铝基超疏水表面制备方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超疏水表面是指与水的接触角大于150°,滚动角小于10°的表面。由于超疏水表面具有自清洁、抗玷污、防结冰、减阻减摩和抑制表面氧化等特性,在建筑、纺织、通讯、军事和航空领域有着广阔的应用前景。然而,现有的超疏水表面制备技术存在设备昂贵、工艺复杂、难以大面积制备等问题,在一定程度上限制了超疏水表面的发展。金属铝及其合金具有优良的物理化学性质,在现代工业中应用广泛。以简单经济的方法在金属铝基体上制备超疏水表面,尤其是大面积超疏水表面,对促进金属基超疏水表面的发展和应用意义重大。
     该论文研究了电化学阳极蚀除法制备铝基超疏水表面基底,并成功地把这种方法应用于大面积铝基超疏水表面的制备。
     提出利用外加电场和中性电解液(NaCl)的共同作用,诱导铝表面的晶界/位错优先蚀除,构建超疏水表面所需要的微/纳米结构基底。经过氟硅烷修饰后,表面与水的接触角达到167°,滚动角小于3°。实验研究了电解液种类、加工电流、加工时间、加工电压对超疏水表面的影响,确定了较优制备条件。扫描电镜分析表明,加工后的铝表面具有很多2~5μm宽、2~5μm深的凹坑,同时整个表面上又布满1~2μm的台阶状结构,构成超疏水表面所需的双重微观结构。
     从宏观和微观两方面研究了不同去除量下铝片表面形貌对表面超疏水性的影响;研究了相同去除量下,不同去除速度对表面超疏水性的影响。结果表明,对于9cm2的铝片,去除量达到0.20g时原始表面去除均匀、完全,表面超疏水性较好;电流密度小于等于25mA/cm2时,得到较好的表面超疏水性,而电流密度超过35 mA/cm2时,表面超疏水性有所下降。
     提出利用移动阴极电化学加工方法制备大面积铝基超疏水表面。建立实验装置并进行实验,结果显示:移动阴极电化学加工大面积超疏水表面可行,可解决以往大面积超疏水表面难以制备的问题。较优参数下加工出的表面具有很好的超疏水性,平均接触角达到167°,滚动角小于3°。
Superhydrophobic surface, with a water contact angle greater than 150°and tilt angle less than 10°, is of great prospect applied in the fields of construction, textile, communication, military and aviation for its particular characteristics such as self-cleaning, anti-icing, anti-attrition, drag reduction and corrosion resistance. However, the development of superhydrophobic surface is restricted for the reason that either expensive equipment or complex process are usually required in the fabrication of superhydrophobic surface by the main technologies, which are also difficult to fabricate large area of superhydrophobic surface. Aluminum and its alloy are widely used in various industrial products for their physical and chemical properties. Therefore, it's of great significant to develop a simple and inexpensive method to fabricate superhydrophobic surface, especially the large area of superhydrophobic surface on aluminum substrate.
     In this thesis, electrochemical anode etching method is developed to fabricate the superhydrophobic surface on the aluminum substrate. Furthermore, the method is carried out to prepare the large area of superhydrophobic surface successfully.
     By applying the neutral electrolyte (NaCl) and the applied field, the micro/nano-structure of the aluminum substrate is generated with applied electric field, which can induce the grain-boundaries/dislocations to dissolve prior to the grain itself. After modification with fluoroalkylsilane on the micro/nano-structure, superhydrophobic surface was obtained with water contact angle of 167°and tilt angle of 3°.Processing conditions such as electrolyte type, processing voltage, current, time were investigated to get their influence upon the superhydrophobicity of the surface, and the optimum processing condition was found. The scanning electronic microscope was used to investigate the micro-structure of the aluminum surface and showed that many pits of approximately 2-5μm in width and 2-5μm in depth are distributed on the aluminum surface. In addition, smaller step-like structures are evenly distributed on the whole surface, constituting the dual-scale micro/nano-structure, which is necessary to superhydrophobic surface.
