclusions are divided into the following parts. Firstly, two glass transition temperatures (Tg1 and Tg2) of SPI plasticized with glycerol were clearly observed by differential scanning calorimetry (DSC). The results revealed that when glycerol content was in the range from 25 to 50 wt.-%, the obvious microphase separation occurred in the SPI/glycerol system. In the meanwhile, Tg1 at -28.5 ~ -65.2 oC and Tg2 at about 44 oC coexisted, assigned to glycerol-rich and protein-rich domains in the SPI sheets, respectively. The results from DSC with O-ring-sealed capsule and thermogravimetric analysis-Fourier transform infrared spectroscopy (TGA-FTIR) evidenced that the endothermal peaks at 100 ~ 120 oC in the DSC curves were assigned to the evaporation of the residual moisture, rather than denature of proteins. The values of gyration radii (Rg) of protein-rich domains estimated by small angle X-ray scattering (SAXS) were around 60 nm when the glycerol contents were higher than 25 wt%, indicating the amorphous protein-rich domains were composed of the compact protein chains. All of the results suggested that there were two kinds of protein chains with relatively high or low compatibility to glycerol in the SPI, leading to two glass transitions as a result of the existence of glycerol-rich and protein-rich domains.
     On the basis of the results from DSC with the aluminum pan and O-ring-sealed stainless steel capsule, there were three glass transition temperatures (Tg1, Tg2 and Tg3) at -12.7 ~ -83.8 oC, 65.8 ~ 53.1 oC and 3.7 ~ 1.5 oC in glycerol plasticized SPI plastic sheets at high relative humidity (RH). They were assigned to the glycerol-rich, protein-rich and protein-water domains, respectively. Tg3 of the protein-water domain occurred when the RH value was higher than 35%. Moreover, the absorbed water mainly dispersed in the glycerol-rich domain composed of loose protein chains with high glycerol content. With an increase of RH, the slow decrease of the Tg2 and Tg3 values as well as the relative stability of the Rg values indicated that the protein-rich and protein-water domains were relatively stable protein aggregates. The results from DMTA, TGA-FTIR and tensile testing further confirmed that the glycerol-plasticized soy protein sheets easily absorbed the moisture in atmosphere into the glycerol-rich and protein-water domains, leading to the obvious decrease of Tg1, the occurrence of Tg3 and the evident change of mechanical and thermal properties.
     The domain structure and interaction in the glycerol plasticized SPI plastics were carefully investigated using DSC, atomic force microscropy (AFM) and solid-state 13C nuclear magnetic resonance (13C NMR). The results from DSC indicated that there were exactly two glass transitions in SPI/glycerol systems at 1.5 ~ -47.6 oC and around 70 oC, assigned to glycerol-rich and protein-rich domains, respectively. The protein-rich domains were compact disk-like protein aggregates, and the glycerol-rich domains were loose chain-like structures. With an increase of the glycerol content in the protein plastics, the protein molecules were rapidly diluted, and the free spaces around the molecules are obviously enlarged. In the meanwhile, the protein-rich domains maintained their compact structures. The results from 13C NMR revealed that there was strong hydrogen bonding between glycerol and protein. Such bonding was significantly influenced by the amino acid residues. The protein molecular segments with non-polar residues had a low compatibility with glycerol, which formed protein-rich domains. Namely, the protein-rich domains were composed of the amino acids bearing long alkyl or aromatic groups, and the glycerol-rich consisted of those having polar or short non-polar groups.
     The biodegradable SPI/MMT plastics with highly exfoliated or intercalated structures were successfully prepared via a solution intercalation process in neutral aqueous medium. The structures of both the SPI/MMT nanocomposites powders and the plastics were strongly depended on the MMT content. When the MMT content was lower than 12 wt%, the MMT were highly exfoliated into single layers with a thickness of approximately 1~2 nm, whereas the intercalation structure predominated in the SPI/MMT nanocomposites when the MMT content was higher than 12 wt.%. The electrostatic surface potential calculation revealed that the heterogeneous distribution of the surface positive charges provided the possibility for negatively charged soy protein to intercalate and exfoliate MMT. In view of the results from theζ-potential measurement and Fourier transform infrared spectroscopy (FTIR), two kinds of interactions existed in this protein/MMT system, that is, the surface electrostatic interaction between the positive-charge-rich domains of soy protein and the negatively charged MMT layers as well as the hydrogen bonding between the–NH and Si–O groups. Such two interactions resulted in the intercalation and delamination of the MMT layers in the soy protein matrices. The mechanical strength and thermo-stability of the SPI/MMT plastics were significantly improved as a result of the fine dispersion of the MMT layers and the strong restriction effects on the interfaces.
     The SPI / AlOH nanocomposites were successfully prepared via an in situ reaction between AlCl3 and NH3?H2O in aqueous media. The hydrogen bonding interaction between the peptide bond and alumina hydrate played a key role in the high affinity between AlOH and SPI matrices as well as the homogeneous dispersion of nanoparticles. The structures and properties of the SPI/AlOH nanocomposites were strongly depended on the amount of AlCl3 addition. The results from TEM and tensile testing suggested that the local network-like dispersion of AlOH nanoparticles resulted in high transparence, good mechanical performance and elevated water resistance for the SA-8 sheets with the AlCl3 addition of 8 wt%. When the AlCl3 content was lower than 8 wt%, the alumina hydrate were homogenously dispersed in soy protein matrices with a dimension of about 10~50 nm, whereas the phase separation occurred in the nanocomposites when the AlCl3 addition was more than 8 wt%. Additionally, the increase of the glass transition andα-relaxation temperature evidenced the effective confinement of the protein molecules by the strong interfacial adhesion. Meanwhile, this kind of confinement significantly lowered the water uptake, and enhanced the tensile strength and modulus of the composite plastics even at high RH environments. Especially, the composite plastics still maintain relatively good biodegradability.
     The hydroxypropyl alkaline lignin (HPL) has been homogeneously dispersed in soy protein isolate (SPI) as nano-particle with glutaraldehyde (GA) as compatibilizer to improve the mechanical properties. The H-6 plastic sheets with 3.3 wt% GA and 6 wt% HPL exhibited the best mechanical properties in this case. The results from FTIR and X-ray diffraction (XRD) indicated that SPI/HPL composites were of amorphous network structure resulted from the physical crosslinking between HPL and SPI as well as the chemical crosslinking caused by GA. TEM micrographs demonstrated that the compaibilization of GA led a small dimension of the dispersed HPL particles to be about 50 nm in diameter. The cross section structures of the plastic sheets confirmed that there was a good interfacial adhesive in the SPI/HPL composites. The restricting effects of nano-scale HPL particles on the network structures in the SPI/HPL sheets are responsible for the increase of Tg from 62.5 to 70.4 oC when HPL content increase from 0 to 6 wt%. On the whole, the coexistence of the physical and chemical crosslinking networks significantly improved the mechanical and thermal properties of the SPI plastics.
     The SPI plastics with CL and glycerol as plasticizers were successfully prepared through reactive extruding and compression molding. The results of FTIR and SEM revealed that the high temperature and high shearing process could cause the occurrence of the grafting and crosslinking reactions among CL, glycerol and SPI, which was responsible for the good compatibility among each component. When the CL content was relatively low (< 25 wt%), the CL was mainly dispersed in the glycerol-rich domains and formed crosslinking with glycerol. When the CL content was relatively high (> 25 wt%), the dispersion of CL was mainly in protein-rich domains and grafted onto the protein chains. The crosslinking and grafting polymerization reactions built the network structures in soy protein matrices, leading to the increase of the glass transition andα-relaxation temperatures. Such chemical reactions enhanced the tensile strength, Young’s modulus and water resistance. Furthermore, the thermal stability was elevated, and the evaporation of glycerol and the emission of NH3 and CO2 during heating were retarded.
     Biodegradable plasticses (GSD-3) were prepared from soy dreg (SD) with 25 wt% glycerol as the plasticizer and 6.8 wt% GA as the cross-linker under a pressure of 20 MPa at 120 oC. Compared with the sheets based on SPI, the GSD-3 sheets exhibited good tensile strength, breaking elongation and thermostability because of the strong interaction between cellulose, polysaccharide, and protein in the SD. Moreover, the GSD-3 sheets were fully biodegraded by the strains of Fusarium moniliforme, Chaetomium divaceum and Trichoderma viride. The water resistant SD plastics were prepared by coating the castor-oil-based polyurethane/nitrochitosan interpenetrating polymer networks (IPNs) on GSD-3 plastic sheets. The strong interfacial bonding between the GSD-3 sheet and the coating layer elevated the tensile strength and water resistance of the GSD-3 sheets.
     The achievements mentioned above not only brought out new viewpoints for the microstructure and interaction in soy protein plastics, but also provided convenient ways to prepare soy protein nanocomposites. And the correlation of structure and properties for the novel soy protein nanocomposite plastics were established. Additionally, a novel renewable recourse, soy dreg has been applied to prepare eco-friendly materials via green process. Therefore, this thesis possesses academic value and application perspective, and well accords with the strategy of sustainable development.
引文
[1] 杨家玲. 绿色化学与技术. 北京:北京邮电大学出版社,2001.
    [2] Hammoudeh S., Li H. The impact of the Asian crisis on the behavior of US and international petroleum prices. Energy Economics 2004, 26, 135-160.
    [3] Jayaraj R.S., Muraleedharan C. Use of vegetable oils as I.C. engine fuels—A review. A.S. Renewable Energy 2004, 29, 727-742.
    [4] Gross R.A., Kalra B. Biodegradable polymers for the environment. Science 2002, 297, 803-807.
    [5] Caviglia-Harris J.L., Kahn J.R., Green T. Demand-side policies for environmental protection and sustainable usage of renewable resources. Ecological Economics 2003, 45, 119-132.
    [6] 陈德敏. 中国可再生资源综合利用的战略思路与对策. 中国软科学 2003, 8, 1-7.
    [7] 张俐娜. 天然高分子改性材料及应用. 北京:化工出版社,2006.
    [8] 戚严磊, 崔永岩. 关于蛋白质塑料的研究. 塑料 2005, 34(5), 35-39.
    [9] Katoh K., Shibayama M., Tanabe T., Yamauchi K. Preparation and physicochemical properties of compression-molded keratin film. Biomaterials 2004, 25, 2265-2272.
    [10] Wu Q.X., Sakabe H. Isobe S. Studies on the toughness and water resistance of zein-based polymers by modification. Polymer 2003, 44, 3901-3908.
    [11] John J., Tang J., Bhattacharya M. Processing of biodegradable blends of wheat gluten and modified polycaprolactone. Polymer 1998, 39(13), 2883-2895.
    [12] El-Adawy T. A. Functional properties and nutritional quality of acetylated and succinylated mung bean protein isolate. Food Chem 2000, 70, 83-91.
    [13] Cuq B., Gontard N., Guilbert S. Thermoplastic properties of fish myofibrillar proteins: application to biopackaging fabrication. Polymer 1997, 38, 4071-4078.
    [14] Swain S.N., Biswall S.M., Nanda P.K., Nayak P.L. Biodegradable soy based plastics: opportunitiesand challenges. J Polym Environ 2004, 12, 35-42. Gupta Y.P. Nutritive value of soybean. Int J Tropical Agric 1987, 5, 247-279.
    [15] 戈进杰. 生物降解高分子材料及其应用. 北京:化学工业出版社,2002.
    [16] W.J. Soybean proteins: their functional, chemical and physical properties. J Agric Food Chem 1970, 18, 969-976.
    [17] 石彦国, 任莉. 大豆制品工艺学. 北京:中国轻工业出版社,1998.
    [18] 姚穆, 来侃, 孙润军, 蒋素婵. 大豆和大豆蛋白质组成与结构的研究. 棉纺织技术 2002, 30(9), 545-547.
    [19] 夏海华, 曲晓军, 于冲. 大豆低聚糖在食品中的应用. 加工技术 2003, (3), 28-28.
    [20] 王尔惠. 大豆蛋白质生产新技术. 中国轻工业出版社,1999.
    [21] Mounts T.L., Wolf W.J., Martinez W.H. Soybeans: Improvement, Production, and Uses. American Society of Agronomy, Madison, WI, USA. 1987, pp 819-860.
    [22] 刘大川, 田少君. 中国大豆工业当前形势及展望. 中国油脂 2002, 27(5), 5-9.
    [23] Kaplan D.L. (Ed.) Biopolymers from Renewable Resources. Springer-Verlag Berlin Heidelberg, Germany. 1998, p145-176.
    [24] 孙胜军. 大豆膳食纤维研制. 大豆通报 1999, (1), 24-24.
    [25] Chen Y., Zhang L., Du L. Structure and properties of composites compression-molded from polyurethane preppolymer and various soy products. Ind Eng Chem Res 2003, 42, 6786-6794.
    [26] Nash A.M., Wolf W.J. Solubility and ultracentrifugal studies on soybean globulins. Cereal Chem 1967, 44, 183-192.
    [27] Fisher R.R., Glatz C.E., Murphy P.A. Effects of mixing during acid addition on fractionally precipitated protein. Biotechnol Bioeng 1986, 28, 1056-1063.
    [28] Bazinet L., Lamarche F., Labrecque R., Toupin R., Boulet M., Ippersiel D. Systematic Study on the Preparation of a Food Grade Soyabean Protein. No. 9326 U 987.
    [29] Bazinet L., Lamarche F., Labrecque R., Toupin R., Boulet M., Ippersiel D. Electro-acidification of soybean proteins for the production of isolate. Food Technol 1997, 51, 52-56.
    [30] Bazinet L., Lamarche F., Ippersiel D. Comparison of chemical and bipolar membrane electrochemical acidification for precipitation of soybean proteins. J Agric Food Chem 1998, 46, 2013-2019.
    [31] Bazinet L., Lamarche F., Ippersiel D. Bipolar membrane electrodialysis: Applications in the food industry. Trends Food Sci Technol 1998, 9, 107-113.
    [32] Mani K.N. Electrodialysis water splitting technology. J Membrane Sci 1991, 58, 117-138.
    [33] Okubo, K., Waldrop, A.B., Iacobucci, G.A., Myers, D.V. Preparation of low-phytate soybean protein isolate and concentrate by ultrafiltration. Cereal Chem 1975, 52, 263-271.
    [34] Goodnight, K.C., Hartman, G.H., Marquardt, R.F. Aqueous purified soy protein and beverage. U.S. Patent 3 995 071, 1976.
    [35] Lawhon, J.T., Hensley, D.W., Mulsow, D., Mattil, K.F. Optimization of protein isolate production from soy flour using industrial membrane systems. J Food Sci 1978, 43, 361-364.
    [36] Kumar, N.S.K., Yea, M.K., Cheryan, M. Soy protein concentrates by ultrafiltration. J Food Sci 2003, 68, 2278-2283.
    [37] Garcia, M.C., Torre, M., Marina, M.L., Laborda, F. Composition and characterization of soyabean and related products. Crit Rev Food Sci Nutr 1997, 37, 361-391.
    [38] Mondor M., Ippersiel D., Lamarche F., I. Boye J. Production of soy protein concentrates using a combination of electroacidification and ultrafiltration. J Agric Food Chem 2004, 52, 6991-6996.
    [39] Ohren J.A. Process and product characteristics for soya concentrates and isolates. J Am Oil Chem Soc 1981, 58, 333-335.
