计及风电场的大电网可靠性模型算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源问题和环境问题的日益严峻,世界各国竞相大力发展可再生能源。风电是无需燃料费用的可再生绿色能源,由于其利用成本的低廉和技术的成熟,风电已成为可再生能源中发展最快的、最具有发展前景的一种发电力式。但是与其他常规的火电厂、水电厂不同,风电场的输出功率不断波动,大规模风电并网后会对电力系统的安全稳定运行带来一定的影响。为研究风电场并网对电力系统可靠性的影响,本文建立了基于蒙特卡洛仿真的计及风电场的大电网系统可靠性分析模型,充分考虑了风速的随机性及风电机组强迫停运率,对计及风电场的大电网系统进行可靠性评估。本文所作工作如下:
     ①本文简单介绍了风力发电可靠性评估的发展概况、方法和国内外研究现状,认识到对计及风电场大电网系统进行可靠性评估的重要性。
     ②大电网可靠性评估方法可分为解析法和模拟法,其中模拟法由于方法的灵活性和实用性已日益得到重视和应用。模拟法按随机抽样方法的不同而分为非序贯蒙特卡洛仿真、序贯蒙特卡洛仿真和状态转移抽样。本文详细介绍了三种蒙特卡洛仿真方法的基本原理,分析了它们的优缺点。同时,基于序贯蒙特卡洛仿真得到的年可靠性指标样本和非参数概率密度估计技术,论文实现了可靠性指标的概率密度估计,探索了从可靠性指标内在分布规律和结构特征出发深刻揭示电网风险特性的新思路。通过对RBTS和IEEE-RTS79可靠性测试系统的评估分析,验证了所提方法的正确性和有效性。
     ③风速预测是风电场规划设计中的重要工作。考虑风速时序性和自相关性的特点,采用时间序列法建立了风速序列预测模型,在算例中,将预测风速的分布特性与实际风速分布特性相比较,验证了自回归移动平均模型用于风电场风速预测的可行性。
     ④根据风速序列预测模型,结合常规机组、线路和变压器等的状态模型,建立了基于序贯蒙特卡洛仿真的风电场可靠性模型,该模型充分考虑了风能随机性和风电机组强迫停运率等不确定因素,将该模型应用于计及风电场的大电网系统,按照在满足系统安全约束条件的前提下充分利用风电的原则,对计及风电场的大电网系统进行可靠性评估。
     ⑤将风电场的可靠性模型与电力系统模型相结合,提出基于序贯蒙特卡洛方法评估计及风电场的大电网系统可靠性,研究了风电场并网、风电场穿透功率、风电场选址以及风速变化对电网可靠性的影响,为风电场的规划与运行奠定理论基础;另外,基于核密度估计技术得到了可靠性指标的概率密度分布,对几种方案可靠性指标的概率密度分布进行了比较,实现了对计及风电场的大电网风险更深入和完整的认知。
With the increasing severity of energy and environment problems, renewable energy is competitively developed all over the world. The wind energy was developing fastest among all kinds of renewable resources due to its a kind of renewable green power resources, its low cost and technical maturity. Unlike the other power plants, the active power from wind farms varies all the time, which may influence the operation and stability of power network after connection. To study the impact of the wind farm on the system reliability, this thesis presents a reliability assessment model of wind power integration in power systems based on the Monte Carlo simulation approach, which considers the randomicity of the wind and wind power generation forced outage rate. The main work has been done as follows:
     ①At first the thesis introduces the development, method, significance and research progress of reliability assessment of wind power integration in Bulk Power Systems at home and abroad.
     ②The reliability evaluation methods are usually divided into two kinds, that are analytical and simulation methods, and the simulation approach has been received consideration attention for its flexibility and practicality. Based on different sampling techniques, there are three kinds of simulation methods which are nonsequential Monte Carlo simulation, sequential Monte Carlo simulation and state transition sampling. This thesis details their fundamental principles and analyzes their merits and drawbacks. Moreover, utilizing the annual reliability indices samples and nonparametric kernel estimation technique, this thesis realizes the probability density estimation for reliability indices. This probability density information can facilitate us to discover system risks from the internal distribution laws and structural features of reliability indices. The proposed methods are verified using RBST and IEEE-RTS79 systems.