     The influence of the surface morphologies with different removal weight on the superhydrophobicity of the surface is studied both macroscopically and microscopically, moreover, the influence of different removal speed under same removal weight on the superhydrophobicity of the surface is studied. Results shows that:for the aluminum plate of 9cm2, original surface is evenly and completely removed and superhydrophobicity of surface is obtained when removal weight reaches 0.20g; the superhydrophobicity of surface keeps excellent when the current density is smaller or equal to 25mA/cm2, but decreases when the current density exceeds 35mA/cm2.
     Electrochemical machining using a moving cathode is proposed to fabricate the large area of superhydrophobic surface. Experimental facility is established and the experiment is carried out. Results indicate that electrochemical machining is feasible to fabricate the large area of superhydrophobic surface by using the moving cathode, which solves the problem that the large area of superhydrophobic surface is difficult to prepare. Under optimum machining conditions, large area of superhydrophobic surface is achieved with water contact angle of 167°and tilt angle of 3°on average.
引文
[1]Shibuichi S, Onda T, Satoh N, et al. Super water-repellent surfaces resulting from fractal structure[J]. Journal of Physical Chemistry,1996,100:19512-19517.
    [2]Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. planta,1997,202:1-8.
    [3]Furstner R. Barthlott W. Neinhuis C, et al. Wetting and self-cleaning properties of artificial super-hydrophobic surfaces[J]. Langmuir,2005,21(3):956-961.
    [4]Blossey R. Self-cleaning surfaces-virtual realities[J]. Nature Materials.2003(2): 301-306.
    [5]Kako T, Nakajima A, Irie H, et al. Adhesion and sliding of wet snow on a super-hydrophobic surface with hydrophilic channels[J]. Material Science,2004,39:547-555.
    [6]Liu T, Lau K T, Chen S, et al. Super-hydrophobic surfaces improve corrosion resistance of Fe3Al-type intermetallic in seawater[J]. Advanced Materials Research, 2008,47(50):173-176.
    [7]Fukuda K, Tokunaga J, Nobunaga T, et al. Frictional drag reduction with air lubricant over a super-water-repellent surface [J]. Marine Science and Technology, 2000,5:123-130.
    [8]Watanabe K, Udagawa Y, Udagawa H. Drag reduction of Newtonian fluid in a circular pipe with a highly water-repellent wall[J]. Journal of Fluid Mechanics,1999,381: 225-238.
    [9]McHale G, Shirtcliffe N J, Evans C R, et al. Terminal velocity and drag reduction measurements on superhydrophobic spheres[J]. Applied Physics Letters,2009,94 (6):064104.
    [10]Jia O, Blair P, Jonathan P R. Laminar drag reduction in microchannels using ultra-hydrophobic surfaces[J]. Physics of Fluids,2004,16:4635-4644.
    [11]殷平,沈国励,王桦.超疏水表面防凝露[J].暖通空调,2006,36(4):50-56.
    [12]Patankar N A. Mimicking the lotus effect:influence of double roughness structures and slender pillars[J]. Langmurir,2004,20:8209-8213.
    [13]Zhu L, Feng Y, Ye X, et al. Tuning wettability and getting superhydrophobic surface by controlling surface roughness with well-designed microstructures [J]. Sensors and Actuators, A:Physical,2006,130-131:595-600.
    [14]D. Oner, T. J. McCarthy. Ultrahydrophobic surfaces. Effects of topography length scales on wettability [J]. Langmuir.2000,16:7777-7782.
    [15]Lee Y, Park S H, Kim K B, et al. Fabrication of hierarchical structures on a polymer surface to mimic natural superhydrophobic surfaces[J]. Advanced Materials,2007, 19(17):2330-2335.
    [16]Yoon T 0, Shin H J, Jeoung S C, et al. Formation of superhydrophobic poly (dimethysiloxane) by ultrafast laser-induced surface modification[J]. Optics Express,2008,16(17):12715-12725.
