珠峰自然保护区关键生态系统类型植被覆盖度动态变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植被覆盖度作为科学研究所必需的基础数据,为生态、水保、土壤、水利、植物等领域的定量研究结果提供基础数据,确保相关研究结果、模型理论更加科学可信;作为生态系统变化的重要标志,可为区域或全球性地表覆盖变化、景观分异等前沿问题的研究提供科学的指示作用;同时,作为第四纪地质学和第四纪环境学研究的重要参数,在次生地质灾害的监测与防治研究中具有显著的指导作用。
     珠峰自然保护区以保护青藏高原特有的高寒带自然生态为主,主要保护对象为极高山景观及喜马拉雅山脉南翼湿润山地森林生态系统和北翼的半干旱高原灌丛、草原生态系统,属于典型的生态脆弱区。所以,亟需探讨可以在该区域实行的有效的监测和管理途径。
     本文首先介绍了植被覆盖度的基本理论、研究现状和发展趋势,然后分析并讨论了测量植被覆盖度的方法。以珠峰自然保护区为研究区域,应用像元二分法模型,在RS和GIS技术支持下,提取出保护区1990年、2000年和2005年的植被覆盖度信息。并选取不同海拔带的5种关键生态系统类型作为具体研究对象,分别探讨常绿阔叶林、常绿针叶林、常绿灌丛、嵩草草甸和高山流石滩稀疏植被的覆盖度变化的时空过程和变化趋势,并对其时空分异的原因进行简要分析,得出以下结论:
     (1)常绿阔叶林全部分布在保护区的南坡,在1990~2000年间的变化以稳定为主,约占78.56%,植被退化区域共占10.53%,恢复区域共达到10.91%,恢复区域略大于退化区域。而2000~2005年期间,在以稳定为主的前提下,退化面积共占21.84%,恢复面积共占12.65%,退化区域明显大于恢复区域。主要是由于部分牧民为获得经济收入、造房和生活取暖而过度砍伐森林所致。
     (2)常绿针叶林同样全部分布在南坡,且在1990~2000年与2000~2005年之间的变化均以稳定为主。其中前十年的退化面积大于恢复面积,而在2000~2005年间,其植被覆盖情况发生了明显的好转,退化区域由之前的203.64km2减少到了64.78km2,恢复区域则由23.96km2增加到了94.42km2,且稳定区域面积由之前的312.06km2增加到了380.46km2。说明在保护区成立的前十年,部分人只顾经济效益,对森林进行过度砍伐,是造成常绿针叶林的大量退化的主要原因。而在2000~2005年之间,由于“天然林保护工程”以及退耕还林政策的实施,同时,当地政府也加大了管理力度并采取了一系列的禁伐措施,所以会出现植被覆盖度变化朝恢复的方向转化。
     (3)常绿灌丛在1990~2000年之间稳定区域在整个覆盖度变化中的百分比达到76.42%,处于主要地位,退化区域共占13.24%,恢复区域共占10.34%,退化区域大于恢复区域。2000~2005年之间,恢复区域所占百分比略有增加,由原来的10.34%增加到12.28%。说明该植被类型在前十年出现了一定程度的退化,2000年以后由于政府加强保护力度,实行一系列禁牧措施,使其出现了轻微恢复,但整体上看该植被类型的退化区域还是略大于恢复区域。在空间分布上,该植被类型则是在以稳定为主的前提下,南北坡的退化面积均大于恢复面积,且南坡退化程度大于北坡。
     (4)嵩草草甸无论是在1990年~2000年内,还是在2000~2005年内,其变化的稳定区域都占绝对优势,均达到80%以上。其中1990~2000年间退化总面积占8.92%,恢复总面积占9.52%。2000~2005年,退化总面积占8.77%,恢复总面积占10.68%,恢复面积均稍大于退化面积。嵩草草甸在珠峰自然保护区的南北坡均呈稳定——恢复格局,且恢复区域集中在北坡。以上数据说明该生态系统类型整体变化趋势稳定,保护良好。
     (5)高山流石滩稀疏植被在1990~2000年间的退化区域共占10.96%,恢复区域共占11.22%。在2000~2005年的退化区域共占10.09%,恢复区域共占10.61%,退化和恢复均保持在基本平衡的状态,恢复面积略大于退化面积。说明该生态系统人迹罕至,人为影响较小。在南北坡的变化趋势也是以稳定为主,伴随轻微恢复。其中,南坡退化区域和恢复区域大致相等,而在北坡的恢复区域则略大于退化区域。
IIIVegetation coverage, necessary for scientific research, can provide basic data for quantitative study on ecology, water reserve, soil, water conservancy, plant, etc., making the research results and model theories more scientific and credible. As an important changing marker of ecosystem, it can offer scientific indication for the study of frontier problems, such as the change of regional or global surface coverage, landscape differentiation, and accelerate the development of study on natural environment. And, as the important parameter of the study on quaternary geology and quaternary environmentology, it takes a significant role in monitoring and prevention for secondary geological disasters.