     ③Wind speed forecast is an important task of wind farms planning. Based on time series analysis, the thesis presents a wind speed forecast model, which considers timing and auto-correlation characteristic of wind speed. The distribution characteristic of the forecasted wind speed are compared with those of measured wind speed in a calculative example, which shows that the auto-regressive and moving average (ARMA) model is feasible in wind speed forecast for wind farms.
     ④This thesis presents a wind farm reliability assessment model based on the sequential Monte Carlo simulation using the reliability models of the conventional generators, lines and the transforms, which considers the randomicity of the wind and wind power generation forced outage rate. The reliability of Bulk Power Systems contain wind farms is evaluated in term of the principle that wind power is employed sufficiently, according to meeting system security constraints.
     ⑤Combining the wind farm reliability assessment model with the Bulk Power Systems, the reliability of wind power integration in Bulk Power Systems is evaluated. The impacts of adding wind farms to system, changing of penetration and wind speed on reliability of power system is analysed. The study provides the important reference value for wind farm operation and planning. Moreover, the probability density estimation of the five casesare given and compared based on kernel density estimation technique.
引文
[1]世界风能市场现状.美国风能会议资料, 1998.
    [2]宫靖远,贺德新,孙如林,吴运东.风电场工程技术手册[M].机械工业出版社, 2004.
    [3] R.Billinton, T.K.P. Medicherla. Station originated multiple outage in the reliability analysis of a composite generation and transmission system[J]. IEEE Trans. on PAS, 1981, 100(8): 3870-3878.
    [4] R.Billinton, J.Tatla. Composite generation and transmission system adequacy evaluation including protection system failure models[J]. IEEE Trans.on PAS, 1983, 102: 1823-1830.
    [5] R.Billinton. Composite System Reliability Evaluation[M]. IEEE, 1969, 88: 276-281.
    [6]赵渊,周家启,谢开贵.基于网流规划的发输电组合系统可靠性评估模型研究[J].电网技术, 2003, 27(10): 21-24.
    [7]陈华,周家启.网络K度薄弱最小割集及其快速搜索算法[J].重庆大学学报, 1989, 12(6): 51-58.
    [8]周家启,陈华.发输电组合系统可靠性研究及其在广西电力系统中的应用(研究报告).重庆大学电力系统研究所,1988.
    [9]陈华,周家启.大型网络可靠性评估的增流减流交叉网流法[J].重庆大学学报, 1990, 13(4): 2-6.
    [10]赵渊,周家启,刘洋.发输电组合系统可靠性评估中的最优负荷削减模型分析[J].电网技术, 2004, 28(10): 34-37.
    [11]任震,何建军,谌军等.交直流网络系统可靠性评估的Monte-Carlo混合法[J].电网技术, 2000, 24(5): 13-19、51.
    [12] R.Billinton, A.Sankarakrishnan, S.Adzanu, J.Satish. Adequacy assessment and worth evaluation and its application to NUG planning in composite generation and transmission systems[J]. IEEE Catalogue No.95TH8130.
    [13]王韶,周家启.双回平行输电线路可靠性模型[J].中国电机工程学报, 2003, 23(9): 53-56.
    [14]谢开贵,周家启.基于ANN削减负荷的发输电组合系统可靠性评估[J].电力系统自动化, 2002, 26, (22): 31-33, 44.
    [15]刘洋,周家启.计及气候因素的大电力系统可靠性评估[J].电力自动化设备, 2003, 23 (9): 53-56.
    [16] Nader Samaan, Chanan Singh. A new method for composite system annualized reliability indices based on genetic algorithms[J]. IEEE, 2002: 850-855.