    [17]Sun T, Wang G, Feng L, et al. Reversible switching between super-hydrophilicity and superhydrophobicity[J]. Angewandte Chemie International Edition,2004,43: 357-360.
    [18]Khorasani M T, Mirzadeh H, Kermani Z. Wettability of porous polydimethylsiloxane surface:morphology study[J]. Applied Surface Science,2005,242:339-345.
    [19]Vourdas N, Tserepi A, Gogolides E. Nanotextured super-hydrophobic transparent poly(methyl methacrylate) surfaces using high-density plasma processing[J]. Nanotechnology,2007,18(12):125304.
    [20]Tserepi A D, Vlachopoulou M E, Gogolides E. Nanotexturing of poly(dimethylsiloxane) in plasmas for creating robust super-hydrophobic surfaces [J]. Nanotechnology,2006, 17(15):3977-3983.
    [21]Duparre A, Flemming M, Steinert J, et al. Optical coatings with enhanced roughness for ultra-hydrophobic, low scatter applications[J]. Applied Optics,2002,41 (6): 3294-3298.
    [22]Tsoi S, Fok E, Sit J C, et al. Super-hydrophobic, high surface area,3-D SiO2 nanostructures through siloxane-based surface functionalization[J]. Langmuir, 2004,20:10771-10774.
    [23]Chen A, Peng X, Koczkur K, et al. Super-hydrophobic tin oxide nanoflowers[J]. Chemistry Communication,2004:1964-1965.
    [24]Hozumi A, Takai 0. Preparation of ultra water-repellent films by microwave plasma-enhanced CVD[J], Thin Solid Films,1997,303:222-225.
    [25]Liu H, Feng L, Zhai J, et al. Reversible wettability of a chemical vapor deposition prepared ZnO film between super-hydrophobicity and super-hydrophilicity[J]. Langmuir,2004,20(14):5659-5661.
    [26]Teshima K, Sugimura H, Inoue Y, et al. Wettablity of poly(ethylene terephthalate) substrates modified by a two-step plasma process:ultra water repellent surface fabrication[J], Chemical Vapor Deposition,2004,10(6):295-297.
    [27]Guo C, Feng Lin, Zhai J, et al. Large-area fabrication of a nanostructure-induced hydrophobic surface from a hydrophilic polymer[J]. ChemPhysChem,2004,5:750-753.
    [28]Feng L, Li S H, Li Huanjun, et al. Super-hydrophobic surface of aligned polyacrylonitrile nanofibers[J]. Angewandte Chemie International Edition,2002,41: 1221-1223.
    [29]张鸿海,谢丹,刘胜,等.基于荷花效应的双微观超疏水表面制作技术研究[J].中国机械工程,2009,20(2):207-210.
    [30]Shirtcliffe N J, McHale G, Newton M L, et al. Intrinsically superhydrophobic organosilica sol-gel foam[J]. Langmuir 2003,19,5626-5631.
    [31]Venkateswara R A, Latthe S S, Nadarqi D Y, et al. Preparation of MTMS based transparent superhydrophobic silica films by sol-gel method [J]. Journal of Colloid and Interface Science,2009,332(2):484-490.
    [32]段辉,汪厚植,赵雷,等.氟化丙烯酸/二氧化硅杂化超疏水涂层的性能研究[J].涂料工业,2006,12:1-4.
    [33]Jiang L, Zhao Y, Zhai J, et al. A lotus-leaf-like superhydrophobic surface:a porous microsphere/nanofiber composite film prepared by electrohydrodynamics[J]. Angewandte chemie,2004,116:4438-4441.
    [34]Ma M, Hill R M, Lowery J L, et al. Electrospun Poly(Styrene-block-dimethylsiloxane) block copolymer fibers exhibiting superhydrophobicity[J]. Langmuir 2005,21(12): 5549-5554.
    [35]Acatay K, Simsek E, Menceloglu Y Z, et al. Tunable, superhydrophobically stable polymeric surfaces by eleetrospinning [J]. Angewandte Chemie International Edition,2004,43:5210-5213.