    [40] Wu Y.V., Inglet G.E. Denaturation of plant proteins related to functionaltity and food applications. J Food Sci 1984, 38, 216-225.
    [41] Yamauchi F., Yamagishi T., Iwabuchi S. Molecular understanding of heat-induced phenomena of soybean protein. Food Rev Int 1991, 7 (3), 283-322.
    [42] Rhee, K.C. Functionality of soy proteins. In Protein Functionality in Food Systems. Hettiarachchy N.S., Ziegler G.R. Eds. Dekker, New York. 1994, pp 311-324.
    [43] Wagner J.R., Sorgentini D.A., A?ón M.C. Relation between solubility and surface hydrophobicity as an indicator of modifications during preparation processes of commercial and laboratory-prepared soy protein isolates. J Agric Food Chem 2000, 48, 3159-3165.
    [44] Sorgentini D.A., Wagner J.R., A?ón M.C. Effects of thermal treatment of soy protein isolate on the characteristics and structure-function relationship of soluble and insoluble fractions. J Agric Food Chem 1995, 43, 2471-2479.
    [45] Petruccelli S., A?ón M.C. Relationship between the method of obtention and structural and functional properties of soy protein isolates. 1. Structural and hydration properties. J Agric Food Chem 1994, 42, 2161-2169.
    [46] Lusas E.W., Rhee K.C. Soybean protein processing and utilization. In: Erickson D.R. (Ed.) Handbood of soybean processing. AOCS Press, American Oil Chemists Society. Champaign, IL. 1995.
    [47] Henn R.L., Netto F.M. Biochemical characterization and enzymatic hydrolysis of different commercial soybean protein isolates. J Agric Food Chem 1998, 46, 3009-3015.
    [48] Wu Q., Zhang L. Effects of the molecular weight on the properties of thermoplastics prepared form soy protein isolate. J Appl Polym Sci 2001, 82, 3373-3380.
    [49] Mori T., Utsumi S., Inaba H., Kitamura K., Harada, K. Differences in subunit composition of glycinin among soybean cultivars. J Agric Food Chem 1981, 29, 20-23.
    [50] Nielsen N.C. The structure and complexity of the 11S polypeptides in soybeans. J Am Oil Chem Soc 1985, 62, 1680-1686.
    [51] Nielsen N.C., Dickinson C.D., Cho T., Thanh V.H., Scallon B.J., Fishcer R.L., Sims T.L., Drews G.N., Goldberg R.B. Characterization of the glycinin gene family in soybean. Plant Cell 1989, 1, 313-328.
    [52] Guéguen J., Azanza J.L. Biochemical and physicochemical properties of proteins from legume grains and oilseeds. In Plant Proteins; Godon, B., Ed.; Technique et Documentation Lavoisier: Paris, 1985; Vol. 1, Chapter 6.
    [53] Staswick P.E., Hermodson M.A., Nielsen N.C. Identification of the cystines which link the acidic and basic components of glycinin subunit. J Biol Chem 1984, 259, 13431-13435.
    [54] Adachi M., Takenaka Y., Gidamis A.B., Mikami B., Utsumi S. Crystal structure of soybean proglycinin A1aB1b homotrimer. J Mol Biol 2001, 305, 291-305.
    [55] Utsumi S. Plant food protein engineering, in Advances in food and nutrition research. Kinsella J.E. Ed. Academic Press, San Diego, CA. pp. 89-208.
    [56] Doyle J.J., Schuler M.A., Godette W.D., Zenger V., Beachy R.N., Slightom J.L. The glycosylated seed storage proteins of Glycine max and Phaseolus vulgaris. J Biol Chem 1986, 261, 9228-9238.
    [57] Harada J.J., Barker S.J., Goldberg R.B. Soybean β-conglycinin gene are clustered in several DNA regions and regulated by transcriptional and posttranscriptional processes, Plant Cell 1989, 1, 415-425.
    [58] Sebastiani F.J., Farrell L.B., Schuler M.A., Beachy R.N. Complete sequence of cDNA of α subunit of soybean β-conglycinin, Plant Mol Biol 1990, 15, 197-201.
    [59] Lawrence M.C., Izard T., Beuchat M., Blagrove R.J., Colman P.M. Structure of phaseolin at 2.2 ? resolution. J Mol Biol 1994, 238, 748-770.
    [60] Ko T.P., Ng J.D., McPherson A. The three-dimensional structure of canavalin from jack bean (Canavalia ensiformis). Plant Physiol 1993, 101, 729-744.
    [61] Ko T.P., Ng J.D., McPherson A. The refined structure of canavalin from jack bean in two crystal forms at 2.1 and 2.0 ?. Acta Crystallog sect D 2000, 56, 411-420.
    [62] Maruyama1 N., Adachi1 M., Takahashi Koji., Yagasaki K., Kohno M., Takenaka1 Y., Okuda1 E., Nakagawa1 S., Mikami1 B., Utsumi S. Crystal structures of recombinant and native soybean β-conglycinin β homotrimers. Eur J Biochem 2001, 268, 3595-3604.
    [63] Kinsella J.E. Functional properties of soy proteins. J Am Oil Chem Soc 1979, 56, 242-258.
    [64] Koide T., Ikenaka T. Studies on soybean trypsin inhibitors 3. Amino acid sequence of the carboxylterminal region and the complete amino acid sequence of soybean trypsin inhibitor (Kunitz). Eur J Biochem 1973, 32, 417-431.
    [65] Birk, Y. Protein proteinase inhibitors in legume seeds overview. Arch Latinoam Nutr 1996, 44, 26S-30S.
    [66] Birk Y. The Bowman-Birk inhibitor. Int J Pept Protein Res 1985, 25, 113-131.
    [67] Koepke J., Ermler U., Warkentin E., Wenzl G., Flecker P. Crystal structure of cancer chemopreventive Bowman-Birk inhibitor in ternary complex with bovine trypsin at 2.3 ? resolution. Structural basis of Janusfaced serine protease specificity. J Mol Biol 2000, 298, 477-481.
    [68] Kudou S., Fleury Y., Welti D., Magnolato D., Uchida T., Kitamura K., Okubo K. Malonyl isoflavone glycosides in soybean seeds (Glycine max Merrill). Agric Biol Chem 1991, 55, 2227-2233.
    [69] Franke A.A., Custer L.J., Cerna C.M., Narala K.K. Quantitation of phytoestrogens in legumes by HPLC. J Agric Food Chem 1994, 42, 1905-1913.
    [70] Horn-Ross P.L., Barnes S., Lee M., Coward L., Mandel J.E., Koo J., John E.M., Smith M. Assessing phytoestrogen exposure in epidemiologic studies: development of a database (United States). Cancer Causes Control 2000, 11, 289-298.
    [71] Liener I.E. Implications of antinutritional components in soybean foods. Crit Rev Food Sci Nutr 1994, 34, 31-67.
    [72] Friedman M., David L. Brandon Nutritional and Health Benefits of Soy Proteins. J Agric Food Chem 2001, 49, 1069-1086.
    [73] Riblett A.L., Herald T.J., Schmidt K.A., Tilley K.A. Characterization of a-Conglycinin and Glycinin Soy Protein Fractions from Four Selected Soybean Genotypes. J Agric Food Chem 2001, 49, 4983-4989.
    [74] Derbyshire E., Wright D.J., Boulter D. Legumin and vicilin, storage proteins of legume seeds. Phytochemistry 1976, 15, 3-24. Shewry P. R. Plant storage proteins, Biol Rev 1995, 70, 375-426.
    [75] Utsumi S., Matsumura Y., Mori T. Structure-function relationships of soy proteins, in Food proteins and their applications. Damodaran S., Paraf A., eds, Marcel Dekker, New York. 1997, pp. 257-291.
    [76] Wright D.J. The seed globulins, in Developments in food protein-5. Hudson, B. J. F., ed., Elsevier, London. 1988, pp. 81-158.
    [77] Maruyama N., Katsube T., Wada Y., Oh M.H., Barba de la rosa A.P., Okuda E., Nakagawa S., Utsumi S. The roles of the N-linked glycans and extension regions of soybean β–conglycinin in folding, assembly and structural features. Eur J Biochem 1998, 258, 854-862.
    [78] Shewry P.R., Napier J.A., Tatham A.S. Seed storage proteins: structure and biosynthesis. Plant Cell 1995, 7, 945-956.
    [79] Lalles J.P., Tukur H.M., Salgado P., Mills E.N.C., Morgan M.R.A., Quillien L., Levieux D., Toullec R. Immunochemical studies on gastric and intestinal digestion of soybean glycinin and a-conglycinin in vivo. J Agric Food Chem 1999, 47, 2797-2806.
    [80] Golubovic M, Van Hateren S.H., Ottens M., Witkamp G., Van Der Wielen L.A.M., Novel Method for the Production of Pure Glycinin from Soybeans. J Agric Food Chem 2005, 53, 5265-5269.
    [81] Peng I.C., Quass D.W., Dayton W.R., Allen C.E. The physicochemical and functional properties of soybean 11S globulin. a review. Cereal Chem 1984, 61, 480-489.
    [82] Shutov A.D., Baümlein H. in Seed Proteins, eds. Shewry P.R., Casey R. eds (Kluwer, London), 1999, pp. 543–561.
    [83] Dickinson S.D., Hussein E.H.A., Nielsen N.C. Role of posttranslational cleavage in glycinin assembly. Plant Cell 1989, 1, 459-469.
    [84] Adachi M., Kanamori J., Masuda T., Yagasaki K., Kitamura K., Mikami B., Utsumi S. Crystal structure of soybean 11S globulin: Glycinin A3B4 homohexamer Proc Natl Acad Sci USA 2003, 100, 7395–7400.
    [85] 沈同, 王镜岩. 生物化学. 高等教育出版社, 1996, pp167-168.
    [86] Wu Y.V., Inglet G.E. Denaturation of plant protein related to functonality and food applications. A review. J Food Sci 1974, 39, 218-225.
    [87] Kalapathy U., Hettiarachchy N.S, Rhee K.C. Effect of drying methods on molecular properties and functionalitied of disulfide bond-cleaved soy proteins. J Am Oil Chem Soc 1997, 74, 195-199.
    [88] Rhim J.W., Gennadios A., Handa A., Weller C.L., Hanna M.A. Solubility, tensile, and color properties of modified soy protein isolate films. J Agric Food Chem 2000, 48, 4937-4941.
    [89] Renkema J.M.S., Gruppen H., van Vliet T. Influence of pH and ionic strength on heat-induced formation and rheological properties of soy protein gels in relation to denaturation and their protein compositions. J Agric Food Chem 2002, 50, 6064-6071.
    [90] Hermansson A.M. Physicochemical aspects of soy proteins structure formation. J Texture Stud 1978, 9, 33-58.
    [91] German B., Damodaran S., Kinsella J.E. Thermal dissociation and association behavior of soy proteins. J Agric Food Chem 1982, 30, 807-811.
    [92] Berli C.L.A., Deiber J.A., A?ón M.C. Heat-induced phenomena in soy protein suspensions. rheometric data and theoretical interpretation. J Agric Food Chem 1999, 47, 893-900.
    [93] Chronakis I.S., Kasapis S., Richardson R.K., Doxastakis G. Characterization of a commercial soy isolate by physical techniques. J Texture Stud 1995, 26, 371-389.
    [94] Peng, I.C., Quass, D.W., Dayton, W.R., Allen, C.E. The physicochemical and functional properties of soybean 11S globulins A review. Cereal Chem 1984, 61, 480-490.
    [95] Kinsella, J.E. Functional properties of soy proteins. J Am. Oil Chem Soc 1979, 56, 242-258.
    [96] Thanh V.H., Shibasaki K. Major proteins of soybean seeds. A straightforward fractionation and their characterization. J Agric Food Chem 1976, 24, 1117-1121.
    [97] Yagasaki K., Takagi T., Sakai M., Kitamura K. Biochemical characterization of soybean protein consisting of different subunits of glycinin. J Agric Food Chem 1997, 45, 656-690.
    [98] Badley R.A., Atkinson D., Hauser H., Oldani D., Green J.P., Stubbs J.M. The structure, physical and chemical properties of the soy bean protein glycinin. Biochim Biophys Acta 1975, 412, 214-228.
    [99] Wolf W.J., Briggs D.R. Studies on the cold insoluble fraction of the water extractable soybean proteins II. Factors influencing conformation changes in the 11S component. Arch Biochem Biophys 1958, 76, 377-393.
    [100] Utsumi S., Nakamura T., Mori T. Occurrence of dissociable and undissociable soybean glycinin. Agric Biol Chem 1987, 8, 2139-2144.
    [101] Lakemond C.M.M., de Jongh H.H.J., Hessing M., Gruppen H., Voragen A.G.J. Soy glycinin: influence of pH and ionic strength on solubility and molecular structure at ambient temperatures. J Agric Food Chem 2000, 48, 1985-1990.
    [102] Rangavajhyala N., Ghorpade V., Hanna M. Solubility and molecular properties of heat-cured soy protein films J Agric Food Chem 1997, 45, 4204-4208.
    [103] Wu S., Murphy P.A., Johnson L.A., Reuber M.A., Fratzke A.R. Simplified process for soybean glycinin and β-conglycinin fractionation. J Agric Food Chem 2000, 48, 2702-2708.
    [104] Giese J. Proteins as ingredients: types, functions, applications. Food Technol 1994, 48, 50-60.
    [105] Schmidt R. Gelation and coagulation. In Protein Functionality in Foods; Cherry, P., Ed.; ACS Symposium Series 147; American Chemical Society: Washington, DC, 1981.
    [106] Aguilera J. M. Gelation of whey proteins. Food Technol 1995, 49 (10), 83-89.
    [107] Clark A., Ross-Murphy S. Structural and mechanical properties in biopolymer gels. Adv Polym Sci 1987, 83, 57-192.
    [108] Renkema J.M.S., Lakemond C.M.M., de Jongh H.H.J., Gruppen H., van Vliet T. The effect of pH on heat denaturation and gel forming properties of soy proteins. J Biotechnol 2000, 79, 223-230.
    [109] Utsumi S., Kinsella J.E. Structure-function relationship in food proteins: subunit interactions in heat-induced gelation of 7S, 11S, and soy isolate. J Agric Food Chem 1985, 33, 297-303.
    [110] Utsumi S., Kinsella J.E. Forces involved in soy proteingelation: effects of various reagents on theformation, hardness and solubility of heat-induced gels made from 7S, 11S, and soy isolate. J Food Sci 1985, 50, 1278-1282.
    [111] Utsumi S., Damodaran S., Kinsella J.E. Heat-induced interactions between soy proteins: preferential association of 11S basic subunits and β-subunits of 7S. J. Agric. Food Chem 1984, 32, 1406-1412.
    [112] Puppo M.C., Lupano C.E., A?ón, M.C. Gelation of soy protein isolates in acidic conditions. Effect of pH and protein concentration. J Agric Food Chem 1995, 43, 2353-2361.
    [113] Van Kleef F.S.M. Thermally induced protein gelation: gelation and rheological characterization of highly concentrated ovalbumin and soy protein gels. Biopolymers 1986, 25, 31-59.
    [114] Ledward D.A. Gelation of gelatin. In Functional Properties of Food Macromolecules; Mitchell J.R., Ledward D.A. Eds.; Elsevier Applied Science Publishers: London, 1986; Chapter 4, pp 171-201.
