黑河流域上游高分辨率降水驱动分析及NoahLSM的径流响应模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黑河流域是西北干旱区典型的内陆河流域,有限的水资源是制约当地社会经济发展的重要因素,上游产流区的水资源和水文、陆面过程一直是研究的热点。但目前在黑河流域上游仅有有限的高分辨率降水驱动数据,且数据质量并不清楚。另外目前黑河上游长时间跨度的、高时空分辨率、覆盖整个流域的Noah LSM陆面模拟研究比较少,故将单点的Noah LSM陆面过程模型扩展到二维,并应用黑河流域上游,加入汇流方法以检测流域整体的水热模拟效果。
     本文应用黑河流域常用的三组驱动数据来源包括WRF、GLDAS和ITP数据集,制备了适宜Noah LSM2D模拟应用的5km驱动数据,参考观测资料设计评价方法详细对比分析了三组数据集中降水数据的特点,结合制备的土地利用类型图、土壤类型图等参数及经校准的模型参数,驱动离线耦合(OFFLINE)的Noah LSM和VIC汇流模块,模拟了2004~2009年逐小时、三小时、5km分辨率的黑河上游水热状况和上游出口径流量,结合多组观测数据对比分析了三组降水数据驱动下的水热模拟结果及径流模拟结果。得出的主要结论有:
     (1)三组驱动数据均有各自不同的特点,建议模拟工作选用高时空分辨率的降水数据时,如需年份较长,建议采用年际间更稳定的GLDAS和ITP降水;如所需时间较短,鉴于GLDAS和ITP在总降水量、频率上的误差,WRF也能有较好的表现,推荐将三数据分别做模拟测试。在三组降水数据驱动Noah LSM耦合VIC汇流模块的模拟试验中,ITP降水数据表现出最好的水文模拟效果。
     (2)应用WRF制备的驱动数据集和ITP、GLDAS数据集的降水数据能够很好的模拟出黑河上游的水热状况,并且积雪、土壤温度、土壤含水量等的模拟效果均比较好。
     (3)三组数据的驱动下Noah LSM结合VIC汇流模块模拟的径流NSE最高可达0.66,说明该方法可以用于检验Noah LSM在流域2D模拟的模拟效果。
     (4)降水数据的总量大小、强度分布、空间分布、时间对应等特征均分别强烈影响到径流的模拟效果,并且也影响到整个流域的水量平衡模拟。
The Heihe River basin (HRB) is a typical inland river basin in the arid and semiarid region of northwest China. With naturally limited water resources and irrational water utilization, water-related problems have become severe in HRB. To solve such problems, a number of studies on hydrology and water-heat process of HRB have been conducted in past years. However, no high-quality precipitation forcing data is available in HRB to support accurate modelling activities, and the data qualities of existing forcing datasets remain unclear. Meanwhile, long time scale, high temporal-spatial resolution simulations on the upper stream of HRB with a land surface model are rarely found in literature. Using Noah LSM coupled with a routing scheme to simulate2D water-heat processes in Heihe upper stream could be an effective way to detect the performance of simulation, and could also be a reference case of HRB upper stream water-heat simulation study. It is significant in land surface model and hydrological model research, and the model coupling method.
     In this paper, we use three typical land surface model forcing datasets to force the coupled Noah LSM-VIC routing model. These datasets are WRF, GLDAS and ITP. Before simulations, a comprehensive comparative evaluation approach, consisting of a set of statistical indicators from both temporal and spatial aspects and comparisons against in situ observations from four established meteorological sites in the upper HRB, was proposed in this study. Then land use/land cover data, soil type data and other parameters were used to run the coupled Noah LSM-VIC routing model. The simulation is between2004-2009, with time resolutions of1hour and3hours, and a spatial resolution of5km. Simulation results include water-heat variables and runoff at outlet. Main findings are concluded as follows:
     (1) Each dataset has its own advantages. GLDAS and ITP are recommended for long-term simulations. Except for that, GLDAS, ITP and WRF precipitation data should be carefully evaluated before simulation. In this study, ITP data have showed best hydrological simulation performance.