    [17] Anastasios Balouktsis, Dimitrios Chassapis, Thodoris D. Karapantsios. A nomogram method for estimating the energy produced by wind turbine generators[J]. Solar energy, 2002, 72(3):251-259.
    [18] Yacob Mulugetta, Frances Drake. Assessment of solar and wind energy resources in Ethiopia. II. Wind energy[J]. Solar energy, 1996, 57(4): 323-334.
    [19]姚国平,余岳峰,王志征.如东沿海地区风速数据分析及风力发电量计算[J].电力自动化设备, 2004, 24(4): 12-14.
    [20] Jangamshetti Suresh H, Rau V. Optimum siting of wind turbine generators[J]. IEEE trans on Energy Conversion, 2001, 16(1): 8-13.
    [21]吴学光,陈树勇等.最小误差逼近算法在风电场风能资源特性分析中的应用[J].电网技术, 1998, 22(7): 69-74.
    [22]李自应,王明,陈二永等.云南风能可开发地区风速的韦布尔分布参数及风能特征值研究[J].太阳能学报, 1998, 19(3): 248-253.
    [23] Stelios Pashardes, Constantinos Christofides. Statistical analysis of wind speed and direction in Cyprus[J]. Solar energy, 1995, 55(5): 405-414.
    [24]丁明,吴义纯,张立军.风电场风速概率分布参数计算方法的研究[J].中国电机工程学报, 2005, 25(10): 107-110.
    [25] Bossanyi E A. Short-term wind prediction using Kalman filters[J]. Wind Engineering, 1985, 9(1): 1-8.
    [26] Shuhui Li, Wunsch D C, O'Hair E A, Giesselmann M G. Using neural networks to estimate wind turbine power generation[J]. IEEE Trans. on Energy Conversion, 2001, 16(3): 276-282.
    [27] Alexiadis M C, Dokopoulos P S, Sahsamanoglou H S. Wind speed and power forecasting based on spatial correlation models[J]. IEEE Transaction on Energy Conversion, 1999, 14(3): 836-842.
    [28] D A Bechrakis, J P Deane, E J McKeogh. Wind resource assessment of an area using short term data correlated to a long term data set[J]. Solar energy, 2004, 76(6): 725-732.
    [29] H Nfaouia, J Bureta, A A.M Sayigh. Stochastic simulation of hourly average wind speed sequences in Tangiers (Morocco) [J]. Solar energy, 1996, 56(3): 301-314.
    [30] A R Daniel, A A Chen. Stochastic simulation and forecasting of hourly average wind speed sequences in Jamaica[J]. Solar energy, 1991, 46(1): 1-11.
    [31] Lalarukh Kamal, Yasmin Zahra Jafri. Time series models to simulate and forecast hourly averaged wind speed in Quetta, Pakistan[J]. Solar energy, 1997, 61(1): 23-32.
    [32] Billinton R, Chen H, Ghajar R. Time-series models for reliability evaluation of power systems including wind energy[J]. Microelectron .Rehab, 1996, 36(9): 1253-1261.
    [33]丁明,张立军,吴义纯.基于时间序列分析的风电场风速预测模型[J].电力系统自动化设备, 2005, 25(8): 32-34.
    [34]杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].电机工程学报, 2005, 25(11):1-5.
    [35] Chen Z, Spooner E. Grid power quality with variable speed wind turbines[J]. IEEE Trans on Energy Conversion, 2001, 16(2): 148-154.
    [36] Saad-Saoud Z, Jenkins N. Models for predicting flicker induced by large wind turbines[J]. IEEE Transactions on Energy Conversion, 1999, 14(3): 743-748.
    [37] Feijoo A E, Cidras J, Dornelas J L G. Wind speed simulation in wind farms for steady-state security assessment of electrical power systems[J]. IEEE Trans on Energy Conversion, 1999, 4(4): 1582-1588.
    [38] Feijoo A E, Cidras J. Modeling of wind farms in the load flow analysis [J]. IEEE Trans on Power System, 2000, 15(1): 110-115.