     Qomolangma Nature Reserve mainly protect the unique alpine natural ecosystem of Tibetan Plateau, including the extremely alpine landscape, the humid mountain forest ecosystem and semiarid plateau shrub-grassland ecosystem in the south and north slope of Himalayas respectively. The eco-environment there is so fragile that it is desiderate to approach effective monitoring and managing methods for this area.
     This paper introduced the basic theories of vegetation coverage, its research progresses and the developing trends. Then we analyzed and discussed the methods of measuring vegetation model. We take the Qomolangma Nature Reserve as study area, based on the dimidiate pixel model, with the support of RS and GIS, the vegetation coverage information of this area in 1990, 2000 and 2005 is extracted through improved pixel dichotomy model. In this paper, five crucial ecosystems in different altitude are studied specifically. They are evergreen broad-leaved forest, evergreen coniferous forest, evergreen shrub, Kobresia meadow and alpine talus vegetation. By approaching the changing process and trend of their coverage with the change of time and space, we analyzed the reason of the differentiation. The study results are as follows:
     (1) All the evergreen broad-leaved forests were distributed in the south slope of the study area, and the changing of the area of evergreen broad-leaved forest between the year of 1990 and 2000 relied mainly on stability, which accounted for 78.56%, the vegetation degradation region accounted for 10.53%, and the recovery region, however, which is a little larger than the degradation one accounted for 78.56%. The year between 2000 and 2005 when the area was mainly on stability, however, the vegetation degradation region accounted for 21.84% comparing significantly with the recovery one for 12.65%. Some herdsmen’pursuit of economic interests, building and heating through deforestation may be the cause of vegetation degradation.
     (2) The evergreen coniferous forests also distribution in the southern slope, and the changing in this area relied mainly on stability between either 1990 and 2000 or 2000 and 2005. The area of degradation region is larger than of the recovery region during the first 10 years. The vegetation coverage improved significantly between 2000 and 2005, the degradation region reduced from the past 203.64km2 to 64.78km2, with the recovery region increasing from 23.96km2 to 94.42km2, what’s more, the stability region also increasing from the former 312.06km2 to 380.46km2. The data showed that some people did excessive chopping only for economic interests in the first 10 years, making the evergreen coniferous forests degenerated greatly. During the year between 2000 and 2005, however, the vegetation coverage changed to the recovery way because of the project of natural forests protected and the policy of conversion of cropland to forest. The government also carried some measures of chopping forbidden and increased the management power, which promoted the forests recovery.
     (3) The stable region of evergreen shrub which is the primary area in coverage changing reached 76.42% between 1990 and 2000, the vegetation recovery region accounted for 10.34%, and the degradation region, however, which is a little larger than the recovery one accounted for 13.24%. The recovery region increased appreciably from former 10.34% to 12.28% from 2000 to 2005. We can draw a conclusion that the vegetation types degenerated in a certain degree in the first 10 years, but it recovered slightly after 2000 because of the grazing forbidden measures and the stronger protection by the government, however, the area of degradation region was still a little larger than the recovery one as a whole. By the condition of the stability on spatial distribution, the area of degradation region both in the northern and southern slope was larger than which of the recovery region, and the southern condition was more serious than the north.