     (2)Using forcing data produced by WRF and precipitation data from GLDAS and ITP, best simulation of the water-heat process in HRB upper stream can be achieved, especially in simulation of snow cover change, soil temperature and moisture.
     (3) NSE of the runoff simulation could reach0.66, which show that the coupled approach is effective in evaluating the performance of simulation.
     (4) Precipitation data plays an important role in simulation. Many items of precipitation data including magnitude, timing, and spatial distribution pattern could impact the water-heat and runoff simulation results.
引文
[1]孙菽芬,金继明.陆面过程模式研究中的几个问题[J].应用气象学报,1997,8(A00):50-57.
    [2]汪薇,张瑛.陆面过程模式的研究进展简介[J].气象与减灾研究,2010,33(003):1-6.
    [3]雍斌,任立良,陈喜,等.大尺度水文模型TOPX构建及其与区域环境系统集成模式RIEMS的耦合[J].地球物理学报,2009,(008):1954-1965.
    [4]Marc Stieglitz, David Rind, James Famiglietti, et al. An efficient approach to modeling the topographic control of surface hydrology for regional and global climate modeling[J]. Journal of Climate,1997,10(1):118-137.
    [5]Randal D Koster, Max J Suarez, Agnes Ducharne, et al. A catchment-based approach to modeling land surface processes in a general circulation model. Ⅰ-Model structure[J]. Journal of geophysical research,2000,105(24):809-24.
    [6]雍斌,张万昌,刘传胜.水文模型与陆面模式耦合研究进展[J].冰川冻土,2006,28(6):961-970.
    [7]杨传国,林朝晖,郝振纯,等.大气水文模式耦合研究综述[J].地球科学进展,2007,22(8):810-817.
    [8]苏凤阁,郝振纯.陆面水文过程研究综述[J].地球科学进展,2001,16(6):795-801.
    [9]邓慧平,孙菽芬,李倩.可用于陆面过程模型的地形指数水文模型中简化参数化方案的研究[J].气象学报,2010,68(3):351-364.
    [10]杨新兵,逯进生,鲁绍伟.陆面过程中的水文模式研究[J].水土保持研究,2007,14(3):46-50.
    [11]Randal D Koster, PCD Milly. The interplay between transpiration and runoff formulations in land surface schemes used with atmospheric models[J]. Journal of Climate,1997,10(7): 1578-1591.
    [12]谢正辉,刘谦,袁飞,等.基于全国50km× 50km网格的大尺度陆面水文模型框架[J].水利学报,2004,5:76-82.
    [13]William L Quinton, Sean K Carey. Towards an energy-based runoff generation theory for tundra landscapes[J]. Hydrological Processes,2008,22(23):4649-4653.
    [14]Paolo Burlando, Francesca Pellicciotti, Ulrich STRASSER. Modelling mountainous water systems between learning and speculatinxg looking for challenges[J]. Nordic hydrology, 2002,33(1):47-74.
    [15]叶守泽,夏军.水文科学研究的世纪回眸与展望[J].水科学进展,2002,13(1):93-104.
    [16]Benjamin Renard, Dmitri Kavetski, George Kuczera, et al. Understanding predictive uncertainty in hydrologic modeling:The challenge of identifying input and structural errors[J]. Water Resources Research,2010,46(5):W05521.
    [17]宋晓猛,占车生,孔凡哲,等.大尺度水循环模拟系统不确定性研究进展[J].地理学报,2011,66(3):396-406.
    [18]Tapash Das, Andras Bardossy, Erwin Zehe, et al. Comparison of conceptual model performance using different representations of spatial variability[J]. Journal of Hydrology, 2008,356(1):106-118.
    [19]Zuotong Nan., Shugong Wang., Xu Liang, et al. Analysis of Spatial Similarities Between NEXRAD and NLDAS Precipitation Data Products[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.2010,3(3):371-385.