    [36]Burkarter E, Saul C K, Thomazi F et al. Superhydrophobic electrosprayed PTFE[J]. Surface and Coatings Technology,202:194-194.
    [37]Yarmour I A, Steven E J B, Saunder G C. Remarkably simple fabrication of super-hydrophobic surfaces using electroless galvanic deposition[J]. Angewandte Chemie International Edition,2007,46:1710-1712.
    [38]Wang C H, Song Y Y, Zhao J W. Semiconductor supported biomimetic superhydrophobic gold surfaces by the galvanic exchange reaction[J]. Surface Sciece,2006,600:38-42.
    [39]Wu W C, Wang X L, Wang D A, et al. Alumina nanowire forests via unconventional anodization and super-repellency plus low adhesion to diverse liquids [J]. The Royal Society of Chemistry,2009:1043-1045.
    [40]Wang H, Dai D, Wu X D. Fabrication of superhydrophobic surfaces on aluminum [J]. Applied Surface Science,2008,254:5599-5601.
    [41]李松梅,周思卓,刘建华.铝合金表面原位自组装超疏水膜层的制备及耐蚀性能[J].物理化学学报,2009,25(12):2581-2589.
    [42]Qian B T, Shen Z Q. Fabrication of Superhydrophobic Surfaces by Dislocation-Selective Chemical Etching on Aluminum, Copper, and Zinc Substrates[J]. Langmuir, 2005,21:9007-9009.
    [43]李艳峰,于志家,于跃飞,等.铝合金基体上超疏水表面的制备[J].高校化学工程学报,2008,22(1):6-10.
    [44]Sarkar D K, Farzaneh M, Paynter R W. Superhydrophobic properties of ultrathin rf-sputtered Teflon films coated etched aluminum surfaces[J]. Materials Letters, 2008,62:1226-1229.
    [45]钱柏太.金属基体上超疏水表面的制备研究[D].大连:大连理工大学化工工程学院,2005.
    [46]Young T. Experiments and calculations relative to physical optics[J]. Philoso-phical Transactions,1804,94:1-16.
    [47]Nishino T, Meguro K, Makamae K, et al. The lowest surface free energy based on-CF3 alignment[J], Langmuir,1999,15:4321-4323.
    [48]Wenzel R N. Resistence of solid surfaces to wetting by water[J]. Industrial and Enginering Chemistry,1936,28:988-994.
    [49]Cassie A B D, Baxter S. Wettability of porous surfaces[J]. Tramsactions of the Faraday Society,1944,40:546-551.
    [50]Oner D, McCarthy T J. Ultrahydrophobic surfaces, Effects of topography length scales on wettability[J]. Langmuir,2000,16:7777-7782.
    [51]Furmidge C G L. Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention[J]. Journal of Colloid Science,1962,17, 309-324.
    [52]Chen W, Fadeev A Y, Hsieh M C, Oner D at al. Ultrahudrophobic and ultralyophobic surfaces:some comments and examples[J]. Langmuir,1999,15:3395-3399.
    [53]Yoshimitsu Z, Nakajima A, Watanabe T, et al. Effects of surface structure on the hydrophobicity and sliding behavior of water droplets[J]. Langmuir,2002,18:5818-5822.
    [54]Henderson B著,范印哲译.晶体缺陷[M].北京:高等教育出版社,1983.
    [55]Hull D, Bacon D J著.丁树深,李齐译.位错导论[M].北京:科学出版社,1990.
    [56]徐家文,云乃彰,王建业,等.电化学加工技术[M].北京:国防工业出版社,2008.
    [57]Schondelmaier D, Cramm S, Klingeler R, et al. Orientation and self-assembly of hydrophobic fluoroalkylsilanes[J]. Langmuir,2002,18(16):6242-6245.
    [58]Zhou J J, Pang G B, Wang H, et al. Research on pulse electrochemical finishing using a moving cathode [J]. International Journal of Manufacturing Technology and Management,2005,7:352-365.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700