    [115] Puppo M.C., A?ón M.C. Structural properties of heat-induced soy protein gels as affected by ionic strength and pH. J Agric Food Chem 1998, 46, 3583-3589.
    [116] Harwalkar V.R., Kalab M. Thermal denaturation and aggregation of β-lactoglobulin in solution. Electron microscopic study. Milchwissenschaft 1985, 40, 65-68.
    [117] Heertje Y., Van Kleef F.S.M. Observation on the microstructure and rheology of ovalbumin gels. Food Microstruct 1986, 5, 91-98.
    [118] Stading M., Hermansson, A.M. Large deformation properties of β-lactoglobulin gel structures. Food Hydrocolloids 1991, 5, 339-352.
    [119] Hermanssom A.M. Structure of soya glycinin and conglycinin gels. J Sci Food Agric 1985, 36, 822-832.
    [120] Hermansson A.M., Buchheim W. Characterization of protein gels by scanning and transmission electron microscopy. A methodology study of soy protein gels. J Colloid Interface Sci 1981, 81, 519-530.
    [121] Hermansson A.M. Protein functionality and its relation to food microstructure. Qual Plant: Plant Foods Hum. Nutr 1983, 32, 369-388.
    [122] van Vliet T., Martin A., Rendema M., Bos M. Gel formation by soy glycinin in bulk and at interfaces. In: Renard D, Della Valle G., Popineau Y. editors. Plant biopolymer science, food and non-food applications. Cambridge: Royal Society of Chemistry, 2002, pp241-252.
    [123] Van Vliet T., Martin A.H., Bos M.A. Gelation and interfacial behavior of vegetable proteins. Current opinion in colloid and interface science 2002, 7, 462-468.
    [124] Molina E., Defaye A.B., Ledward D.A. Soy protein pressure-induced gels. Food Hydrocolloids 2002, 16, 625-632.
    [125] Ringe D, Petsko GA. The ‘glass transition’ in protein dynamics: what it is, why it occurs, and how to exploit it. Biophys Chem 2003, 105, 667-680.
    [126] Sochava I.V. Heat capacity and thermodynamic characteristics of denaturation and glass transition of hydrated and anhydrous proteins. Biophys Chem 1997, 69, 31-41.
    [127] Pilosof A.M.R. Propiedades de hidratación. In Pilosof A.M.R., Bartholomai G.B. Caracterización functional y structural de proteínas. Chap 1. (pp. 17-28) Eudeba. CYTED. Buenos Aires. Argentina. 2000.
    [128] Hermansson A.M. Functional properties of foods-water vapor sorption. J Food Protection 1977, 12, 177-187.
    [129] Hermansson A.M. Physico-chemical aspects of soy proteins structure formation. J Texture Studies 1978, 9, 33-58.
    [130] Yamauchi F., Yamagishi T., Iwabuchi S. Molecular understanding of heat-induced phenomena of soybean protein. Food Rev Inter 1991, 7, 283-322.
    [131] Puppo M.C., Sorgentini D.A., A?ón M.C. Rheological study of dispersions prepared with modified soybean protein isolates. J Am Oil Chem Soc 2000, 77, 63-71.
    [132] Jovanovich G., Puppo M.C., Giner S.A., A?ón M.C. Water uptake by dehydrated soy protein isolates comparison of equilibrium vapor sorption and water imbibing methods. J Food Eng 2003, 56, 331-338.
    [133] Elisalde B.E., Pilosof A.M.R., Bartholomai G.M. Empirical model for water and hydration rate of food powders by sorption and Baumman methods. J Food Sci 1996, 61, 407-409.
    [134] Euston S.E., Singh M., Munro P.A., Dalgleish D.G. Competitive absorption between sodium caseinate and oil-soluble and water-soluble surfactants in oil-in-water emulsions. J Food Sci 1995, 60, 1124-1131.
    [135] Dickinson E., Rolfe S.E. Dalgleish D.G. Competitive absorption of αs1-casein and β-casein in oil-in-water emulsions. Food Hydrocolloids 1988, 265, 397-405.
    [136] Dickinson E., Golding M. Influence of calcium ions on creaming and rheology of emulsions containing sodium caseinate. Colloids Surf A 1998, 144, 167-177.
    [137] Graham D.E., Phillips M.C. The conformation of proteins at interfaces and their role in stabilizing emulsions. In Theory and Practice of Emulsion Technology; Smith A.L. Ed. Academic Press: London. 1976; pp 75-93.
    [138] Bos M.A., Dunnewind B., van Vliet T., Foams and surface rheological properties of β-casein, gliadin and glycinin. Colloids surf B: Biointerf 2003, 31, 95-105.
    [139] Liu M., Lee D., Damodaran S. Emulsifying Properties of Acidic Subunits of Soy 11S Globulin. J. Agric Food Chem 1999, 47, 4970-4975.
    [140] Kinsella J.E. Functional properties of soy proteins. J Am Oil Chem Soc 1979, 56, 242-258.
    [141] Kim S.H., Kinsella J.E. Surface Active Properties of Food Proteins: Effects of Reduction of Disulfide Bonds on Film Properties and Foam Stability of Glycinin. J Food Sci 1987, 52, 128-131.
    [142] Hu M., McClements J., Decker E.A. Lipid oxidation in corn oil-in-water emulsions stabilized by casein, whey protein isolate, and soy protein isolate. J Agric Food Chem 2003, 51, 1696-1700.
    [143] Wagner J.R., Guéguen J. Surface functional properties of native, acid treated and reduced soy glycinin. 1. Foaming properties. J Agric Food Chem 1999, 47, 2173-2180.
    [144] Matsudomi N., Sasaki T., Kato A. Kobayashi K. Conformational changes and functional properties of acid-modified soy protein. J Agric Food Sci 1985, 49, 1251-1256.
    [145] Wagner J.R., Guéguen J. Effects of dissociation, deamidation, and reducing treatment on structural and surface active properties of soy glycinin. J Agric Food Chem 1995, 43, 1993-2000.
    [146] Jang W., Wasan D.T., Chen K., Campbell B. Effect of protein on the texture of food emulsions under steady flow. Ind Eng Chem Res 2005, 44, 4855-4862.
    [147] Park E.Y., Murakami H., Mori T., Matsumura Y. Effects of protein and peptide addition on lipid oxidation in powder model system. J Agric Food Chem 2005, 53, 137-144.
    [148] Mo X.Q., Sun X.S., Wang Y.Q. Effects of molding temperature and pressure on properties of soy protein polymers. J Appl Polym Sci 1999, 73, 2595-2602.
    [149] Mungara P., Zhang J., Jane J. Extrusion processing of soy protein-based foam. Polym Prepr 1998, 39(2), 148-149.
    [150] Tostoguzov V.B. Thermoplastic extrusion - the mechanism of the formation of extrudate structure and properties. J Am Oil Chem Soc 1993, 70, 417-424.
    [151] Sheard P.R., Fellows A., Ledward D.A., Mitchell J.R. Macromolecular charges associated with the heat treatment of soya isolate. J Food Technol 1988, 21, 55-60.
    [152] Crowe T.W., Johnson L.A. Twin-screw extrusion texturization of extruded-expelled soybean flour. J Am Oil Chem 2001, 78, 781-786.
    [153] Sabato S.F., Lacroix M. Radiation effects on viscosimetry of protein based solutions. Rad Phys and Chem 2002, 63, 357-359.
    [154] Lee M., Lee S., Song K.B. Effect of –radiation on the physicochemical properties of soy protein isolate films. Rad Phys Chem 2005, 72, 35-40.
    [155] Kumar R., Choudhary V., Mishra S., Varma I.K., Mattiason B. Adhesives and plastics based on soy protein products. Ind Crops Prod 2002, 16, 155-172.
    [156] Paul D.R., Bucknall, C.B. Polymer Blends, John Wiley & Sons: New York, 2000.
    [157] Koning C., Duin M.V., Pagnoulle C., Jerome R. Strategies for compatibilization of polymer blends. Prog Polym Sci 1998, 23, 707-757.
    [158] Huang W.N, Sun X.Z. Adhesive properties of soy proteins modified by urea and guanidine hydrochloride. J Am Oil Chem Soc 2000, 77, 101-104.
    [159] Huang W., Sun X. Adhesive properties of soy proteins modified by sodium dodecyl sulfate and sodium dodecyl benzene sulfonate. J Am Oil Chem Soc 2000, 77, 705-708.
    [160] Friedman M., Liardon R., Racemization kinetics of amino acid residues in alkali treated soybean proteins. J Agric Food Chem 1985, 33, 666-672.
    [161] Hettiarachchy N.S., Kalapathy U., Myers D.J. Alkali-modified soy protein with improved adhesive and hydrophobic properties. J Am Oil Chem Soc 1995, 72(12), 1461-1464.
    [162] Lambuth A.L. Soybean glues. In: Skeist I. (Ed.) Handbook of Adhesives, 2nd ed. Van Nostrand, NewYork 1977.
    [163] Chandra B.R.S., Rao A.G.A., Rao M.S.N., Effect of temperature on the conformation of soybean glycininin 8 mol/L urea and 6 mol/L guanidine hydrochloride solution. Agric Food Chem 1984, 32, 1402-1405.
    [164] Franzen K.I., Kinsella J.I. Functional properties of succinylated and acetylated leaf protein isolate. J Food Sci 1987, 52(6), 1557-1561.
    [165] Brandenburg A.H., Weller C.L., Testin R.F. Edible films and coatings from soy proteins. J Food Sci 1993, 58, 1086-1089.
    [166] Foulk J., Bunn J.M. Properties of compression-molded, acetylated soy protein films. Ind Crops Prod 2001, 14, 11-22.
    [167] Sung H.Y., Chen H.J., Liu T.Y., Su J.C. Improvement of the functionalties of soy protein isolate through chemical phosphorylation. J Food Sci 1983, 48, 716-721.
    [168] 孙学斌, 宋丹凤. 大豆蛋白磷酸化. 植物研究 2001, 21(1), 106-109.
    [169] Hirotsuka M., Taniguchi H., Nartta H., Kito M. Functionality and digestibility of a highly phosphorylated soybean protein. Agric Biol Chem 1984, 48, 93-100.
    [170] Oswa R., Walsh T.P. Effects of acidic and alkaline treatments on tannic acid and its binding property to protein. J Agric Food Chem 1993, 41, 704-707.
    [171] Marquie C., Tessier A.M., Aymard C., Guilbert S. HPLC determination of the reactive lysine content of cottonseed protein films to monitor the extent of cross-linking by formaldehyde, glutaraldehyde, and glyoxal. J Agric Food Chem 1997, 45, 922-926.
    [172] Park S.K., Bae D.H., Rhee K.C. Soy protein biopolymers cross-linked with glutaraldehyde. J Am Oil Chem Soc 2000, 77, 879-883.
    [173] Rhim J.W., Gennadios A., Weller C.L., Cezeirat C., Hanna M.A. Soy protein isolate-dialdehyde starch films. Ind Crops Prod 1998, 8, 195-203.
    [174] 黄曼, 卞科. 交联剂对大豆分离蛋白疏水性的影响. 郑州工程学院学报 2002, 23(2), 5-9.
    
    [175] Dykstra G.M., Hollingsworth R.L. Method for producing paper coating binder involving grafting unsaturated acrylate onto proteinaceous substrate in water. US Patent 3,920,592. 1975.
    [176] Kalapathy U., Hettiarachchy N.S., Myers D., Hanna M.A. Modification of soy protein and their adhesive properties on woods. J Am Oil Chem Soc 1995, 72, 507510.
    [177] Inouye K., Nagai K., Takita T. Coagulation of soy protein isolates induced by subtilisin carlsberg. J Agric Food Chem 2002, 50, 1237-1242.
    [178] Ando H., Adachi M., Umeda K., Matsuura A., Nonaka M., Uchio R., Tanaka H., Motoki M. Purification and characteristics of anoval transglutaminase derived from microorganisms. Agric Biol Chem 1989, 53(10), 2613-2617.
    [179] Chanyongvorakul Y., Matsumura Y., Sakamotoetal H. Gelation of bean 11S globulins by Ca2+-indepent transglutaminase. Biosci Biotchnol Biochem 1994, 58(5), 864-869.
    [180] Feng L., Wang Y.Q., Sun X.S. Curing process and mechanical properties of protein-based polymers. J Polym Eng 1999, 19(6), 383-393.
    [181] 何曼君, 陈维孝, 董西侠. 高分子物理. 复旦大学出版社. 上海. 1998.
    [182] Zhang J., Mungara P., Jane J. Mechanical and thermal properties of extruded soy protein. Polymer 2001, 42, 2569-2578.
    [183] Huang H.C., Chang T.C., Jane J. Mechanical and physical properties of protein-starch based plastics produced by extrusion and injection molding. J Am Oil Chem Soc 1999, 76(9), 1101-1108.
    [184] Otaigbe J.U., Goel H., Babcock T., Jane J. Processability and properties of biodegradable plastics made from agricultural biopolymers. J Elast Plast 1999, 31, 56-71.
    [185] Salmoral E.M., Gonzalez M.E., Mariscal M.P., Medina L.F. Biodegradable plastic made from bean products. Ind Crops Prod 2000, 11, 217-225.
    [186] Paetau I., Chen C.Z., Jane J. Biodegradable plastic made from soybean products. I. Effect of preparation and processing on mechanical properties and water absorption. Ind Eng Chem Res 1994, 33, 1821-1827.
    [187] Hayashi N., Hayakawa I., Fujio Y. Flow behaviour of soy protein isolate melt with low and intermediate moisture levels at an elevated temperature. J Food Eng 1993, 18, 1-11.
    [188] Hayashi N., Hayakawa I., Fujio Y. Hydration of heat-treated soy protein isolate and its effect on the molten flow properties at an elevated-temperature. Int J Food Sci Technol 1992, 27, 565-571.
    [189] Hayashi N., Hayakawa I., Noma K., Fujio Y. Influence of time-temperature history and strain history on the melt rheology of soy protein isolate at an elevated-temperature. Int J Food Sci Technol 1992, 27, 297-304.
    [190] Wang S., Sue H., Jane J. Effects of polyhydric alcohols on the mechanical properties of soy protein plastics. J Macro Sci-Pure Appl Chem 1996, A33(5), 557-569.
    [191] Zhang J., Mungara P., Jane J. Effects of plasticization and cross-linking on properties of soy protein based plastics. Polym Prepr 1998, 39, 162-163.
    [192] Jane J., Wang S. Soy protein-based thermoplastic composition for preparing molded articles. US Patent 5,523,293.
    [193] Morales A., Kokini J.L. Glass transition of soy globulins using differential scanning calorimetry and mechanical spectrometry. Biotechnol. Prog 1997, 13, 624-629.
    [194] Mo X., Sun X. Thermal and mechanical properties of plastics molded from sodium dodecyl sulfate-modified soy protein isolates. J Polym Environ 2000, 8, 161-166.
    [195] Zhang J., Mungara P., Jane J. Mechanical and thermal properties of extruded soy protein. Polymer 2001, 42, 2569-2578.
    [196] Sue H.J., Wang S., Jane J. Morphology and mechanical behaviour of engineering soy plastics. Polymer 1997, 38, 5035-5040.
    [197] Chau C.F., Cheung C.K. Functional properties of flours prepared from three Chinese indigenous legume seeds. Food Chem 1998, 61, 429-433.