    [20]Sven Kotlarski, A Block, U Bohm, et al. Regional climate model simulations as input for hydrological applications:evaluation of uncertainties[J]. Advances in Geosciences,2005,5: 119-125.
    [21]L Moulin, E Gaume, Charles Obled. Uncertainties on mean areal precipitation:assessment and impact on streamflow simulations[J]. Hydrology and Earth System Sciences Discussions, 2009,13(2):99-114.
    [22]M Rodell, PR Houser, U Jambor, et al. The global land data assimilation system[J]. Bulletin of the American Meteorological Society,2004,85(3):381-394.
    [23]B Van den Hurk. ELDAS Final Report. KNMI, ECMWF,2005,
    [24]Kenneth E Mitchell, Dag Lohmann, Paul R Houser, et al. The multi-institution North American Land Data Assimilation System (NLDAS):Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system[J]. J. Geophys. Res,2004, 109(D7):D07.
    [25]Kun YANG, Takahiro Watanabe, Toshio Koike, et al. Auto-calibration system developed to assimilate AMSR-E data into a land surface model for estimating soil moisture and the surface energy budget[J]. Journal of Meteorological Society of Japan,2007,85(0):229-242.
    [26]潘小多,李新,钞振华.区域尺度近地表气候要素驱动数据研制的研究综述[J].地球科学进展,2010,25(12):1314-1324.
    [27]Zhuotong Nan, Shugong Wang, Xu Liang, et al. Analysis of Spatial Similarities Between NEXRAD and NLDAS Precipitation Data Products[J]. Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of,2010,3(3):371-385.
    [28]Jonathan J Gourley, Yang Hong, Zachary L Flamig, et al. Hydrologic Evaluation of Rainfall Estimates from Radar, Satellite, Gauge, and Combinations on Ft. Cobb Basin, Oklahoma[J]. Journal of Hydrometeorology,2011,12(5):973-988.
    [29]Balazs M Fekete, Charles J Vorosmarty, John O Roads, et al. Uncertainties in precipitation and their impacts on runoff estimates[J]. Journal of Climate,2004,17(2):294-304.
    [30]Tufa Dinku, Pietro Ceccato, Stephen J Connor. Challenges of satellite rainfall estimation over mountainous and arid parts of east Africa[J],.International Journal of Remote Sensing, 2011,32(21):5965-5979.
    [31]Koray K Yilmaz, Terri S Hogue, Kuo-lin Hsu, et al. Intercomparison of rain gauge, radar, and satellite-based precipitation estimates with emphasis on hydrologic forecasting[J]. Journal of Hydrometeorology,2005,6(4):497-517.
    [32]田静,苏红波,孙晓敏,等.GDAS数据和NOAH陆面模式在中国应用的精度检验[J].地理科学进展,2011,30(11):1422-1430.
    [33]MI Budyko. The heat balance of the earth [C].1962:171-185.
    [34]Syukuro Manabe. Climate and the ocean circulation PartⅠ:The atmospheric circulation and the hydrology of the earth's surface [J]. Monthly Weather Review,1969,97:739-774.
    [35]Robert E Dickinson. The force-restore model for surface temperatures and its generalizations[J]. Journal of Climate,1988,1(11):1086-1097.
    [36]PJ Sellers, Y Mintz, YC Sud, et al. A simple biosphere model (SiB) for use within general circulation models[J]. Journal of the Atmospheric Sciences,1986,43(6):505-531.
    [37]Y Xue, PJ Sellers, JL Kinter, et al. A simplified biosphere model for global climate studies[J]. J. Climate,1991,4:345-364.
    [38]孙菽芬.陆面过程的物理,生化机理和参数化模型[M].气象出版社,2005.
    [39]MB Ek, KE Mitchell, Y Lin, et al. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model[J]. J. Geophys. Res,2003,108(D22):8851.