     (4) The stable region in the changing of kobresia meadow held advantage above 80% whatever between 1990 and 2000 or between 2000 and 2005. The area of degradation region accounted for 8.92%, comparing by the recovery region for 9.52% between 1990 and 2000. From 2000 to 2005, the area of degradation region accounted for 8.77%, which is a little smaller comparing by the recovery region for 10.68%. Kobresia meadow in Qomolangma Nature Reserve was a stable—recovery style in both slopes, the recovery region, especially, was in the northern slope by large. So the change of this ecosystem type was stable, and the system was protect well.
     (5) The degradation region of alpine talus vegetation accounted for 10.96% between 1990 and 2000, and the recovery region accounted for 11.22%. Between 2000 and 2005, the degradation region accounted for 10.09%, which was a little smaller than the recovery one for 10.61%。So we can draw a conclusion that it was hard for people to get in this ecosystem which was hardly influenced by human beings. The main changing on each slope was stable style, sometimes was slight recovery. The area of degradation region on southern slope was equal to the recovery region, and the recovery region was a little larger than degradation one on northern slope.
引文
[1]陈晋,陈云浩,何春阳等.基于土地覆盖分类的植被覆盖率估算亚像元模型与应用.遥感学报,2001,5 (6 ):416-422.
    [2]陈庆沐.珠穆朗玛峰地区生物、土壤环境本底初步探索[A].珠穆朗玛峰科学考察报告[R].北京:科学出版社,1975.
    [3]陈述彭,童庆禧,郭华东,等.遥感信息机理研究[M].北京,科学出版社,1998.
    [4]陈云浩,李晓兵,史培军.北京海淀区植被覆盖的遥感动态研究[J].植物生态学报,2001,25 (5):588-593.
    [5]程红芳,章文波,陈锋.植被覆盖度遥感估算方法研究进展[J].国土资源遥感,2008,75(1):13-15.
    [6]次旦伦珠.珠穆朗玛峰自然保护区概况[J].中国藏学,1997,(1):3-22.
    [7]党安荣. ERDAS IMAGINE遥感图像处理方法[M].北京:清华大学出版社,2003.
    [8]丁艳梅,张继贤,王坚,等.基于数据的植被覆盖度反演[J].测绘科学,2006,31(l):43-46.
    [9]方红亮,田庆久.高光谱遥感在植被监测中的研究综述[J].遥感技术与应用,1998,3(1): 62-69.
    [10]方精云,朴世龙,贺金生等.近20年来中国植被活动在增强[J].中国科学(C辑),2003,33(6):554-565.
    [11]冯松,汤懋苍,王冬梅.青藏高原是我国气候变化启动区的新证据[J].科学通报,1998, 43(6): 633-636.
    [12]高素华,郭建平,刘玲,等.中国北方地区植被覆盖度的遥感解译及水土保持作用系数推算研究[J].水土保持学报,2001,15(3):65-67.
    [13]高志强,刘纪远,曹明奎等.土地利用和气候变化对区域净初级生产力的影响[J].地理学报, 2004, 59(4): 581-591.
    [14]高志海,魏怀东,丁峰.TM影像V1提取植被信息技术研究[J].干旱区资源与环境,1998,12(3):98-104.
    [15]顾祝军,曾志远,史学正,等.基于ETM+图像的植被覆盖度遥感估算模型[J].生态环境,2008,17(2):771-776.
    [16]江辉,基于遥感的植被覆盖度估算及其动态研究[D].硕士论文,南昌大学建筑工程学院,2005.
    [17]李渤生.雪域奇葩——珠穆朗玛峰自然保护区人与生物圈, 2001, 2:4-11.
    [18]李苗苗.植被覆盖度的遥感估算方法研究[D].北京:中国科学院遥感应用研究所,2004.
    [19]李苗苗,吴炳方,颜长珍等.密云水库上游植被覆盖度的遥感估算[J].资源科学,2004,26(4):153-158.
    [20]李晓琴,孙丹峰,张凤荣.基于遥感的北京山区植被覆盖景观格局动态分析[J].山地学报2003.21(3):272-250.
    [21]李宗铭,张冬梅.雪域奇葩——西藏珠穆朗玛峰国家级自然保护区[J].生物学教学,2003,(12):51-52.