    [198] Grieshop C.M., Fahey Jr.G.C. Comparison of quality characteristics of soybeans from Brazil, China, and the United States. J Agric Food Chem 2001, 49, 2669-2673.
    [199] Shih F. F. Interaction of soy isolate with polysaccharide and its effect of film properties. J Am Oil Chem Soc 1994, 71, 1281-1285.
    [200] Mohamed A.A. Effect of corn oil and amylose on the thermal properties of native soy protein and commercial soy protein isolate. Food Chem 2002, 78, 291-303.
    [201] Mohamed A., Xu J. Effect of ionic strength and pH on the thermal and rheological properties of soy protein–amylopectin blend. Food Chem 2003, 83, 227-236.
    [202] Lodha P., Netravali A.N. Characterization of interfacial and mechanical properties of “green” composites with soy protein isolate and ramie fiber. J Mater Sci 2002, 37, 3657-3665.
    [203] Huang J., Zhang L., Chen F. Effects of lignin as a filler on properties of soy protein plastics. I. Lignosulfone. J Appl Polym Sci 2003, 88, 3284-3290.
    [204] Huang J., Zhang L., Chen F. Effects of lignin as a filler on properties of soy protein plastics. II. Alkaline lignin. J Appl Polym Sci 2003, 88, 3291-3297.
    [205] Huang J., Zhang L., Wang X., Soy protein-lingosulphonate plastics strengthened with cellulose. J Appl Polym Sci 2003, 89, 1685-1689.
    [206] Liu W., Mohanty A.K., Askeland P., Drzal L.T., Misra M. Influence of fiber surface treatment on properties of Indian grass fiber reinforced soy protein based biocomposites. Polymer 45, 7589-7596.
    [207] Lu Y, Weng L, Zhang L, Morphology and properties of soy protein isolate thermoplasticsreinforced with chitin whiskers. Biomacromolecules 2004, 5, 1046-1051.
    [208] John J. Bhattacharya M. Properties of reactively blended soy protein and modified polyesters. Polym Int 1999, 48, 1165-1172.
    [209] Mungara P., Chang T., Zhu J., Jane J. Processing and physical properties of plastics made from soy protein polyester blends. J Polym Environ 2002, 10, 31-37.
    [210] Zhong Z.K., Sun X.S. Properties of soy protein isolate/polycaprolactone blends compatibilized by methylene diphenyl diisocyanate. Polymer 2001, 42, 6961-6969.
    [211] Zhong Z., Sun S. Properties of soy protein isolate/poly(ethylene-co-ethyl acrylate-co-maleic anhydride) blends. J Appl Polym Sci 2003, 88, 407-413.
    [212] Graiver D., Waikul L.H, Narayan R. Biodegradable soy protein-polyester blends by reactive extrusion process. J Appl Polym Sci 2004, 92, 3231-3239.
    [213] Wang N., Zhang L. Preparation and characterization of soy protein plastics plasticized with waterborne polyurethane. Polym Int 2005, 54, 233-239.
    [214] Chen Y, Zhang L, Du L. Structure and properties of composites compression-molded form polyurethane and various soy products. Ind Eng Chem Res 2003, 42, 6786-6794.
    [215] Park S.K., Hettiarachchy N.S., Were L. Degradation behavior of soy protein-wheat gluten films in simulated soil conditions. J Agric Food Chem 2000, 48, 3027-3031.
    [216] Spence K.E., Allen A.L., Wang S., Jane J. Soil and marine biodegradation of protein-starch plastics. ACS Symp Series 1996, 627, 149-158.
    [217] Brother G.H., Mckinney L.L. Protein Plastics from Soybean Products. Ind Eng Chem 1940, 32, 1002-1006.
    [218] Paetau I., Chen C.Z., Jane J. Biodegradable plastic made from soybean products. II. Effects of cross-linking and cellulose incorporation on mechanical properties and water absorption. J Environ Polym Degrad 1994, 2, 211-217.
    [219] Foulk J., Bunn J.M. Properties of compression-molded, acetylated soy protein films. Ind Crops Prod 2001, 14, 11. Franzen K.L., Kinsella J.E. Functional properties of succinylated and acetylated soy protein. J Agric Food Chem 1976, 24, 788-795.
    [220] Otaigbe J.U., Adams D.O. Bioabsorbable soy protein plastic composites: effect of polyphosphate fillers on water absorption and mechanical properties. J Environ Polym Degrad 1997, 5(4), 199-208.
    [221] Tkaczyk A.H., Otaigbe J.U., Ho K.L.G. Bioabsorbable soy protein plastic composites: effect of polyphosphate fillers on biodegradability. J Polym Environ 2001, 9, 19-23.
    [222] Zhong Z.K., Sun X.S. Thermal and mechanical properties and water absorption of sodium dodecyl sulfate-modified soy protein (11S). J Appl Polym Sci 2001, 81, 166-175.
    [223] Zhong Z.K., Sun X.S. Thermal and mechanical properties and water absorption of guanidine hydrochloride-modified soy protein (11S). J Appl Polym Sci 2000, 78, 1063-1070.
    [224] Chang L.C., Xue Y., Hsieh F.H. Dynamic-mechanical study of water-blown rigid polyurethane foams with and without soy flour. J Appl Polym Sci 2001, 81, 2027-2035.
    [225] Park S.K., Hettiarachchy N.S. Physical and mechanical properties of soy protein-based plastic foam. J Am Oil Chem Soc 1999, 76, 1201-1205.
    [226] Park S.K., Rhee C.O., Bae D.H., Hettiarachchy N.S. Mechanical properties and water-vapor permeability of soy-protein films affected by calcium salts and glucono-δ-lactone. J Agric Food Chem 2001, 49, 2308-2312.
    [227] Rhim J.W., Gennadios A., Weller C.L., Hanna M.A. Sodium dodecyl sulfate treatment improves properties of cast films from soy protein isolate. Ind Crops Prod 2002, 15, 199-205.
    [228] Ghorpade V.M., Ali H., Gennadios A., Hanna M.A. Chemically modified soy protein films. Trans Am Soc Agric Eng 1995, 38, 1805-1808.
    [229] Sabato S.F., Ouattara B., Yu H., D'Aprano G., Tien C.L., Mateescu M.A., Lacroix M. Mechanical and barrier properties of cross-linked soy and whey protein based films. J Agric Food Chem 2001, 49, 1397-1403.
    [230] Park S.K., Bae D.H., Rhee K.C. Soy protein biopolymers cross-linked with glutaraldehyde. J Am Oil Chem Soc 2000, 77, 879-883.
    [231] Mariniello L., Di Pierro P., Esposito C., Sorrentino A., Masi P., Porta R. Preparation and mechanical properties of edible pectin-soy flour films obtained in the absence or presence of transglutaminase. J Biotechnol 2003, 102, 191-198.
    [232] Mizuno A., Mitsuiki M., Motoki M. Effect of transglutaminase treatment on the glass transition of soy protein. J Agric Food Chem 2000, 48, 3286-3291.
    [233] Mizuno A., Mitsuiki M., Motoki M., Ebisawa K., Xuzuki E. Relationship between the glass transition of soy protein and molecular structure. J Agric Food Chem 2000, 48, 3292-3297.
    [234] O'brien D.J., Olofsson J.A. Phenol leachability from phenolic resin materials, abstract in proceedings of industrial waste conference. Hoboken: Eng Inform Inc 1980.
    [235] Hojilla-Evangelista M.P. Adhesive qualities of soybean protein-based foamed plywood glues. J Am Oil Chem Soc 2002, 79, 1145-1149.
    [236] Steele P.H., Kreibich R.E., Steynberg P.J., Hemingway R.W. Finger jointing green southern yellow pine with a soy-based adhesives. Adhes Age 1998, 41, 49-56.
    [237] Zhong Z.K., Sun X.S. Adhesion properties of soy protein with fiber cardboard. J Am Oil Chem Soc 2001, 78, 37-41.
    [238] Zhong Z.K., Sun X.S., Fang X., Ratto J.A. Adhesive strength of guanidine hydrochloridemodified soy protein for fiberboard application. Int J Adhesion Adhesives 2002, 22, 267-272.
    [239] Sun X.S., Kim H., Mo X. Plastic performance of soybean protein components. J Am Oil Soc 1999, 76, 117-123.
    [240] Brown O.E. Labelling adhesives. US Patent 4675351. 1987.
    [241] Liu Y., Li K. Chemical modification of soy protein for wood adhesives. Macromol Rapid Commun 2002, 23, 739-742.
    [242] Liu Y., Li K. Modification of soy protein for wood adhesives using mussel protein as a model: the influence of a mercapto group. Macromol Rapid Commun 2004, 25, 1835-1838.
    [243] Cheng E., Sun X., Karr G..S. Adhesive properties of modified soybean flour in wheat straw particleboard. Composites: Part A, 2004, 35, 297-302.
    [244] Mo X.Q., Hu J., Sun X.S., Ratto J.A. Compression and tensile strength of low-density straw-protein particleboard. Ind Crops Prod 2001, 14, 1-9.
    [245] 季国标. 我国化纤工业及其在新世纪初的发展趋势. 西北纺织工学院学报 2001, 15(3), 1-7.
    [246] Erickson D.R. Practice handbook of soybean processing and utilization. AOCS Press. Washington.1995.
    [247] 李官奇. 植物蛋白合成丝. 中国专利 99116636.1. 1999
    [248] 李官奇. 植物蛋白质合成纤维及其制造方法. 中国专利 02109966.9. 2002.
    [249] 马光辉, 苏志国. 新型高分子材料. 化学工业出版社, 2003.
    [250] Zhang Y,, Ghasemzadeh S., Kotliar A.M., Kumar S., Presnell S., Williams L.D. Fibers from soybean protein and poly(vinyl alcohol). J Appl Polym Sci 1999, 71, 11-19.
    [251] Huang H.C., Hammond E.G., Reitmeier C.A., Myers D.J. Properties of fibers produced from soy protein isolate by extrusion and wet-spinning. J Am Oil Chem Soc 1995, 72(12), 1453-1460.
    [252] Chen Y., Zhang L., Guo J., Liu J. Physical properties of microporous membrances prepared by hydrolyzing cellulose/soy protein blends. J Membr Sci 2004, 241, 393-402.
    [253] Lazko J., Popineau Y., Legrand J. Soy glycinin microcapsules by simple coacervation method. Colloid Surf. B-Biointerfaces 2004, 37, 1-8.
    [254] Vaz C.M., van Doeveren P.F.N.M., Reis R.L., Reis R.L., Cunha A.M. Soy matrix drug delivery systems obtained by melt-processing techniques. Biomacromolecules 2003, 4(16), 1520-1529.
    [255] Vaz C.M., van Doeveren P.F.N.M., Reis R.L., Cunha A.M. Development and design of double-layer co-injection moulded soy protein based drug delivery devices. Polymer 2003, 44, 5983-5992.
    [256] Park H., Li X, Jin C., Park C.G, Cho W., Ha C. Preparation and Properties of Biodegradable Thermoplastic Starch/Clay Hybrids. Macromol Mater Eng 2002, 287, 553-558.
    [257] Park H., Lee W., Park G., Cho W., Ha C. Environmentally friendly polymer hybrids Part IMechanical, thermal, and barrier properties of thermoplastic starch/clay nanocomposites J Mater Sci 2003, 38, 909-915.
    [258] Huang M., Yu J., Ma X. Studies on the properties of Montmorillonite-reinforced thermoplastic starch composites. Polymer 2004, 45, 7017-7023.
    [259] Pandey J.M., Singh R.P. Green Nanocomposites from Renewable Resources: Effect of Plasticizer on the Structure and Material Properties of Clay-filled Starch. Starch/St?rke 2005, 57, 8-15.
    [260] Kalambur S.B., Rizvi S.S. Rapid Report: Starch-based nanocomposites by reactive extrusion processing. Polym Int 2004, 53, 1413-1416.
    [261] Park H., Misra M., Drzal L.T., Mohanty A.K. “Green” Nanocomposites from Cellulose Acetate Bioplastic and Clay: Effect of Eco-Friendly Triethyl Citrate Plasticizer. Biomacromolecules 2004, 5, 2281-2288.
    [262] Park H., Liang X., Mohanty A.K., Misra M., Drzal L.T. Effect of Compatibilizer on Nanostructure of the Biodegradable Cellulose Acetate/Organoclay Nanocomposites. Macromolecules 2004, 37, 9076-9082
    [263] Darder M., Colilla M., Ruiz-Hitzky E. Biopolymer-Clay Nanocomposites Based on Chitosan Intercalated in Montmorillonite. Chem Mater 2003, 15, 3774-3780.
    [264] Darder M., Lo′pez-Blanco M., Aranda P., Aznar A.J., Bravo J., Ruiz-Hitzky E. Microfibrous Chitosan-Sepiolite Nanocomposites. Chem Mater 2006, 18, 1602-1610.
    [265] Wang S., Shen L., Zhang W., Tong Y. Preparation and Mechanical Properties of Chitosan/Carbon Nanotubes Composites. Biomacromolecules 2005, 6, 3067-3072.
    [266] Ruan D., Zhang L. Structure and properties of regenerated cellulose / tourmaline nanocrystal composite films. J Polym Sci Part B: Polym Phys 2004, 42, 367-373.
    [267] Ruan D., Huang Q., Zhang L. Structure and properties of regenerated cellulose / CdS nanocomposite. Macromol Mater Eng 2005, 290, 1017-1024.
    [268] Morin A., Dufresne A. Nanocomposites of chitin whiskers from Riftia tubes and poly(caporolactone). Macromolecules 2002, 35, 2190-2199.
    [269] Putaux J., Molina-Boisseau S., Momaur T., Dufresne A. Platelet Nanocrystals Resulting from the Disruption of Waxy Maize Starch Granules by Acid Hydrolysis. Biomacromolecules 2003, 4, 1198-1202.
    [270] My Ahmed Said Azizi Samir, Alloin F., Dufresne A. Review of Recent Research into Cellulosic Whiskers, Their Properties and Their Application in Nanocomposite Field. Biomacromolecules 2005, 6(2), 612-626.
    [271] Neus Anglés M., Dufresne A. Plasticized Starch/Tunicin Whiskers Nanocomposites. 1. Structural Analysis. Macromolecules 2000, 33, 8344-8353.
    [272] Neus Anglés M., Dufresne A. Plasticized Starch/Tunicin Whiskers Nanocomposite Materials. 2. Mechanical Behavior. Macromolecules 2001, 34, 2921-2931.
    [273] Mathew Aji P., Dufresne A. Morphological investigation of nanocomposites from sorbitol plasticized starch and tunicin whiskers. Biomacromolecules 2002, 3, 609-617.
    [274] Berkovich Y., Aserin A., Wachtel E., Garti N. Preparation of amorphous aluminum oxide-hydroxide nanoparticles in amphiphilic silicone-based copolymer microemulsions. J Colloid Interf Sci 2002, 245, 58-67.
    [275] De Cristofaro A., Violante A. Effect of hydroxyl-aluminium species on the sorption and interlayering of albumin onto montmorillonite. Appl Clay Sci 2001, 19, 59-67.
    [276] Ding X., Henrichs S.M. Adorption and desorption of proteins and polyamino acids by clay minerals and marine sediments. Marine Chem 2002, 77, 225-237.