    [40]Fei Chen, Jimy Dudhia. Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part Ⅰ:Model implementation and sensitivity[J]. Monthly Weather Review,2001,129(4):569-585.
    [41]Fei Chen, Zavisa Janjic, Kenneth Mitchell. Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP mesoscale Eta model[J]. Boundary-Layer Meteorology,1997,85(3):391-421.
    [42]K Mitchell. The Community Noah Land-Surface Model (LSM) User's Guide. Public Release Version,2005,2(1)
    [43]H-L Pan, L Mahrt. Interaction between soil hydrology and boundary-layer development[J]. Boundary-Layer Meteorology,1987,38(1):185-202.
    [44]Lawrence Mahrt, H Pan. A two-layer model of soil hydro logy [J]. Boundary-Layer Meteorology,1984,29(1):1-20.
    [45]L Mahrt, Michael Ek. The influence of atmospheric stability on potential evaporation[J]. Journal of Climate and Applied Meteorology,1984,23:222-234.
    [46]Y Dai, X Zeng, RE Dickinson. Common Land Model:Technical documentation and user's guide[J]. [Available online at http://climate.eas.gatech.edu/dai/clmdoc.pdf], Coauthors 2001,
    [47]Keith W Oleson, Yongjiu Dai, Gordon Bonan, et al. Technical description of the community land model (CLM), NCAR Technical Note NCAR/TN-461+STR, National Center for Atmospheric Research, Boulder, CO,2004.
    [48]Yongjiu Dai, Xubin Zeng, Robert E Dickinson, et al. The common land model[J]. Bulletin of the American Meteorological Society,2003,84(8):1013-1023.
    [49]Xubin Zeng, Zhuo Wang, Aihui Wang. Surface skin temperature and the interplay between sensible and ground heat fluxes over arid regions[J]. Journal of Hydrometeorology,2012,13: 1359-137.
    [50]AG Slater, TJ Bohn, JL McCreight, et al. A multimodel simulation of pan-Arctic hydrology[J]. Journal of geophysical research,2007,112(G4):G04S45.
    [51]Fei Chen, Kenneth Mitchell, John Schaake, et al. Modeling of land surface evaporation by four schemes and comparison with FIFE observations[J]. Journal of Geophysical Research. D. Atmospheres,1996,101:7251-7268.
    [52]John C Schaake, Victor I Koren, Qing-Yun Duan, et al. Simple water balance model for estimating runoff at different spatial and temporal scales[J]. Journal of Geophysical Research. D. Atmospheres,1996,101:7461-7475.
    [53]V Koren, J Schaake, K Mitchell, et al. A parameterization of snowpack and frozen ground intended for NCEP weather and climate models [J]. Journal of geophysical research,1999, 104(D16):19,569-19,585.
    [54]Christopher R Hain, Wade T Crow, Martha C Anderson, et al. An ensemble Kalman filter dual assimilation of thermal infrared and microwave satellite observations of soil moisture into the Noah land surface model[J]. Water Resources Research,2012,48(11):W11517.
    [55]Helin Wei, Youlong Xia, Kenneth E Mitchell, et al. Improvement of the Noah land surface model for warm season processes:Evaluation of water and energy flux simulation[J]. Hydrological Processes,2012,2:297-303.
    [56]Ismail Yucel, W James Shuttleworth, James Washburne, et al. Evaluating NCEP Eta model-derived data against observations[J]. Monthly Weather Review,1998,126(7): 1977-1991.
    [57]Wayne M Angevine, Kenneth Mitchell. Evaluation of the NCEP mesoscale Eta model convective boundary layer for air quality applications[J]. Monthly Weather Review,2001, 129(11):2761-2775.
    [58]Curtis H Marshall, Kenneth C Crawford, Kenneth E Mitchell, et al. The impact of the land surface physics in the operational NCEP Eta model on simulating the diurnal cycle: Evaluation and testing using Oklahoma Mesonet data[J]. Weather and forecasting,2003, 18(5):748-768.