    [39]李先允,陈小虎,唐国庆.大型风力发电场等值建模研究关键问题分析[J].电力电气, 2005, 24(12): 34-38.
    [40]吴义纯,丁明,张立军.含风电场的电力系统潮流计算[J].中国电机工程学报, 2005, 25(4): 36-39.
    [41]王海超,周双喜,鲁宗相,吴俊玲.含风电场的电力系统潮流计算的联合迭代方法及应用[J]电网技术, 2005, 29(18): 28-32.
    [42] John O. Impact of Wind Turbines on Voltage Quality. In: Proceeding of 8th International Conference on Harmonics and Quality of Power System, Vol 2. Athens; 1998. 1158-1161.
    [43] Balcells J, Gonzalez D. Harmonics Due to Resonance in a Wind Power Plant, In: Proceeding of 8th International Conference on Harmonics and Quality of Power System, Vol 2. Athens; 1998. 896-899.
    [44] Stavrakakis S, Kariniotakis N. A General Simulation Algorithm for the Accurate Assessment of Isolated Diesel-wind Turbines Systems Interaction (PartⅠ): A General Multimachine Power System Model. IEEE Trans on Energy Conversion, 1995, (3): 577~583.
    [45] Stavrakakis S, Kariniotakis N. A General Simulation Algorithm for the Accurate Assessment of Isolated Diesel-wind Turbines Systems Interaction(PartⅡ): Implementation of the Algorithm and Case-studies with Induction Generators. IEEE Trans on Energy Conversion, 1995, 10(3): 584~590.
    [46] Green M, Jenkins N. Connection of Small Wind-turbines in Weak Grids. In: IEEE Collquium on Small Wind Power Systems.Paris: 1996.
    [47] Singh C. Reliability modeling of generation systems including unconventional energy sources. IEEE Trans on Power Apparatus and Systems, 1985, 104(5): 1049-1056.
    [48] Castro S F, Allan R N. Generation availability ssessment of wind farms. IEEE Proc-Gener, Transm, Distrib 996, 143(5): 507 -518.
    [49] Billinton R, Chowdhury A. Incorporation of wind energy conversion systems in conventional generating capacity adequacy assessment. IEEE Proceedings-Generation, Transmission and Distribution, 1992, 139(1): 47-56.
    [50] Karaki S H, Salim B A. Chedid R B. Probabilistic model of a two-site wind energy conversion system. IEEE Transactions on Energy Conversion, 2002, 17(4): 530- 536.
    [51]陈树勇,戴慧珠,白晓民,等.风电场的发电可靠性模型及其应用[J].中国电机工程学报, 2000, 20(3): 26-28.
    [52]吴义纯,丁明.基于蒙特卡洛仿真的风力发电系统可靠性评价[J].电力系统自动化, 2004, 24(12): 70-73.
    [53]吴义纯,丁明.风电场可靠性评估[J].中国电力, 2004, 37(5): 81-84.
    [54]吴义纯,丁明,李生虎.风电场对发输电系统可靠性影响的评估[J].电工技术学报, 2004, 19(11): 72-76.
    [55] Castro R., FerreiraL A. Comparison Between Chronological and Probabilistic Methods to Estimate Wind Power Capacity Credit. IEEE Trans on Power Systems.2001,16(4): 904~909.
    [56]王海超,鲁宗相,周双喜.风电场发电容量可信度研究[J].中国电机工程学报, 2005, 25(10): 103-106.
    [57] R.Billinton,Li Wenyuan. Reliability Assessment of Electric Power Systems Using Monte Carlo Methods[M]. New York and London: Plenum Press, 1994.
    [58] Fang Z. Computer Simulation and Monte Carlo Method[M]. Beijing: Publishing House of Beijing Industrial Institute, 1988.
    [59] R Y. Rubinstein Simulation and Monte Carlo Method[M]. New York: Wiley, 1981.