    [277] You C., De M., Han G., Rotello V.M. Tunable inhibition and denatruation of chymotrypsin with amino acid-functionalized gold nanoparitcles. J Am Chem Soc 2005, 127, 12873-12881.
    [278] Rezwan K., Meier L.P., Rezwan M., V?r?s J., Textor M., Gauckler L.J. Bovine serum albumin adsorption onto colloidal Al2O3 particles: a new model based on zeta potential and UV-Vis measurements. Langmuir 2004, 20, 10055-10061.
    [279] Rezwan K., Meier L., Gauckler L.J. A prediction method for the isoelectric point of binary protein mixtures of bovine serum albumin and lysozyme adsorbed on colloidal titania and alumina paticles. Langmuir 2005, 21, 3493-3497.
    [1] Zhong Z., Sun S.X. Properties of soy protein isolate/polycaprolactone blends compatibilized by methylene diphenyl diisocyanate. Polymer 2001, 42, 6961-6969.
    [2] Morales A., Kokini J.L. Glass Transition of Soy Globulins Using Differential Scanning Calorimetry and Mechanical Spectrometry. Biotechnol Prog 1997, 13, 624-629.
    [3] Mizuno A., Mitsuiki M., Motoki M. Effect of Transglutaminase Treatment on the Glass Transitionof Soy Protein. J Agric Food Chem 2000, 48, 3286-3291.
    [4] Mizuno A., Mitsuiki M., Motoki M., Ebisawa K., Suzuki E. Relationship between the Glass Transition of Soy Protein and Molecular Structure. J Agric Food Chem 2000, 48, 3292-3297.
    [5] Ringe D., Petsko G.A. The ‘glass transition’ in protein dynamics: what it is, why it occurs, and how to exploit it. Biophy Chem 2003, 105, 667-680.
    [6] Rasmussen B.F., Stock A.M., Ringe D., Pestsko G.A. Crystalline ribonuclease A loses function below the dynamical transition at 220 K. Nature 1992, 357, 423-424.
    [7] Zavodszky P., Kardos J., Svingor A., Pestsko G.A. Adjustment of conformational flexibility is a key event in the thermal adaptation of proteins. Proc Natl Acad Sci USA 1998, 95, 7406-7411.
    [8] Feher V.A., Cavanagh J. Millisecond-timescale motions contribute to the function of the bacterial response regulator protein Spo0F. Nature 1999, 400, 289-293.
    [9] Anglès M.N., Dufresne A. Plasticized Starch/Tunicin Whiskers Nanocomposites. 1. Structural Analysis. Macromolecules 2000, 33, 8344-8353.
    [10] Anglès M.N., Dufresne A. Plasticized Starch/Tunicin Whiskers Nanocomposite Materials. 2. Mechanical Behavior. Macromolecules 2001, 34, 2921-2931.
    [11] Arvanitoyannis I., Biliaderis C.G. Physical properties of polyol-plasticized edible blends made of methyl cellulose and soluble starch. Carbohydr Polym 1999, 38, 47-58.
    [12] Zhang J., Mungara P., Jane J. Mechanical and thermal properties of extruded soy protein sheets. Polymer 2001, 42, 2569-2578.
    [13] Sue H. J., Wang S., Jane J. Morphology and mechanical behaviour of engineering soy plastics. Polymer 1997, 38, 5035-5040.
    [14] Schilling C.H., Babcock T., Wang S., Jane J. Mechanical properties of biodegradable soy-protein plastics. J Mater Res 1995, 10, 2197-202.
    [15] Wu Q., Zhang L. Properties and Structure of Soy Protein Isolate-Ethylene Glycol Sheets Obtained by Compression Molding. Ind Eng Chem Res 2001, 40, 1879-1883.
    [16] Wu Q., Zhang L. Effects of the molecular weight on the properties of thermoplastics prepared from soy protein isolate. J Appl Polym Sci 2001, 82, 3373-3380.
    [17] Huang J., Zhang L., Chen F. Effects of lignin as a filler on properties of soy protein plastics. I. Lignosulfonate. J Appl Polym Sci 2003, 88, 3284-3290.
    [18] Huang J., Zhang L., Chen P. Effects of lignin as a filler on properties of soy protein plastics. II. Alkaline lignin. J Appl Polym Sci 2003, 88, 3291-3297.
    [19] Lee A.L., Wand A.J. Microscopic origins of entropy, heat capacity and the glass transition in proteins. Nature 2001, 411, 501-504.
    [20] Réat V., Dunn R., Ferrand M., Finney J.L., Daniel, R.M. Smith J.C. Solvent dependence ofdynamic transitions in protein solutions. Proc Natl Acad Sci USA 2000, 98, 9961-9966.
    [21] Doster W., Bachleitner A., Dunau R., Hieble M., Luscher E. Thermal properties of water in myoglobin crystals and solutions at subzero temperature. Biophys J 1986, 50, 213-219.
    [22] Chu B., Hsiao S.B. Small-Angle X-ray Scattering of Polymers Chem. Rev. 2001, 101, 1727-1762.
    [23] Doniach S. Changes in Biomolecular Conformation Seen by Small Angle X-ray Scattering. Chem Rev 2001, 101, 1763-1778.
    [24] Baldini G., Beretta S., Chirico G., Franz H., Mariani P., Spinozzi F. Salt-Induced Association of β-Lactoglobulin by Light and X-ray Scattering. Macromolecules 1999, 32, 6128-6138.
    [25] Hilger C., Stadler R. Cooperative structure formation by directed noncovalent interactions in an unpolar polymer matrix. 7. Differential scanning calorimetry and small-angle x-ray scattering. Macromolecules 1992, 25, 6670-6680.
    [26] Mathew A.P., Dufresne A. Plasticized Waxy Maize Starch: Effect of Polyols and Relative Humidity on Material Properties. Biomacromolecules 2002, 3, 1101-1108.
    [27] Knubovets T., Osterhout J.J., Connolly P.J., Klibanov A.M. Structure, thermostability, and conformational flexibility of hen egg-white lysozyme dissolved in glycerol. Proc Natl Acad Sci USA 1999, 96, 1262-1267.
    [28] Rariy R.V., Klibanov A.M. Correct protein folding in glycerol. Proc Natl Acad Sci USA 1997, 94, 13520-13523.
    [29] Zeng M., Zhang L., Zhou Y. Effects of solid substrate on structure and properties of casting waterborne polyurethane/carboxymethylchitin films. Polymer 2004, 45, 3535-3545.
    [30] Lu Y., Weng L., Zhang L. Morphology and Properties of Soy Protein Isolate Thermoplastics Reinforced with Chitin Whiskers. Biomacromolecules 2004, 5, 1046-1051.
    [31] Rieger J. The glass transition temperature Tg of polymers—Comparison of the values from differential thermal analysis (DTA, DSC) and dynamic mechanical measurements (torsion pendulum). Polym Testing 2001, 20, 199-204.
    [32] Guinier A., Fournet G. “Small-Angle X-ray Scattering”, New York, Wiley, 1955.
    [33] Kavanaugh J.S., Weydert J.A., Rogers P.H., Arnone A. High-Resolution Crystal Structures of Human Hemoglobin with Mutations at Tryptophan 37β: Structural Basis for a High-Affinity T-State. Biochemistry 1998, 37, 4358-4373.
    [34] Houdusse A., Kalabokis V.N., Himmel D., Szent-Gyorgyi A.G., Cohen C. Atomic structure of scallop myosin subfragment S1 complexed with MgADP: a novel conformation of the myosin head. Cell 1999, 97, 459-470.
    [35] Mouawad L., Perahia D. Motions in Hemoglobin Studied by Normal Mode Analysis and Energy Minimization: Evidence for the Existence of Tertiary T-like, Quaternary R-like IntermediateStructures. J Mol Biol 1996, 258, 393-410.
    [36] Bouckaert J., Loris R., Poortmans F., Wyns L. Crystallographic structure of metal-free concanavalin A at 2.5 ? resolution. Proteins 1995, 23, 510-524.
    [37] Fukushima D. Structures of plant storage proteins and their functions. Food Rev Int 1991, 7, 353-81.
    [1] Wang S., Sue H.J., Jane J. Effects of polyhydric alcohols on the mechanical properties of soy protein plastics. J Macromol Sci-Pure Appl Chem 1996, 33, 557.
    [2] Lodha P., Netravali A.N. Thermal and mechanical properties of environment-friendly ‘green’ plastics from stearic acid modified-soy protein isolate Ind Crop Prod 2005, 21, 49-64.
    [3] Graiver D., Waikul L.H., Berger C. Narayan R., Biodegradable soy protein-polyester blends by reactive extrusion process. J Appl Polym Sci 2004, 92, 3231-3239.
    [4] Lu Y., Weng L., Zhang L. Morphology and Properties of Soy Protein Isolate Thermoplastics Reinforced with Chitin Whiskers. Biomacromolecules 2004, 5, 1046-1051.
    [5] Huang J., Zhang L., Wei H., Cao X. Soy protein isolate/kraft lignin composites compatibilized with methylene diphenyl diisocyanate. J Appl Polym Sci 2004, 93, 624-629.
    [6] Riblett A.L., Herald T.J., Schmidt K.A., Tilley K.A. Characterization of β-Conglycinin and Glycinin Soy Protein Fractions from Four Selected Soybean Genotypes. J Agric Food Chem 2001, 49, 4983-4989
    [7] Morales A., Kokini J.L. Glass Transition of Soy Globulins Using Differential Scanning Calorimetry and Mechanical Spectrometry. Biotechnol Prog 1997, 13, 624-629.
    [8] Zhong Z., Sun S.X. Properties of soy protein isolate/polycaprolactone blends compatibilized by methylene diphenyl diisocyanate. Polymer 2001, 42, 6961-6969.
    [9] Rariy R.V., Klibanov A.M. Correct protein folding in glycerol. Proc Natl Acad Sci USA 1997, 94, 13520-3.
    [10] Knubovets T., Osterhout J.J., Connolly P.J., Klibanov A.M. Structure, thermostability, and conformational flexibility of hen egg-white lysozyme dissolved in glycerol. Proc Natl Acad Sci USA 1999, 96, 1262-1267.
    [11] Ringe D., Petsko G.A. The ‘glass transition’ in protein dynamics: what it is, why it occurs, and how to exploit it. Biophys Chem 2003, 105, 667-680.
    [12] Demmel F., Doster W., Petry W., Schulte A. Vibrational frequency shifts as a probe of hydrogenbonds: thermal expansion and glass transition of myoglobin in mixed solvents. Eur Biophys J 1997, 26, 327-335.
    [13] Jensen M.?., Tajkhorshid E., Schulten K. Mechanism of Glycerol Conduction in Aquaglyceroporins. Structure 2001, 9, 1083-1093.
    [14] Maeda N., Funahashi T., Hibuse T., Nagasawa A., Kishida K., Kuriyama H., Nakamura T., Kihara S., Shimomura I., Matsuzawa Y. Adaptation to fasting by glycerol transport through aquaporin 7 in adipose tissue. Proc Natl Acad Sci USA 2005, 101, 17801-17806.
    [15] Jensen M.?., Park S., Tajkhorshid E., Schulten K. Energetics of glycerol conduction through aquaglyceroporin GlpF. Proc Natl Acad Sci USA 2002, 99, 6731-6736.
    [16] Lai M., Hageman M.J., Schowen R.L., Borchardt R.T., Laird B.B., Topp E.M. Chemical Stability of Peptides in Polymers. 2. Discriminating between Solvent and Plasticizing Effects of Water on Peptide Deamidation in Polyvinylpyrrolidone. J Pharm Sci 1999, 88, 1081-1089.
    [17] Zhao G., Guo X., He L., Liu Z., Gao D. Comparative study of glass transformation of glycerol–H2O–NaCl ternary system and glycerol–PBS complex system. Thermochim Acta 2004, 419, 131-134.
    [18] Driedzic W.R., Ewart K.V. Control of glycerol production by rainbow smelt (Osmerus mordax) to provide freeze resistance and allow foraging at low winter temperatures. Comp Biochem Physiol B-Biochem Mol Biol 2004, 139, 347-357.
    [19] Wu Q., Zhang L., Effects of the molecular weight on the properties of thermoplastics prepared from soy protein isolate. J Appl Polym Sci 2001, 82, 3373-3380.
    [20] Wu Q., Zhang L., Properties and Structure of Soy Protein Isolate-Ethylene Glycol Sheets Obtained by Compression Molding. Ind Eng Chem Res 2001, 40, 1879-1883.
    [21] Anglès M.N., Dufresne A. Plasticized Starch/Tunicin Whiskers Nanocomposites. 1. Structural Analysis. Macromolecules 2000, 33, 8344-8353.
    [22] Comyn J. “Polymer Permeability”, Elsevier Applied Science, New York 1985.
    [23] Vergnaud J.M. “Liquid Transport Process in Polymeric Materials: Modeling and Industrial Applications”, Prentice-Hall: Inglewood Cliffs, NJ 1991.
    [24] Marousis S.N., Karathanos V.T., Saravacos G.D. Effect of physical structure of starch materials on water diffusivity. J Food Process Preserv 1991, 15, 183-95.
    [25] Gontard N., Guilbert S., Cuq J.L. Water and glycerol as plasticizers affect mechanical and water vapor barrier properties of an edible wheat gluten film. J Food Sci 1993, 58, 206-11.
    [26] Anglès M.N., Dufresne A. Plasticized Starch/Tunicin Whiskers Nanocomposite Materials. 2. Mechanical Behavior. Macromolecules 2001, 34, 2921-2931.
    [27] Mathew A.P., Dufresne A. Plasticized Waxy Maize Starch: Effect of Polyols and RelativeHumidity on Material Properties. Biomacromolecules 2002, 3, 1101-1108.
    [28] Forssell P.M., Mikkil? J.M., Moates G.K., Parker R. Phase and glass transition behaviour of concentrated barley starch-glycerol-water mixtures, a model for thermoplastic starch Carbohydr Polym 1997, 34, 275-282.
    [29] Réat V., Dunn R., Ferrand M., Finney J.L., Daniel R.M., Smith J.C. Solvent dependence of dynamic transitions in protein solutions. Proc Natl Acad Sci USA 2000, 97, 9961-9966.
    [30] Lee A.L., Wand A.J. Microscopic origins of entropy, heat capacity and the glass transition in proteins. Nature 2001, 411, 501-504.
    [31] Rasmussen B.F., Stock A.M., Ringe D., Pestsko G. A. Crystalline ribonuclease A loses function below the dynamical transition at 220 K. Nature 1992, 357, 423-424.
    [32] Zavodszky P., Kardos J., Svingor A., Pestsko G.A. Adjustment of conformational flexibility is a key event in the thermal adaptation of proteins. Proc Natl Acad Sci USA 1998, 95, 7406-7411.
    [33] Feher V.A., Cavanagh J. Millisecond-timescale motions contribute to the function of the bacterial response regulator protein Spo0F. Nature 1999, 400, 289-293.
    [34] Zhang J., Mungara P., Jane J., Mechanical and thermal properties of extruded soy protein sheets. Polymer 2001, 42, 2569-2578.
    [35] Angell C.A. Liquid Fragility and the Glass Transition in Water and Aqueous Solutions. Chem Rev 2002, 102, 2627-2650.
    [36] Rieger J., The glass transition temperature Tg of polymers—Comparison of the values from differential thermal analysis (DTA, DSC) and dynamic mechanical measurements (torsion pendulum). Polym Testing 2001, 20, 199-204.