    [59]W Thilini Jaksa, Venkataramana Sridhar, Justin L Huntington, et al. Evaluation of the Complementary Relationship using Noah Land Surface Model and North American Regional Reanalysis (NARR) Data to Estimate Evapotranspiration in Semiarid Ecosystems[J]. Journal of Hydrometeorology,2012,14:345-359.
    [60]RT Waghmare, T Dharmaraj, MN Patil. Noah-LSM Simulation on Various Soil Textures in Tropical Semi-Arid Regions[J]. Soil Science,2012,177(11):664-673.
    [61]C Prakash Khedun, Ashok K Mishra, John D Bolten, et al. Understanding changes in water availability in the Rio Grande/Rio Bravo del Norte basin under the influence of large-scale circulation indices using the Noah land surface model[J]. Journal of geophysical research, 2012,117(D5):D05104.
    [62]Yingying Chen, Kun Yang, Degang Zhou, et al. Improving the Noah land surface model in arid regions with an appropriate parameterization of the thermal roughness length[J]. Journal of Hydrometeorology,2010,11(4):995-1006.
    [63]Kun Yang, Yingying Chen, J Qin. Some practical notes on the land surface modeling in the Tibetan Plateau[J]. Hydrology and Earth System Sciences,2009,13(5):687.
    [64]R Van der Velde, Z Su, M Ek, et al. Influence of thermodynamic soil and vegetation parameterizations on the simulation of soil temperature states and surface fluxes by the Noah LSm over a Tibetan plateau site[J]. Hydrology and Earth System Sciences,2009,13(6): 759-777.
    [65]高艳红,程国栋,刘伟,等.黑河流域土壤参数修正及其对大气要素模拟的影响[J].高原气象,2007,26(5):958-966.
    [66]陈浩,南卓铜,王书功.黑河上游山区典型站点的水热过程模拟研究[J].冰川冻土,2013,35(1):126-137.
    [67]邓慧平,孙菽芬.地形指数模型TOPMODEL与陆面模式SSiB的耦合及在流域尺度上的数值模拟[J].中国科学:地球科学,2012,42(7):1083-1093.
    [68]周锁铨,代刊,陈涛,等.陆面过程模式的改进及其检验[J].气象学报,2003,61(3): 275-290.
    [69]苏凤阁,郝振纯.一种陆面过程模式对径流的模拟研究[J].气候与环境研究,2002,7(004):423-432.
    [70]Jingwen Xu, Wanchang Zhang, Zheng Ziyan, et al. Establishment of a Hybrid Rainfall-Runoff Model for Use in the Noah LSM[J]. Acta Meteorologica Sinica,2012,26(1): 85-92.
    [71]J Pestel, C Ambelas Skj(?)th, J Brandt, et al. Validating precipitation estimates simulated by the numerical weather forecast models ETA and MM5 for use in flood forecasting[C]. International Conference on Innovation, advances and implementation of flood forecasting technology, Troms(?),2005:17-19.
    [72]李新,黄春林,车涛,等.中国陆面数据同化系统研究的进展与前瞻[J].自然科学进展,2007,17(2):163-173.
    [73]高艳红,程国栋,崔文瑞,等.陆面水文过程与大气模式的耦合及其在黑河流域的应用[J].地球科学进展,2006,21(12):1283-1292.
    [74]刘俊峰,陈仁升,韩春坛,等.多卫星遥感降水数据精度评价[J].水科学进展,2010,2 1(003):343-348.
    [75]刘波,肖子牛.多源降水数据在澜沧江-湄公河流域的比较研究[J].干旱区地理,2011,34(6):958-966.
    [76]AR As-Syakur, T Tanaka, R Prasetia, et al. Comparison of TRMM multisatellite precipitation analysis (TMPA) products and daily-monthly gauge data over Bali[J]. International Journal of Remote Sensing,2011,32(24):8969-8982.