    [22]刘广峰,吴波,范文义,等.基于像元二分模型的沙漠化地区植被覆盖度提取——以毛乌素沙地为例[J].水土保持研究,2007,14(2),268-271.
    [23]刘务林.西藏自然和生态[M].拉萨:西藏人民出版社,2007.
    [24]吕世华,陈玉春.西北植被覆盖对我国区域气候变化影响的数值模拟[J].高原气象,1999,18(3):416-424.
    [25]马超飞,马建文,布和敖斯尔.USLE模型中植被覆盖因子的遥感数据定量估算[J].水土保持通报,2001.21(4): 6-9.
    [26]马驰,卢玉东.重庆南部TM图像植被指数与植被覆盖度信息的关系研究[J].水土保持研究,2008,15(6):137.
    [27]朴世龙,方精云.最近18年来中国植被覆盖的动态变化[J].第四纪研究,2001,21(4):294-302.
    [28]乔锋,张克斌,张生英,等.农牧交错区植被覆盖度动态变化遥感监测——以宁夏盐池为例[J].干旱区研究,2006,23(2):283-288.
    [29]师庆东,陈利军,潘晓玲,吕光辉.利用20年遥感影像分析西部干旱区植被演变特征[J].资源科学,2003,25(5):84-88.
    [30]唐克旺,王研,王芳等.西北地区生态环境现状和演化规律研究[J].干旱区地理,2002,(2)52:132-137.
    [31]田庆久,阂祥军.植被指数研究进展[J].地球科学进展,1998,13(4):327-333.
    [32]西藏自治区科学技术厅. 2007年西藏自治区科技发展报告[R]. 2008,6.
    [33]西藏自治区统计局.西藏统计年鉴1993 [R].中国统计出版社.1993.
    [34]西藏自治区统计局.西藏统计年鉴2005 [R].中国统计出版社.2005.
    [35]杨昆,明庆忠.地理信息技术在自然保护区管理中的应用方法研究[J].测绘通报,2005,(6):44-50.
    [36]杨胜天,刘昌明,杨志蜂等.南水北调西线调水工程区的自然生态环境评价[J].地理学报,2002,57 (1): 11-18.
    [37]易胜.基于RS和GIS岩溶地区植被覆盖度分析—以湖南洛塔为例[D].广西:广西师范大学,2008.
    [38]张玮,张镱锂,王兆锋等.珠穆朗玛峰自然保护区植被变化分析[J].地理科学进展,2006,25(3).16-18.
    [39]章文波,符素华,刘宝元.目估法测量植被覆盖度的精度分析[J].北京师范大学学报(自然科学版),2001,37(3): 402-408.
    [40]中国科学院青藏高原综合考察队.西藏植被[R].科学出版社.1988.
    [41]中国科学院西藏科学考察队.珠穆朗玛峰科学考察报告1966-1968地质[R].科学出版社.1975.
    [42]中国科学院西藏科学考察队.珠穆朗玛峰地区科学考察报告1966-1968自然地理中[R].科学出版社.1975.
    [43]周国林,袁正科编.常用林业技术术语[M].长沙:湖南科学技术出版社,1982.
    [44]周华坤,赵新全,周立,等.青藏高原高寒草甸的植被退化与土壤退化特征研究[J].草业学报,2005,14(3):31-40.
    [45]周兴民,李健华.海北高寒草甸生态系统定位站的主要植被类型及其地理分布规律[A].高寒草甸生态系统[C].兰州:甘肃人民出版社, 1982. 9-18
    [46] Anatoly A Gitelson, Yoram J Kaufman, Robert Stark, Don Rundquist. Novel algorithms for remote estimation of vegetation fraction[J]. Remote Sensing of Environment 2002,80(1):76-87.
    [47] Bannari A,Morin D,Bonn F. A review of vegetation indices[J].Remote Sensing Reviews,1995(13):95-120.
    [48] Bradley C Rundquist.The influence of canopy green vegetation fraction on spectral measurements over native tallgrass priairie[J].Remote Sensing of Environment,2002, 81(1):129-135
    [49] Carlson T N,Ripley D A. On the relation between NDVI fractional vegetation cover,and leaf area index. Remote Sensing of Environment,1997,62(3):241-252.