    [37] Williams D.H., Fleming I. “Spectroscopic Methods in Organic Chemisrty”, 5th edition, McGraw-Hill, Berkshire 1995.
    [38] Schmidt V., Giacomelli C., Soldi V. Thermal stability of films formed by soy protein isolate–sodium dodecyl sulfate. Polym Degrad Stabil 2005, 87, 25-31.
    [39] Guinier A., Fournet G. “Small-Angle X-ray Scattering”, Wiley, New York 1955.
    [40] Glatter O., Kratky O. “Small-Angle X-ray Scattering”, Academic Press, New York 1982.
    [41] Houdusse A., Kalabokis V.N., Himmel D., Szent-Gyorgyi A.G., Cohen C. Atomic structure of scallop myosin subfragment S1 complexed with MgADP: a novel conformation of the myosin head. Cell 1999, 97, 459-470.
    [42] Bouckaert J., Loris R., Poortmans F., Wyns L. Crystallographic structure of metal-free concanavalin A at 2.5 ? resolution. Proteins 1995, 23, 510-524.
    [43] Fukushima D. Structures of plant storage proteins and their functions. Food Rev Int 1991, 7, 353-81.
    [44] Paul D.R., Bucknall C.B., “Polymer Blends”, John Wiley & Sons, Inc., New York 2000.
    [1] Zhang J., Mungara P., Jane J., Mechanical and thermal properties of extruded soy protein sheets Polymer 2001, 42, 2569-2578.
    [2] Zhong Z., Sun S.X., Properties of soy protein isolate/polycaprolactone blends compatibilized by methylene diphenyl diisocyanate Polymer 2001, 42, 6961-6969.
    [3] Zhang X., Burgar I., Do M.D., Lourbakos E. Intermolecular interactions and phase structures of plasticized wheat proteins materials. Biomacromolecules 2005, 6, 1661-1671.
    [4] Opella S.J., Marassi F.M. Structure determination of membrane proteins by NMR spectroscopy. Chem Rev 2004, 104, 3587-3606.
    [5] Prestegard J.H., Bougault C.M., Kishore A.I. Residual dipolar couplings in structure determination of biomolecules. Chem Rev 2004, 104, 3519-3540.
    [6] Dyson H.J., Wright P.E. Unfolded protein and protein folding studied by NMR. Chem Rev 2004, 104, 3607-3622.
    [7] Palmer A.G. NMR characterization of the dynamics of biomacromolecules. Chem Rev 2004, 104, 3623-3640.
    [8] Pickford A.R., Campbell L.D. NMR studies of molecular protein structures and their interactions. Chem Rev 2004, 104, 3557-3555.
    [9] Kalodimos C.G., Boelens R., Kaptein R. Toward an integrated model of protein-DNA recognition as ingerred from NMR studies on the lac repressor system. Chem Rev 2004, 104, 3567-3586.
    [10] Calucci L., Galleschi L., Geppi M., Mollica G. Structure and dynamics of flour by solid state NMR: effects of hydration and wheat aging. Biomacromolecules 2004, 5, 1536-1544.
    [11] Wu Q., Zhang L., Effects of the molecular weight on the properties of thermoplastics prepared from soy protein isolate J Appl Polym Sci 2001, 82, 3373-3380.
    [12] Wu Q., Zhang L., Properties and Structure of Soy Protein Isolate-Ethylene Glycol Sheets Obtained by Compression Molding Ind Eng Chem Res 2001, 40, 1879-1883.
    [13] Knubovets T., Osterhout J.J., Connolly P.J., Klibanov A.M. Structure, thermostability, and conformational flexibility of hen egg-white lysozyme dissolved in glycerol. Proc Natl Acad Sci USA 1999, 96, 1262-1267.
    [14] Rariy R.V., Klibanov A.M. Correct protein folding in glycerol. Proc Natl Acad Sci USA 1997, 94, 13520-13523.
    [15] Mouawad, L. Perahia D. Motions in Hemoglobin Studied by Normal Mode Analysis and Energy Minimization: Evidence for the Existence of Tertiary T-like, Quaternary R-like Intermediate Structures. J Mol Biol 1996, 258, 393–410.
    [16] Kavanaugh J.S., Weydert J.A., Rogers P.H., Arnone A. High-Resolution Crystal Structures of Human Hemoglobin with Mutations at Tryptophan 37β: Structural Basis for a High-Affinity T-State. Biochemistry 1998, 37, 4358-4373.
    [17] Houdusse A., Kalabokis V.N., Himmel D., Szent-Gyorgyi A.G., Cohen C. Atomic structure of scallop myosin subfragment S1 complexed with MgADP: a novel conformation of the myosin head. Cell 1999, 97, 459-470.
    [18] Bouckaert J., Loris R., Poortmans F., Wyns L. Crystallographic structure of metal-free concanavalin A at 2.5 ? resolution. Proteins 1995, 23, 510-524.
    [19] Broatright W.L., Kim K.S. Effect of Electron Microscopy Fixation pH on the ultrastructure of soybean protein bodies J Agric Food Chem 2000, 48, 302-304.
    [20] Sekiya, K.; Ohishi, M.; Ogino, T.; Tamano, K.; Sasakawa, C.; Abe, A. Supermolecular structure of the enteropathogenic Escherichia coli type III secretion system and its direct interaction with the EspA-sheath-like structure. Proc Natl Acad Sci USA 2001, 98, 11638-11643.
    [21] Bibby T.S., Nield J., Chen M., Larkum A.W.D., Barber J. Structure of a photosystem II supercomplex isolated from Prochloron didemni retaining its chlorophyll a/b light-harvesting system. Proc Natl Acad Sci USA 2003, 100, 9050-9054.
    [22] Oroudjev E., Soares J., Arcidiacono S., Thompson J.B., Fossey S.A., Hansma H.G. Segmented nanofibers of spider dragline silk: Atomic force microscopy and single-molecule force spectroscopy.Proc Natl Acad Sci USA2002, 99, 6460-6465.
    [23] Barter L.M.C., Durrant J.R., Klug D.R. A quantitative structure-function relationship for the Photosystem II reaction center: Supermolecular behavior in natural photosynthesis. Proc Natl Acad Sci USA 2003, 100, 946-951.
    [24] 张俐娜, 薛奇, 莫志深, 金熹高 高分子物理近代研究方法. 武汉大学出版社, 武汉,2003 年7 月.
    [25] Zhang X., Burgar I., Do M., Lourbakos E., Beh H. Wheat protein and its polymer blends studied by solid-state high-resolution NMR spectroscopy. Polym Prepr 2003, 44, 402-403.
    [26] Zhang X., Burgar I., Lourbakos E., Beh H. The mechanical property and phase structures of wheat proteins/polyvinyl alcohol blends studied by high-resolution solid-state NMR. Polymer 2004, 45, 3305-3312.
    [27] Belton P.S., Duce S., Colquhoun, I.J., Tatham A.S. High-power carbon-13 and proton nuclear magnetic resonance in dry gluten. Magn Res Chem 1988, 26, 245-251.
    [28] Abelett S., Barnes D.J., Davies A.P., Ingman S.J., Patient D.W. Carbon-13 and pulse nuclear magnetic resonance spectroscopy of wheat proteins. J Cereal Sci 1988, 7, 11-20.
    [29] Belton P.S., Duce, S., Tatham A.S. Proton nuclear magnetic resonance relaxation studies of dry gluten. J Cereal Sci 1988, 7, 113-122.
    [30] Belton P.S., Colquhoun, I.J., Grant A., Weliner N., Field J.M., Shewry P.R., Tatham A.S. FTIR and NMR studies on the hydration of a high-M(r) subunit of glutenin. Int J Biol Macromol 1995, 17, 74-80.
    [31] Umbach S.L., Davis E.A., Gordon J. 13C NMR spectroscopy of conventional and microwave heated vital wheat gluten. J Cereal Sci 1998, 28, 233-242.
    [32] Yoshimizu H., Ando I. Conformational characterization of wool keratin and S-(carboxymethyl)kerateine in the solid state by carbon-13 CP/MAS NMR spectroscopy. Macromolecules 1990, 23, 2908-2912.
    [33] Ibbett N.R. NMR spectroscopy of polymers. Bleckie Academic & Professional, London, 1993
    [34] Macomber R.S. A complete introduction to Modern NMR spectroscopy. John Wiley & Sons, Inc. New York, 1997.
    [1] Lepoittevin B., Pantoustier N., Devalckenaere M., Alexandre M., Kubies D., Calberg C., Jér?me R., Dubois P. Poly(ε-caprolactone)/Clay Nanocomposites by in-Situ Intercalative Polymerization Catalyzed by Dibutyltin Dimethoxide. Macromolecules 2002, 35, 8385-8390.
    [2] Morlat-Therias S., Mailhot B., Gonzalez G., Gardette J. Photooxidation of Polypropylene/ Montmorillonite Nanocomposites. 2. Interactions with Antioxidants. Chem. Mater. 2005, 17, 1072-1078.
    [3] Giannelis E.P. Polymer layered silicate nanocomposites. Adv. Mater. 1996, 8, 29-35.
    [4] Viville P., Lazzaroni R., Pollet E., Alexandre M., Dubois P. Controlled Polymer Grafting on Single Clay Nanoplatelets. J. Am. Chem. Soc. 2004, 126, 9007-9012.
    [5] Plummer C.J.G., Garamszegi L., Leterrier Y., Rodlert M., M?nson J. E. Hyperbranched Polymer Layered Silicate Nanocomposites. Chem. Mater. 2002, 14, 486-488.
    [6] Choi Y.S., Choi M.H., Wang K.H., Kim S.O., Kim Y.K., Chung I.J. Synthesis of Exfoliated PMMA/Na-MMT Nanocomposites via Soap-Free Emulsion Polymerization. Macromolecules 2001, 34, 8978-8985.
    [7] Viville P., Lazzaroni R., Pollet E., Alexandre M. Dubois P., Borcia G., Pireaux J. Surface Characterization of Poly( -caprolactone)-Based Nanocomposites. Langmuir 2003, 19, 9425-9433.
    [8] Park J.H., Jana S.C. Mechanism of Exfoliation of Nanoclay Particles in Epoxy-Clay Nanocomposites. Macromolecules 2003, 36, 2758-2768.
    [9] Mariott W.R., Chen E.Y.X. Stereochemically Controlled PMMA-Exfoliated Silicate Nanocomposites Using Intergallery-Anchored Metallocenium Cations. J. Am. Chem. Soc. 2003, 125, 15726-15727.
    [10] Robello D.R., Yamaguchi N., Blanton T., Barnes C. Spontaneous Formation of an Exfoliated Polystyrene-Clay Nanocomposite Using a Star-Shaped Polymer. J. Am. Chem. Soc. 2004, 126, 8118-8119.
    [11] Zhang Z., Zhang L., Li Y., Xu H. New fabricate of styrene–butadiene rubber/ montmorillonite nanocomposites by anionic polymerization. Polymer 2005, 46, 129-136.
    [12] Ray S.S., Okamoto M. Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci. 2003, 28, 1539-1641.
    [13] Burnside S.D., Giannelis E.P. Synthesis and properties of new poly(dimethylsiloxane) nanocomposites. Chem. Mater. 1995, 7, 1597-1600.
    [14] Strawhecher K.E., Manias E. Structure and Properties of Poly(vinyl alcohol)/Na+ Montmorillonite Nanocomposites. Chem. Mater. 2000, 12, 2943-2949.
    [15] Chou C., Lin J. One-Step Exfoliation of Montmorillonite via Phase Inversion of Amphiphilic Copolymer Emulsion. Macromolecules 2005, 38, 230-233.
    [16] Wang K., Wang L., Wu J., Chen L., He C. Preparation of Highly Exfoliated Epoxy/Clay Nanocomposites by "Slurry Compounding": Process and Mechanisms. Langmuir 2005, 21, 3613-3618.
    [17] Wu Q., Sakabe H., Isobe S. Processing and Properties of Low Cost Corn Gluten Meal/Wood Fiber Composite. Ind. Eng. Chem. Res. 2003, 42, 6765-6773.
    [18] Wu Q., Yoshino T., Sakabe H., Zhang H., Isobe S. Chemical modification of zein by bifunctional polycaprolactone (PCL). Polymer 2003, 44, 3909–3919.
    [19] Wu Q., Sakabe H., Isobe S. Studies on the toughness and water resistance of zein-based polymers by modification. Polymer 2003, 44, 3901–3908.
    [20] Rhim J., Lee J. Effect of CaCl2 treatment on mechanical and moisture barrier properties of sodium alginate and soy protein-based films. Food Sci. Biotechnol. 2004, 13, 728-732.
    [21] Lu Y., Weng L., Zhang L. Morphology and Properties of Soy Protein Isolate Thermoplastics Reinforced with Chitin Whiskers. Biomacromolecules 2004, 5, 1046-1051.
    [22] Liu Y., Li K. Chemical Modification of Soy Protein for Wood Adhesives Macromol. Rapid Commun. 2002, 23, 739-742.
    [23] Liu Y., Li K. Modification of Soy Protein for Wood Adhesives using Mussel Protein as a Model: The Influence of a Mercapto Group Macromol. Rapid Commun. 2004, 25, 1835-1838.
    [24] Mo X., Sun X.S., Wang Y. Effects of molding temperature and pressure on properties of soy protein polymers. J. Appl. Polym. Sci. 2001, 73, 2595-2602.
    [25] Lin Y., Hsieh F., Huff H.E. Water-blown flexible polyurethane foam extended with biomass materials. J. Appl. Polym. Sci. 1997, 65, 695-703.
    [26] Zhang J., Mungara P., Jane J. Mechanical and thermal properties of extruded soy protein sheets. Polymer 2001, 42, 2569-2578.
    [27] Liu W., Mohanty A.K., Askeland P., Drzal L.T., Misra M. Influence of fiber surface treatment on properties of Indian grass fiber reinforced soy protein based biocomposites. Polymer 2004, 45, 7589-7596.
    [28] Liu W., Mohanty A.K., Drzal L.T., Misra M. ovel Biocomposites from Native Grass and Soy Based Bioplastics: Processing and Properties Evaluation. Ind. Eng. Chem. Res. 2005, 44, 7105-7112.
    [29] Darder M., Colilla M., Ruiz-Hitzky E. Biopolymer-Clay Nanocomposites Based on Chitosan Intercalated in Montmorillonite. Chem. Mater. 2003, 15, 3774-3780.
    [30] Huang M., Yu J., Ma X. High performance biodegradable thermoplastic starch-EMMTnanoplastics. Polymer 2005, 46, 3157-3162.
    [31] Park H., Liang X., Mohanty A.K., Misra M., Drzal L.T. Effect of Compatibilizer on Nanostructure of the Biodegradable Cellulose Acetate/Organoclay Nanocomposites. Macromolecules 2004, 37, 9076-9082.
    [32] Park H., Misra M., Drzal L.T., Mohanty A.K. "Green" Nanocomposites from Cellulose Acetate Bioplastic and Clay: Effect of Eco-Friendly Triethyl Citrate Plasticizer. Biomacromolecules 2004, 5, 2281-2288.
    [33] Joly S., Garnaud G., Ollitrault R., Bokobza L. Organically Modified Layered Silicates as Reinforcing Fillers for Natural Rubber. Chem. Mater. 2002, 14, 4202-4208.