    [77]潘小多.黑河流域高分辨率大气驱动数据的制备:模拟与数据同化[D].中国科学院寒区旱区环境与工程研究所,2012.
    [78]Xiaoduo Pan, Xin Li. Validation of WRF model on simulating forcing data for Heihe River Basin[J]. Sciences in Cold and Arid Regions,2011,3(4):0344-0357.
    [79]Yingying Chen, Kun Yang, Jie He, et al. Improving land surface temperature modeling for dry land of China[J]. Journal of geophysical research,2011,116(D20):D20104.
    [80]康尔泗,程国栋,蓝永超,等.概念性水文模型在出山径流预报中的应用[J].地球科学进展,2002,17(1):18-26.
    [81]康东泗,程国栋,蓝永超,等.西北干旱区内陆河流域出山径流变化趋势对气候变化响应模型[J].中国科学(D辑),1999,29(1):48-54.
    [82]陈仁升,康尔泗,杨建平,等Topmodel模型在黑河干流出山径流模拟中的应用[J].中国沙漠,2003,23(4):428-434.
    [83]王建,李硕.气候变化对中国内陆干旱区山区融雪径流的影响[J].中国科学(D辑),2005,35(7):664-670.
    [84]夏军,王纲胜,吕爱锋,等.分布式时变增益流域水循环模拟[J].地理学报,2003,58(5)
    [85]黄清华,张万昌SWAT分布式水文模型在黑河干流山区流域的改进及应用[J].南京林业大学学报(自然科学版),2004,28(2):22-26.
    [86]陈仁升,吕世华,康尔泗,等.内陆河高寒山区流域分布式水热耦合模型(Ⅰ):模型原理[J].地球科学进展,2006,21(8):806-818.
    [87]陈仁升,康尔泗,吕世华,等.内陆河高寒山区流域分布式水热耦合模型(Ⅱ):地面资料驱动结果[J].地球科学进展,2006,21(8):819-829.
    [88]陈仁升,高艳红,康尔泗,等.内陆河高寒山区流域分布式水热耦合模型(Ⅲ):MM5嵌 套结果[J].地球科学进展,2006,21(8):830-837.
    [89]陈亮.基于区域气候模式和VIC模型的黑河流域陆气相互作用研究[D].兰州大学,2011.
    [90]余文君,南卓铜,赵彦博,等SWAT模型融雪模块的改进及应用[J].生态学报.2013,(接受).
    [91]梁友嘉,徐中民.基于GIS的降水多元回归模型在黑河干流山区的应用[J].草业科学,2011,28(09):1581-1588.
    [92]黄河水利委员会,‘黑河概览’2010.6.22..
    [93]王建,车涛,李弘毅,等.黑河综合遥感联合试验:大冬树山垭口积雪观测站自动气象站数据集.中国科学院寒区旱区环境与工程研究所,2008.
    [94]胡泽勇,马明国,晋锐,等.黑河综合遥感联合试验:阿柔冻融观测站自动气象站数据集.中国科学院寒区旱区环境与工程研究所,2008.
    [95]胡兴林,畅俊杰,刘根生.考虑区间正负入流量的自适应洪水预报模型[J].水文,2003,23(3):24-28.
    [96]Bruno Jacquemin, Joel Noilhan. Sensitivity study and validation of a land surface parameterization using the HAPEX-MOBILHY data set[J]. Boundary-Layer Meteorology, 1990,52(1):93-134.
    [97]PG Jarvis. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field[J]. Philosophical Transactions of the Royal Society of London. B, Biological Sciences,1976,273(927):593-610.
    [98]Lifeng Luo, Alan Robock, Konstantin Y Vinnikov, et al. Effects of frozen soil on soil temperature, spring infiltration, and runoff:Results from the PILPS 2 (d) experiment at Valdai, Russia[J]. Journal of Hydrometeorology,2003,4(2):334-351.
    [99]PA Dirmeyer, X Gao, T Oki. The Second Global Soil Wetness Project (GSWP2). International GEWEX Project Office Publication,2002,37:75.