    [50] Choudhury B J. Relationships between vegetation indices, radiation absorption and netevaluated by a sensitivity analysis[J]. Remote Sensing of Environment, 1987. 22( 2 ):209-233
    [51] Diner D J, Asner G P, Davies,R, et al. New directions in Earth observing: scientific applications of multiangle remote sensing. Bulletin of the American Meteorological Society,1999, 80(11):2209-2228.
    [52] Dymond J R, Stephens P,Newsome P F et al. Percent vegetation cover of a rangeland from SPOT[J]. International Journal of Remote Sensing. 1992 ,13(11): 1999-2007.
    [53] Graetz R D, Pech R R, Davis A W.The assessment and monitoring of sparsely vegetated rangelands using calibrated Landsat data[J].International Journal of Remote Sensing 1988, 9(7):1201-1222.
    [54] Gutman q ignatov A. The derivation of the green vegetation fraction from NOAA/AVHRR datafor use in numerical weather prediction models [J]. International Journal of Remote Sensing, 1998,19 (8): 1533-1543.
    [55] Hans Tommervik, Kjell Arild Hogda, Inger Sothern. Monitoring vegetation changes in Pasvik (Norway) and Pechenga in Kola Peninsula (Russia) using multitemporal Landsat MSS/TM data [J].Remote Sensing of Environment,2003,85(3):370-388.
    [56] LePrieur C, Kerr YH, Mastorchio S, et al. Monitoring vegetation cover across semi-arid regions: Comparison of remote observations from various scales. International Journal of Remote Sensing,2000,21(2):281-300.
    [57] Leprieur C, Verstraete M M, Pinty B. Evaluation of the performance of various vegetation indicesto retrieve vegetation cover from AVHRR data [J]. Remote Sensing Review, 1994(10): 265-284.
    [58] Peter R.J. North Estimation of fPAR, LAI, and vegetation fractional cover from ATSR-2 imagery [J].Remote Sensing of Environment, 2002 80(1):114-121.
    [59] Pech R P, Graetz R D, Davis A W. Reflectance modelling and the derivation of vegetation for an Australian semi-arid shrubland [J].International Journal of Remote Sensing 1986(7),389-40325.
    [60] Qi J,Chenbouni A,Huete A R, et al. Modified soil adjusted vegetation index(MSAVI).Remote sensing of environment,1994,48(2):119-126.
    [61] Qi J,Marsett R C,Moran M.S, et al. Spatial and temporal dynamics of vegetation in the San Pedro River basin area [J]. Agricultural and Forest Meteorology, 2000(105):55-68.
    [62] Quarmby N A, Townshend J R G, Settle J J. et al. Linear mixture modeling applied to AHVRR data for crop area estimation .International Journal of Remote Sensing, 1992, 13(3):415-425.
    [63] Reed,B.D.,J.F.Brown,D.VanderZee et al, Measuring phonological variability from satellite imagery[J].Vegetation Science,1994 (5):703-714.
    [64] Rouse J W, Haas R W, Schell J A, et al. Monitoring the vernal advancement and retrogradation (Greenvave effect) of natural vegetation [J]. NASA/GSFCT Type III FinalReport, Greenbelt.1989,3(2):1547-1554.
    [65] Settle J J,N A. Linear mixing and the estimation of ground cover proportions[J]. International Journal of Remote Sensing, 1993(14 ):1159-1177.
    [66] Taylor, B. F. et al. Determination of seasonal and inter annual variation in New Zealand pasture growth from NOAA 7 data.[J].Remote Sensing of Environment,1985(18):177-192.
    [67] Tuller T. Remote sensing technology for rangeland management applications [J].Journal of Manage ,1989,42(6):1-15.
    [68] Yang, Prince. Remote sensing of savanna vegetation cover fraction estimated from satellite [J].International Journal of Biometeorology, 2000, 2(2):177-191.
    [69] Zribi M, Taconet O, Ciarletti V, et al. Derivation of wild vegetation cover density in semi-arid regions: ERS2/SAR evaluation[J].International Journal of Remote Sensing 2003(24): 1335-1346.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700