    [34] Rhim J., Lee J., Kwak H. Mechanical and water barrier properties of soy protein and clay mineral composite films. Food Sci. Biotechnol. 2005, 14, 112-116.
    [35] De Cristofaro A., Violante A. Effect of hydroxy-aluminium species on the sorption and interlayering of albumin onto montmorillonite. Appl. Clay Sci. 2001, 19, 59-67.
    [36] Newman S.P., Di Cristina T., Coveney P.V. Molecular Dynamics Simulation of Cationic and Anionic Clays Containing Amino Acids. Langmuir 2002, 18, 2933-2939.
    [37] Adachi M., Takenaka Y., Gidamis A.B., Mikami B., Utsumi S. Crystal Structure of Soybean Proglycinin A1aB1b Homotrimer. J. Mol. Biol. 2001, 305, 291-305.
    [38] Adachi M., Kanamori J., Masuda T., Yagasaki K., Kitamura K., Mikami B., Utsumi S. Crystal structure of soybean 11S globulin: Glycinin A3B4 homohexamer. Proc. Natl. Acad. Sci. USA 2003, 100, 7395-7400.
    [39] Guex N., Peitsch M.C. SWISS-MODEL and the Swiss-Pdb Viewer: An environment for comparative protein modeling. Electrophoresis 1997, 18, 2714-2723.
    [40] Yoonessi M., Toghiani H., Kingery W.L., Pittman Jr. C.U. Preparation, Characterization, and Properties of Exfoliated/Delaminated Organically Modified Clay/Dicyclopentadiene Resin Nanocomposites. Macromolecules 2004, 37, 2511-2518.
    [41] Hudson S., Magner E., Cooney J., Hodnett B.K. Methodology for the Immobilization of Enzymes onto Mesoporous Materials. J. Phys. Chem. B 2005, 109, 19496-19606.
    [42] Ruso J.M., Doe N., Somasundaran P. Complexation between Dodecyl Sulfate Surfactant and Zein Protein in Solution. Langmuir 2004, 20, 8988-8991.
    [43] Fusi P., Ristori G.G., Calamai L., Stotzky G. Adsorption and binding of protein on "clean" (homoionic) and "dirty" (coated with iron oxyhydroxides) montmorillonite, illite and kaolinite. Soil Biol. Biochem. 1989, 21, 911-920.
    [44] Sohn J.R., Kim J.T. Infrared Study of Alkyl Ketones Adsorbed on the Interlamellar Surface of Montmorillonite. Langmuir 2000, 16, 5430-5434.
    [45] Consultchi A., Cordova I., Valenzuela M.A., Acosta D.R., Bosch P., Lara V.H. Adsorption of Crude Oil on Na+-Montmorillonite . Energy Fuels 2005, 19, 1417-1424.
    [46] Nahar S., Tajmir-Riahi H.A. Complexation of heavy metal cations Hg, Cd, and Pb with proteins of PSII: evidence for metal-sulfur binding and protein conformational transition by FTIR spectroscopy. J. Colloid. Interf. Sci. 1996, 178, 648-656.
    [47] MacDonald G.M., Barry B.A. Difference FT-IR study of a novel biochemical preparation of photosystem II. Biochemistry 1992, 31, 9848-9856.
    [48] Johnston C.T., Premachandra G.S. Polarized ATR-FTIR Study of Smectite in Aqueous Suspension. Langmuir 2001, 17, 3712-3718.
    [49] Ras R.H.A., Johnston C.T., Franses E.I., Ramaekers R., Maes G., Foubert P., De Schryver F.C., Schoonheytdt R.A. Polarized Infrared Study of Hybrid Langmuir-Blodgett Monolayers Containing Clay Mineral Nanoparticles. Langmuir 2003, 19, 4295-4302.
    [50] Ray S.S., Okamoto K., Okamoto M. Structure-Property Relationship in Biodegradable Poly(butylene succinate)/Layered Silicate Nanocomposites. Macromolecules 2003, 36, 2355-2367.
    [51] Ray S.S., Yamada K., Okamoto M., Ogami A, Ueda K. New Polylactide/Layered Silicate Nanocomposites. 3. High-Performance Biodegradable Materials. Chem. Mater. 2003, 15, 1456-1465.
    [52] Lu H., Nutt S. Restricted Relaxation in Polymer Nanocomposites near the Glass Transition. Macromolecules 2003, 36, 4010-4016.
    [53] Anglès M.N., Dufresne A. Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis. Macromolecules 2000, 33, 8344-8353.
    [54] Anglès M.N., Dufresne A. Plasticized starch/tunicin whiskers nanocomposite materials. 2. Mechanical behavior. Macromolecules 2001, 34, 2921-2931.
    [55] Mathew A.P., Dufresne A. Morphological investigation of nanocomposites from sorbitol plasticized starch and tunicin whiskers. Biomacromolecules 2002, 3, 609-617.
    [1] Park H., Li X., Jin C., Park C.G., Cho W., Ha C. Preparation and Properties of Biodegradable Thermoplastic Starch/Clay Hybrids. Macromol. Mater. Eng. 2002, 287, 553-558.
    [2] Park H., Lee W., Park G., Cho W., Ha C. Environmentally friendly polymer hybrids Part I Mechanical, thermal, and barrier properties of thermoplastic starch/clay nanocomposites J Mater. Sci. 2003, 38, 909-915.
    [3] Huang M., Yu J., Ma X. Studies on the properties of Montmorillonite-reinforced thermoplastic starch composites. Polymer 2004, 45, 7017-7023.
    [4] Pandey J.M., Singh R.P. Green Nanocomposites from Renewable Resources: Effect of Plasticizer on the Structure and Material Properties of Clay-filled Starch. Starch/St?rke 2005, 57, 8-15.
    [5] Kalambur S.B., Rizvi S.S. Rapid Report: Starch-based nanocomposites by reactive extrusion processing. Polym. Int. 2004, 53, 1413-1416.
    [6] Park H., Misra M., Drzal L.T., Mohanty A.K. “Green” Nanocomposites from Cellulose Acetate Bioplastic and Clay: Effect of Eco-Friendly Triethyl Citrate Plasticizer. Biomacromolecules 2004, 5, 2281-2288.
    [7] Park H., Liang X., Mohanty A.K., Misra M., Drzal L.T. Effect of Compatibilizer on Nanostructure of the Biodegradable Cellulose Acetate/Organoclay Nanocomposites. Macromolecules 2004, 37, 9076-9082.
    [8] Darder M., Colilla M., Ruiz-Hitzky E. Biopolymer-Clay Nanocomposites Based on Chitosan Intercalated in Montmorillonite. Chem. Mater. 2003, 15, 3774-3780.
    [9] Darder M., Lo′pez-Blanco M., Aranda P., Aznar A.J., Bravo J., Ruiz-Hitzky E. Microfibrous Chitosan-Sepiolite Nanocomposites. Chem. Mater. 2006, 18, 1602-1610.
    [10] Wang S., Shen L., Zhang W., Tong Y. Preparation and Mechanical Properties of Chitosan/Carbon Nanotubes Composites. Biomacromolecules 2005, 6, 3067-3072.
    [11] Ruan D., Zhang L. Structure and properties of regenerated cellulose / tourmaline nanocrystal composite films. J Polym. Sci. Part B: Polym. Phys. 2004, 42, 367-373.
    [12] Ruan D., Huang Q., Zhang L. Structure and properties of regenerated cellulose / CdS nanocomposite, Macromol. Mater. Eng. 2005, 290, 1017-1024.
    [13] Morin A., Dufresne A. Nanocomposites of chitin whiskers from Riftia tubes and poly(caporolactone). Macromolecules 2002, 35, 2190-2199.
    [14] Putaux J., Molina-Boisseau S., Momaur T., Dufresne A. Platelet Nanocrystals Resulting from the Disruption of Waxy Maize Starch Granules by Acid Hydrolysis. Biomacromolecules 2003, 4, 1198-1202.
    [15] My Ahmed Said Azizi Samir, Alloin F., Dufresne A. Review of Recent Research into Cellulosic Whiskers, Their Properties and Their Application in Nanocomposite Field. Biomacromolecules 2005, 6(2), 612-626.
    [16] Rhim J., Lee J., Kwak H. Mechanical and water barrier properties of soy protein and clay mineral composite films. Food Sci Biotechnol. 2005, 14, 112-116.
    [17] Loring J.S., Casey W.H. A Correlation for Establishing Solvolysis Rates of Aqueous Al(III) Complexes: A Possible Strategy for Colloids and Nanoparticles. J Colloid Interface Sci. 2002, 251, 1-9.
    [18] Berkovich Aserin Y.A., Wachtel E., Garti N. Preparation of Amorphous Aluminum Oxide-Hydroxide Nanoparticles in Amphiphilic Silicone-Based Copolymer Microemulsions. J Colloid Interface Sci. 2002, 245, 58-67.
    [19] Cotton F.A., Wilkinson G. Advanced Inorganic Chemistry: A Comprehensive Text. 4th ed. Advanced Inorganic Chemistry. 4th ed. John Wiley & Sons: New York 1980, 1396.
    [20] Naidja A., Huang P.M., Bollag J.M. Activity of tyrosinase immobilized on hydroxyaluminum-montmorillonite complexes. J. Mol. Cat. Part A: Chem. 1997, 115, 305-316.
    [21] De Cristofaro A., Violante A. Effect of hydroxy-aluminium species on the sorption andinterlayering of albumin onto montmorillonite. Appl. Clay Sci. 2001, 19, 59-67.
    [22] Hotrum N.E., Cohen Stuart M.A., van Vliet T., van Aken G.A. Flow and Fracture Phenomena in Adsorbed Protein Layers at the Air/Water Interface in Connection with Spreading Oil Droplets. Langmuir 2003, 19, 10210-10216.
    [23] Faraji H., McClements D.J., Decker E.A. Role of Continuous Phase Protein on the Oxidative Stability of Fish Oil-in-Water Emulsions. J. Agric. Food Chem. 2004, 52, 4558-4564.
    [24] Hermansson A.M. Soy protein gelation. J. Am. Oil Chem. Soc. 1986, 63, 658-666.
    [25] Renkema M.S.J., Gruppen H., van Vliet T. Influence of pH and Ionic Strength on Heat-Induced Formation and Rheological Properties of Soy Protein Gels in Relation to Denaturation and Their Protein Compositions. J. Agric. Food Chem. 2002, 50, 6064-6071.
    [26] Wu Q., Zhang L. Effects of the molecular weight on the properties of thermoplastics prepared from soy protein isolate. J Appl. Polym. Sci. 2001, 82, 3373-3380.
    [27] Neus Anglés M., Dufresne A. Plasticized Starch/Tunicin Whiskers Nanocomposites. 1. Structural Analysis. Macromolecules 2000, 33, 8344-8353.
    [28] Forato L.A., Bernardes-Filho R., Colnago L.A. Protein structure in KBr pellets by infrared spectroscopy. Anal. Biochem. 1998, 259, 136-141.
    [29] Naidja A., C Liu., Huang P.M. Formation of protein-birnessite complex: XRD, FTIR, and AFM analysis. J. Colloid Interface Sci. 2002, 251, 46-56.
    [30] Naidja A., Huang P.M., Bollag J.M. Activity of tyrosinase immobilized on hydroxyaluminum-montmorillonite complexes. J. Mol. Cat. Part A: Chem. 1997, 115, 305-316.
    [31] De Cristofaro A., Violante A. Effect of hydroxy-aluminium species on the sorption and interlayering of albumin onto montmorillonite. Appl. Clay Sci. 2001, 19, 59-67.
    [32] Hotrum N.E., Cohen Stuart M.A., van Vliet T., van Aken G.A. Flow and Fracture Phenomena in Adsorbed Protein Layers at the Air/Water Interface in Connection with Spreading Oil Droplets. Langmuir 2003, 19, 10210-10216.
    [33] Faraji H., McClements D.J., Decker E.A. Role of Continuous Phase Protein on the Oxidative Stability of Fish Oil-in-Water Emulsions. J. Agric. Food Chem. 2004, 52, 4558-4564.
    [34] Hermansson A.M. Soy protein gelation. J. Am. Oil Chem. Soc. 1986, 63, 658-666.
    [35] Renkema M.S.J., Gruppen H., van Vliet T. Influence of pH and Ionic Strength on Heat-Induced Formation and Rheological Properties of Soy Protein Gels in Relation to Denaturation and Their Protein Compositions. J. Agric. Food Chem. 2002, 50, 6064-6071.
    [36] Krause S. Polymer compatibility. J. Macromol. Sci., Rev. Macromol. Chem. 1972, 2, 251-314.
    [37] Cao X., Zhang L. Effects of Molecular Weight on the Miscibility and Properties of Polyurethane/Benzyl Starch Semi-Interpenetrating Polymer Networks. Biomacromolecules 2005,6, 671-677.
    [38] Wang S., Shen L., Zhang W., Tong Y. Preparation and Mechanical Properties of Chitosan/Carbon Nanotubes Composites. Biomacromolecules 2005, 6, 3067-3072.
    [39] Ji X., Hampsey J.E., Hu Q., He J., Yang Z., Lu Y. Mesoporous Silica-Reinforced Polymer Nanocomposites. Chem. Mater. 2003, 15, 3656-3662.
    [40] Paul D.R., Bucknall C.B. Polymer Blends. John Wiley & Sons: New York 2000.
    [41] Murayama T., Dynamic Mechanical Analysis of Polymeric Material. Elsevier: Amsterdam 1978.
    [42] Zeng M., Zhang L., Zhou Y. Effects of solid substrate on structure and properties of casting waterborne polyurethane/carboxymethylchitin films. Polymer 2004, 45, 3535-3545.
    [43] Rieger J. The glass transition temperature Tg of polymers—Comparison of the values from differential thermal analysis (DTA, DSC) and dynamic mechanical measurements (torsion pendulum). Polym. Testing 2001, 20, 199-204.
    [44] Cao X., Zhang L. Miscibility and Properties of Polyurethane/Benzyl Starch Semi-Interpenetrating Polymer Networks. J. Polym. Sci. Part B: Polym. Phys. 2005, 43, 603-615.
    [45] Wang N., Zhang L., Gu J. Mechanical properties and biodegradability of crosslinked soy protein isolate/waterborne polyurethane composites. J. Appl. Polym. Sci. 2005, 95, 465-473.
    [46] Burnett J.H. Fundamentals of Mycology. 2nd ed. Edward Arnold: London.
    [1] 戈进杰. 生物降解高分子材料及其应用, 化学工业出版社, 北京, 2002.
    [2] 蒋挺大. 木质素, 化学工业出版社, 北京, 2001.
    [3] 高洁, 汤烈贵. 纤维素科学, 科学出版社, 北京, 1999.
    [4] 中野准三. 木质素的化学—基础与应用, 轻工业出版社, 北京, 1988.
    [5] Sarkanen K V, Ludwig C H. Lignin: Occurrence, Formation, Reaction, Water de Gruyter, Berlin, 1984.
    [6] Lora J. H., Glasser W. G. J Polym Envirom 2002, 10, 39.
    [7] Wang J., Manley R. S. J., Feldman D. Synthetic polymer-lignin copolymers and blends. Prog Polym Sci 1992, 17, 611-46.
    [8] Feldman D., Lcasse M., Beznaczuk L. M. Lignin-polymer systems and some applications. Prog Polym Sci, 1986, 12, 271-99.