    [100]Ernesto Hugo Berbery, Yan Luo, Kenneth E Mitchell,et al. Eta model estimated land surface processes and the hydrologic cycle of the Mississippi basin[J]. Journal of geophysical research,2003,108(D22):8852.
    [101]Alan K Betts, Fei Chen, Kenneth E Mitchell, et al. Assessment of the land surface and boundary layer models in two operational versions of the NCEP Eta Model using FIFE data[J]. Monthly Weather Review,1997,125(11):2896-2916.
    [102]J Noilhan, S Planton. A simple parameterization of land surface processes for meteorological models[J]. Monthly Weather Review,1989,117(3):536-549.
    [103]Dag Lohmann, RALPH NOLTE-HOLUBE, Ehrhard Raschke. A large-scale horizontal routing model to be coupled to land surface parametrization schemes[J]. Tellus A,1996, 48(5):708-721.
    [104]A Henderson-Sellers, ZL Yang, RE Dickinson. The project for intercomparison of land-surface parameterization schemes[J]. Bulletin of the American Meteorological Society;(United States),1993,74(7):1335-1350.
    [105]Eric F Wood, Dennis P Lettenmaier, Xu Liang, et al. The Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) Phase 2 (c) Red-Arkansas River basin experiment::1, Experiment description and summary intercomparisons[J]. Global and Planetary Change,1998,19(1):115-135.
    [106]D Lohmann, E Raschke, B Nijssen, et al. Regional scale hydrology:Ⅰ. Formulation of the VIC-2L model coupled to a routing model[J]. Hydrological Sciences Journal,1998,43(1): 131-141.
    [107]Bart Nijssen, Dennis P Lettenmaier, Xu Liang, et al. Streamflow simulation for continental-scale river basins[J], Water Resources Research,1997,33(4):711-724.
    [108]Fayez A Abdulla, Dennis P Lettenmaier, Eric F Wood, et al. Application of a macroscale hydrologic model to estimate the water balance of the Arkansas-Red River basin[J]. Journal of geophysical research,1996,101(D3):7449-7459.
    [109]李润奎,朱阿兴,李宝林,等.流域水文模型对土壤数据响应的多尺度分析[J].地理科学进展,2011,30(1):80-86.
    [110]潘小多,李新,冉有华,等.下垫面对WRF模式模拟黑河流域区域气候精度影响研究[J].高原气象,2012,31(003):657-667.
    [111]候玉婷,王书功,南卓铜.基于知识规则的土地利用/土地覆被分类方法——以黑河流域为例[J].地理学报,2011,66(4):549-561.
    [112]D Lohmann, E Raschke, B Nijssen, et al. Regional scale hydrology:Ⅱ. Application of the VIC-2L model to the Weser River, Germany[J]. Hydrological Sciences Journal,1998,43(1): 143-158.
    [113]Xiaoduo Pan, Xin Li, Xiaokang Shi, et al. Dynamic downscaling of near-surface air temperature at the basin scale using WRF-a case study in the Heihe River Basin, China[J]. Frontiers of Earth Science,2012:1-10.
    [114]Amit P Kesarkar, Mohit Dalvi, Akshara Kaginalkar, et al. Coupling of the weather research and forecasting model with AERMOD for pollutant dispersion modeling. A case study for PM10 dispersion over Pune, India[J]. Atmospheric Environment,2007,41(9):1976-1988.
    [115]Tajdarul H Syed, James S Famiglietti, Matthew Rodetl, et al. Analysis of terrestrial water storage changes from GRACE and GLDAS[J]. Water Resources Research,2008,44(2): W02433.
    [116]Peter Caldwell, Hung-Neng S Chin, David C Bader, et al. Evaluation of a WRF dynamical downscaling simulation over California[J]. Climatic Change,2009,95(3):499-521.