    [60] CarMen L.T. Borges,Composite Reliability Evaluation by Sequential Monte Carlo Simulation on Parallel and Distributed Processing Environments[J]. IEEE Transactions on Power System, 2001, 16(2): 203-209.
    [61] J.R.Ubeda, R.N. Allan. Reliability Assessment of Composite Hydrothermal Generation and Transmission Systems Using Sequential Simulation[J]. IEE Proceedings-Gener. ransm.Distrib, 1994, 141(4): 257-262.
    [62] R.Billinton,A.Jonnavithula,Application of Sequential Monte Carlo Simulation to Evaluation of Distributions of Composite System Indics[J],IEE Proceedings-Gener. Transm.Distrib, 1997, 144(2): 87-90.
    [63] A.Sankarakrishnan, R.Billinton. Sequential Monte Carlo Simulation for Composite Power Systems Reliability Analysis with Time Varying Loads[J]. IEEE Transactions on Power Systems, 1995, 10: 1540-1545.
    [64] J.R.Ubeda, R.N. Allan. Sequential Simulation Applied to Composite System ReliabilityEvaluation[J]. IEE Proceedings-C, 1992, 139(2): 81-86.
    [65] R.Billinton,L.Gan,Monte Carlo Simulation Model for Multiarea Generation System Reliability Studies[J]. IEE Proceedings-C, 1993, 140(6): 532-538.
    [66] M. Rosenblatt.Remarks on Some Nonparametric Estimates of a Density Function[J].Annals of Mathematical Statistics,1956, 27(3): 832-837.
    [67] E. Parzen.On Estimation of a Probability Density Function and Mode[J].Annals of Mathematical Statistics,1962, 33(3): 1065–1076.
    [68] T. Cacoullos.Estimation of a multivariate density[J].Annals of Mathematical Statistics,1966,18(2): 179–189.
    [69] Silverman B.W..Density Estimation for Statistics and Data Analysis[M].Vol. 26 of Monographs on Statistics and Applied Probability,Chapman and Hall,London,1986.
    [70] Bowman A.,Azzalini A..Applied Smoothing Techniques for Data Analysis:The Kernel Approach with S-Plus Illustrations[M].Oxford University Press,UK,1997.
    [71] Siminoff J.S..Smoothing Methods in Statistics[M].Springer,New York,1996.
    [72] Wand M..P.,JONES M.C..Kernel Smoothing[M].Vol. 60 of Monographs on Statistics and Applied Probability,Chapman and Hall,London,1995.
    [73] R.Billinton,S.Kumar,N.Chowdhury,ect.A Reliability Test System For Educational Purposes -Basic Data[J].IEEE Transactions on Power Systems,1989,4(3): 1238-1244.
    [74] IEEE Committee Report.IEEE Reliability Test System[J].IEEE Transactions on Power Apparatus and Systems,PAS-98, 1979: 2047-2054.
    [75] Chen Hua. Generating system reliability optimization[D].University of Saskatchewan Saskatoon, Saskatchewan, 2000.
    [76]杨位钦,顾岚.时间序列分析与动态数据建模[M].北京:北京工业学院出版社, 1986.
    [77]吴义纯.含风电场的电力系统可靠性与规划问题的研究[D].合肥工业大学, 2006.
    [78] Alexander T. Ihler.Inference in Sensor Networks:Graphical Models and Particle Methods[D].2005,Massachusetts Institute of Technology.
    [79] R. Shibata. Selection of the order of an autoregressive model by Akaike’s information criterion. Biometrica, 1976, 11: 173-220.
    [80] H. Akaike. Fitting autoregressive models for prediction. Ann, Inst. 1969, 21: 243-247.
    [81] H. Akaike. A Bayesian extension of the minimum AIC procedure of autoregressive model fitting. Biometrika, 1979, 66: 237-242.
    [82] Billinton R,Bai Guang.Generating Capacity Adequacy Associated With Wind Energy[J].IEEE Transactions on Energy Conversion,2004,19(3):641-646.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700