    [9]. Li Y., Sarkanen, S. Alkylated Kraft Lignin-Based Thermoplastic Blends with Aliphatic Polyesters. Macromolecules 2002, 35, 9707-9715.
    [10]. Wang, J., Manley, R. J., Feldman, D. Synthetic polymer-lignin copolymers and blends. Prog Polym Sci 1992, 17, 611-46.
    [11]. Meister J. J., Patil D. R. Solvent effects and initiation mechanisms for graft polymerization on pine lignin. Macromolecules 1985, 18, 1559-1564.
    [12]. Chen M. J., Gunnells D. W., Gardner D. J., Milstein O., Gersonde R., Feine H. J., Hüttermann A., Frund R., Lüdemann H. D.; Meister J. J. Graft Copolymers of Lignin with 1-Ethenylbenzene. 2. Properties. Macromolecules 1996, 29, 1389-1398.
    [13]. Feldman D., Lacasse M., Beznaczuk L. M. Lignin-polymer systems and some applications. Prog Polym Sci 1986, 12, 271-99.
    [14]. Oliveira W. D., Glasser W. G. Multiphase materials with lignin. 11. Starlike copolymers with caprolactone. Macromolecules 1994, 27, 5-11.
    [15]. Wu L. C., Glasser W. G. Engineering plastics from lignin. I. Synthesis of hydroxypropyl lignin. J Appl Polym Sci 1984, 29, 1111-1123.
    [16]. Park H. M., Misra M., Drzal L. T., Mohanty A. K. "Green" Nanocomposites from Cellulose Acetate Bioplastic and Clay: Effect of Eco-Friendly Triethyl Citrate Plasticizer. Biomacromolecules 2004, 5, 2281-2288.
    [17]. Rong M. Z., Zhang M. Q., Zheng Y. X., Zeng H. M., Walter R., Friedrich K. Structure–property relationships of irradiation grafted nano-inorganic particle filled polypropylene composites. Polymer 2001, 42, 167-183.
    [18]. Incarnato L., Scarfato P., Russo G. M., Di Maio L., Iannelli P., Acierno D. Preparation and characterization of new melt compounded copolyamide nanocomposites Polymer 2003, 44, 4625-4634.
    [19]. Mathew A. P., Dufresne A. Morphological Investigation of Nanocomposites from Sorbitol Plasticized Starch and Tunicin Whiskers. Biomacromolecules 2002, 3, 609-617.
    [20]. Koning, C., Duin M. V., Pagnoulle C., Jerome R. Strategies for compatibilization of polymer blends. Prog Polym Sci 1998, 23, 707-757.
    [21]. Marquié C. hemical Reactions in Cottonseed Protein Cross-Linking by Formaldehyde, Glutaraldehyde, and Glyoxal for the Formation of Protein Films with Enhanced Mechanical Properties. J Agric Food Chem 2001, 49, 4676-4681.
    [22]. Park S. K., Bae D. H., Rhee K. C. Soy protein biopolymers cross-linked with glutaraldehyde. J Am Oil Chem 2000, 77, 879-883.
    [23]. Yamamoto H., Amaike M., Saitoh H., Sano Y. Gel formation of lignin and biodegradation of the lignin gels by microorganisms. Mater Sci Eng C 2000, 7, 143-147.
    [24]. Wu Q., Zhang L. Effects of the molecular weight on the properties of thermoplastics prepared from soy protein isolate. J Appl Polym Sci 2001, 82, 3373-3380.
    [25]. Glasser W. G., Wu L. C., Selin J. F. Wood and Agricultural Residues – Research on Use for Feed, Fuels and Chemicals, Soltes, E. J. Ed.; Academic: New York, 1983, p. 149.
    [26]. Glasser W. G., Barnett C. A., Rials T. G., Saraf V. P. Engineering plastics from lignin. III. Structure property relationships in solution cast polyurethane films. J Appl Polym Sci 1984, 29, 1831-1841.
    [27]. Nada A. M. A., Yousef M. A., Shaffei K. A., Salah A. M. Infrared spectroscopy of some treated lignins. Polym Degrad Stab 1998, 62, 157-163.
    [28]. Nahar S., Tajmir-Riahi H. A. Complexation of Heavy Metal Cations Hg, Cd, and Pb with Proteins of PSII: Evidence for Metal–Sulfur Binding and Protein Conformational Transition by FTIR Spectroscopy. J Colloid Interf Sci 1996, 178, 648-656.
    [29]. MacDonald G. M., Barry B. A. Difference FT-IR study of a novel biochemical preparation of photosystem II. Biochemistry 1992, 31, 9848-9856.
    [30]. Whipple E. B., Ruta M. Structure of aqueous glutaraldehyde. J Org Chem 1974, 39, 1666-1668.
    [31]. Tashima T., Imai M., Kuroda Y., Yagi A., Nakagawa T. Structure of a new oligomer of glutaraldehyde produced by aldol condensation reaction. J Org Chem 1991, 56, 694-697.
    [32]. Margel S., Rembaum A. Synthesis and Characterization of Poly(glutaraldehyde). A Potential Reagent for Protein Immobilization and Cell Separation. Macromolecules 1980, 13, 19-24.
    [33]. Rogers J. D. Rate constant measurements for the reaction of the hydroxyl radical with cyclohexene, cyclopentene, and glutaraldehyde. Environ Sci Technol 1989, 23, 177-181.
    [34]. Micic M., Benitez I., Ruano M., Mavers M., Jeremic M., Radotic K., Moy V., Leblanc R. M. Probing the lignin nanomechanical properties and lignin-lignin interactions using the atomic force microscopy. Chem Phys Lett 2001, 347, 41-45
    [35]. Micic M., Radotic K., Jeremic M., Leblanc R. M. Study of Self-Assembly of the Lignin Model Compound on Cellulose Model Substrate. Macromol Biosci 2003, 3, 100-106.
    [36]. Micic M., Radotic K., Benitez I., Ruano M., Jeremic M., Moy V., Mabrouki R. M., Leblanc M. Topographical characterization and surface force spectroscopy of the photochemical lignin model compound. Biophys Chem 2001, 94, 257-263.
    [37]. Krause S.J. Macromol Sci Macromol Chem 1972, 2, 251.
    [38]. Siochi E. J., Ward T. C., Haney M. A., Mahn B. The absolute molecular weight distribution of hydroxypropylated lignins. Macromolecules 1990, 23, 1420-1429.
    [39]. Norgren M., Edlund H., W?gberg L. Aggregation of Lignin Derivatives under Alkaline Conditions. Kinetics and Aggregate Structure. Langmuir 2002, 18, 2859-2865.
    [40]. Zeng M., Zhang L; Zhou Y. Effects of solid substrate on structure and properties of casting waterborne polyurethane/carboxymethylchitin films. Polymer 2004, 45, 3535-3545.
    [41]. Rieger J. The glass transition temperature Tg of polymers—Comparison of the values from differential thermal analysis (DTA, DSC) and dynamic mechanical measurements (torsion pendulum). Polym Test 2001, 20, 199-204.
    [1] Zhang J., Mungara P., Jane J. Mechanical and thermal properties of extruded soy protein. Polymer 2001, 42, 2569-2578.
    [2] Sue H.J., Wang S., Jane J. Morphology and mechanical behavior of engineering soy plastics. Polymer 1997, 38, 5035-5040.
    [3] Schilling C.H., Babcock T., Wang S., Jane J. Mechanical properties of biodegradable soy-protein plastics. J. of Mater. Res. 1995, 10(9), 2197-202.
    [4] Wang N., Zhang L. Preparation and characterization of soy protein plastics plasticized with waterborne polyurethane. Polym. Int. 2005, 54, 233-239.
    [5] Chen Y., Zhang L., Du L. Structure and properties of composites compression-molded from polyurethane prepolymer and various soy products. Ind. Eng. Chem. Res. 2003, 42, 6786-6794.
    [6] Zhong Z.K., Sun X.S. Properties of soy protein isolate/polycaprolactone blends compatibilized by methylene diphenyl diisocyanate. Polymer 2001, 42, 6961-6969.
    [7] Liu J., Liu L. Ring-opening polymerization of ε-caprolactone initiated by natural amino acids. Macromolecules 2004, 37, 2674-2676.
    [8] Yu Z., Liu L., Zhuo R. Microwave-improved polymerization of ε-caprolactone initiated by carboxylic acids. J Polym Sci: Part A: Polym Chem. 2003, 41, 13–21.
    [9] Yu Z., Liu L. Effect of microwave energy on chain propagation of poly(ε-caprolactone) in benzoic acid-initiated ring opening polymerization of ε-caprolactone. European Polymer Journal 2004, 40, 2213–2220.
    [10] 谢晶曦, 红外光谱在在有机化学和药物化学中的应用. 科学出版社, 北京, 1987.
    [11] 卢涌泉, 邓振华, 实用红外光谱解析. 电子工业出版社, 北京, 1989.
    [12] Nahar, S.; Tajmir-Riahi, H.A. Complexation of heavy metal cations Hg, Cd, and Pb with proteins of PSII: evidence for metal-sulfur binding and protein conformational transition by FTIR spectroscopy. J. Colloid. Interf. Sci. 1996, 178, 648-656.
    [13] MacDonald, G.M., Barry, B.A. Difference FT-IR study of a novel biochemical preparation of photosystem II. Biochemistry 1992, 31, 9848-9856.
    [14] Tripathy A.R., MacKnight W.J., Kukureka S.N. In-situ copolymerization of cyclic poly(butylene terephthalate) oligomers and ε-caprolactone. Macromolecules 2004, 37, 6793-6800.
    [15] Jiang H., Wu P., Yang Y. Variable temperature FTIR study of poly(ethylene-co-vinyl alcohol)-graft-poly(ε-caprolactone). Biomacromolecules 2003, 4, 1343-1347.
    [16] Rong G., Deng M., Deng C., Tang Z., Piao L., Chen X., Jiang C. Synthesis of poly(ε-caprolactone)-b-poly(γ-benzyl-L-glutamic acid) block copolymer using amino organic calcium catalyst. Biomacromolecules 2003, 4, 1800-1804.
    [17] Chan S., Kuo S., Chang F. Synthesis of the organic/inorganic hybrid star polymers and their inclusion complexes with cyclodextrins. Macromolecules 2005, 38, 3099-3107.
    [18] Zheng G., St?ver D. H. Grafting of poly(ε-caprolactone) and poly(ε-caprolactone- block-(dimethylaminoethyl methacrylate)) from polymer microspheres by ring-opening polymerization and ATRP. Macromolecules 2003, 36, 7439-7445.
    [19] Scandola M., Ceccorulli G. Cocrystallization of random copolymers of ω-pentadecalactone and ε-caprolactone synthesized by lipase catalysis. Biomacromolecules, 2005, 6, 902-907.
    [20] Castelletto V., Hamley I.W. crystallization in poly(L-lactide)-b-poly(ε-caprolactone) double crystalline diblock copolymers: a study using X-ray scattering, differential scanning calorimetry, and polarized optical microscropy. Macromolecules 2005, 38, 463-472.
    [21] Herrera D., Zamora J., Bello A., Grimau M., Laredo E., Müller A.J., Lodge T.P. Miscibility and crystallization in polycarbonate/poly(ε-caprolactone) blends: application of the self-concentration model. Macromolecules 2005, 38, 5109-5117.
    [22] Zhu B., Yoshie N., Asakawa N., Inoue Y. Partial phase segregation in strongly hydrogen-bonded and miscible blends. Macromolecules 2004, 37, 3257-3266.
    [23] Persenaire O., Alexandre M., Degée P., Dubois P. Mechanisms and kinetics of thermal degradation of poly(ε-caprolactone). Biomacromolecules 2001, 2, 288-294.
    [24] Schmidt V., Giacomelli C., Soldi V. Thermal stability of films by soy protein isolate-sodium dodecyl sulfate. Polym. Degrad. Stab. 2005, 87, 465-477.
    [25] Moharram M.A., Abd-El-Nour K. N., Abd-El-Raof G. Infrared spectra and dielectric properties of thermally treated soybean proteins. Polym. Degrad. Stab. 1994, 45, 429-434.
    [1] Zhang J., Mungara P., Jane J. Mechanical and thermal properties of extruded soy protein sheets. Polymer 2001, 42, 2569-2578.
    [2] Amass W., Amass A., Tighe B. A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polym. Inter 1998, 47, 89-144.
    [3] Sun X., Kim, H.R., Mo X.J. Plastic performance of soybean protein components. J Am Oil Chem Soc 1999, 76(1), 117-123.
    [4] Brother G.H., Mckinney L.L. Protein plastic from soybean products-plasticization of hardened proteinmaterial. Ind Eng Chem 1939, 30, 84-7.
    [5] Brother G.H., Mckinney L.L. Protein plastics from soybean products. Influence of phenolic resins or phenolic molding compounds on formaldehyde-hardened protein material. Ind Eng Chem 1940, 32, 1002-6.
    [6] Wang S., Sue H., Jane, J. Effects of polyhydric alcohols on the mechanical properties of soy protein plastics. Pure Appl Chem 1996, 33(5), 557-569
    [7] Mo X., Sun S, Wang Y. Effects of molding temperature and pressure on properties of soy protein polymers. J Appl Polym Sci 1999, 73, 2595-2602.
    [8] Zhong, Z.; Sun, X. Properties of soy protein isolate/polycaprolactone blends compatibilized by methylene diphenyl diisocyanate Polymer 2001, 42, 6961-6969
    [9] Foulk J., Bunn J. Properties of compression-molded, acetylated soy protein films. Ind Crops Prod 2001, 14, 11-22.
    [10] Park S., Bae D., Rhee K. Soy protein biopolymers cross-linked with glutaraldehyde. J Am Oil Chem Soc 2000, 77, 879-883.
    [11] Salmoral E., Gonzalez M., Mariscal M. Biodegradable plastic made from bean products. Ind Crops Prod 2000, 11, 217-225.
    [12] Salmoral E., Gonzalez M., Mariscal M., Medina L. Comparison of chickpea and soy protein isolate and whole flour as biodegradable plastics. Ind Crops Prod 2000, 11, 227-236.
    [13] Wollerdorfer M., Bader H. Influence of natural fibers on the mechanical properties of biodegradable polymers. Ind Crops Prod 1998, 8, 105-112.
    [14] Bledzki A., Gassan J. Composites reinforced with cellulose based fibres. Prog Polym Sci 1999, 24, 221-274.
    [15] Wu Q., Zhang L. Properties and Structure of Soy Protein Isolate-Ethylene Glycol Sheets Obtained by Compression Molding. Ind Eng Chem Res 2001, 40, 1879-1883.
    [16] Liu H., Zhang L. Structure and Properties of Semiinterpenetrating Polymer Networks Based on Polyurethane and Nitrochitosan. J Appl Polym Sci 2001, 82, 3109-3117.
    [17] Zhang L., Zhou J., Huang J., Zhang L., Du Y. Biodegradability of Regenerated Cellulose Films Coated with Polyurethane/Natural Polymers Interpenetrating Polymer Networks. Ind Eng Chem Res 1999, 38, 4284-4289.
    [18] Zhang L., Ruan D., Zhou J. Structure and Properties of Regenerated Cellulose Films Prepared from Cotton Linters in NaOH/Urea Aqueous Solution. Ind Eng Chem Res 2001, 40, 5923-5928.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700