    [117]Daniel Argiieso, Jose Manuel Hidalgo-Munoz, Sonia Raquel Gamiz-Fortis, et al. Evaluation of WRF Mean and Extreme Precipitation over Spain:Present Climate (1970-99)[J]. Journal of Climate,2012,25(14):4883-4897.
    [118]Yongxin Zhang, Valerie Duliere, Philip W Mote, et al. Evaluation of WRF and HadRM Mesoscale Climate Simulations over the US Pacific Northwest*[J]. Journal of Climate,2009, 22(20):5511-5526.
    [119]陈莹莹,施建成,杜今阳,等.基于GLDAS的中国区地表能量平衡数值试验[J].水科学进展,2009,20(1):25-31.
    [120]陈晓丽,沈学顺,陈活泼.陆面过程对2007年淮河流域强降水数值预报的影响分析[J].热带气象学报,2010,26(6):667-679.
    [121]杨元德,鄂栋臣,晁定波,等.GRACE估算陆地水储量季节和年际变化[J].地球物理学报,2009,(012):2987-2992.
    [122]Fuxing Wang, Lei Wang, Toshio Koike, et al. Evaluation and application of a fine-resolution global data set in a semiarid mesoscale river basin with a distributed biosphere hydrological model[J]. Journal of geophysical research,2011,116(D21):D21108.
    [123]Kun Yang, Toshio Koike, Ichirow Kaihotsu, et al. Validation of a dual-pass microwave land data assimilation system for estimating surface soil moisture in semiarid regions[J]. Journal of Hydrometeorology,2009,10(3):780-793.
    [124]Kun Yang, Jie He, Wenjun Tang, et al. On downward shortwave and longwave radiations over high altitude regions:Observation and modeling in the Tibetan Plateau[J]. Agricultural and Forest Meteorology,2010,150(1):38-46.
    [125]H Rui. README Document for Global Land Data Assimilation System Version 1 (GLDAS-1) Products, GES DISC Last revised,2011.
    [126]Glen E Liston, Kelly Elder. A meteorological distribution system for high-resolution terrestrial modeling (MicroMet)[J]. Journal of Hydrometeorology,2006,7(2):217-234.
    [127]Peter E Thornton, Steven W Running, Michael A White. Generating surfaces of daily meteorological variables over large regions of complex terrain[J]. Journal of Hydrology, 1997,190(3):214-251.
    [128]刘勇,邹松兵.祁连山地区高分辨率气温降水量分布模型[J].兰州大学学报:自然科学版,2006,42(1):7-12.
    [129]王宁练,贺建桥,蒋熹,等.祁连山中段北坡最大降水高度带观测与研究[J].冰川冻土,2009,(003):395-403.
    [130]张立杰,赵文智.黑河流域日降水格局及其时间变化[J].中国沙漠,2008,28(004):741-747.
    [131]Yudong Tian, Christa D Peters-Lidard, Bhaskar J Choudhury, et al. Multitemporal analysis of TRMM-based satellite precipitation products for land data assimilation applications[J]. Journal of Hydrometeorology,2007,8(6):1165-1183.
    [132]蒋冲,王飞,穆兴民,等.黑河流域森林生态系统湿热特征分析[J].水土保持通报,2012,32(003):96-100.
    [133]党素珍,刘昌明,王中根,等.近10年黑河流域上游积雪时空分布特征及变化趋势[J].资源科学,2012,34(8):1574-1581.
    [134]Zong-Liang Yang, Guo-Yue Niu. The versatile integrator of surface and atmosphere processes:Part 1. Model description[J], Global and Planetary Change,2003,38(1):175-189.
    [135]Michael Barlage, Fei Chen, Mukul Tewari, et al. Noah land surface model modifications to improve snowpack prediction in the Colorado Rocky Mountains[J]. Journal of geophysical research,2010,115(D22):D22101.
    [136]曹继业.祁连山中,东段多年冻结区地下水天然资源评价[J].冰川冻土,1985,7(1):65-76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700