植物单根纤维拉伸性能测试与评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物单根纤维力学性能测量是当今木材科学领域的一项前沿技术,是在细胞水平上对单个的管胞或纤维直接进行轴向拉伸的技术。单根纤维尺寸微小,测量困难,被认为是一项国际性的难题。竹木单根纤维力学研究是引导竹木材等生物质材料力学性质研究走向深入的手段,可以将生物质材料力学研究从宏观提升到细胞水平,实现从微观层面研究材料宏观力学特性及其影响因素,对于最终把握竹木材力学性质的本质起源有重要意义;可以满足在竹木纤维基高分子复合材料研究中,对作为增强相的竹木纤维力学性能数据的迫切需求,为纤维选择性利用提供科学依据,指导产品制造工艺设计与改进,促进产品性能的优化。还能为人工林竹木材材性的基因改良提供量化的目标和指标,具有重要的现实和理论意义。
     单根纤维力学性能测试在国内属开创性课题,本研究在总结了前人研究的基础上,进行了单根纤维微拉伸力学性能测试技术的研究。在此基础上,研究了不同竹龄(2、4、6年生)毛竹中部靠近竹青的竹肉部分的单根纤维、30年生杉木幼龄材(第5年轮)、成熟材(第25年轮)晚材管胞力学性能,测量指标包括断裂载荷、横截面面积、拉伸强度、弹性模量、断裂伸长率;对比研究了不同植物(毛竹、杉木、苎麻、洋麻)单根纤维力学性能;研究了不同测试环境湿度(40%、70%、90%)下,不同纤维(毛竹、杉木、苎麻、芳纶)力学性能对湿度的敏感性;探索性的研究了不同处理洋麻单根纤维的力学性能。
     通过研究取得主要结论如下:
     1、毛竹、杉木单根纤维力学性能
     (1)不同竹龄毛竹中部靠近竹青的竹肉部分微纤丝角相差不大,2、4、6年生分别为9.91°、9.61°、9.76°,不同竹龄毛竹微纤丝角相差不大,只是2年生微纤丝角比4、6年生略大。30年生杉木幼龄材与成熟材微纤丝角分别为34.88°、15.21°,相差很大。
     (2)2、4、6年生毛竹中部靠近竹青的竹肉部分的单根纤维拉伸强度、弹性模量、伸长率分别为1590MPa、1710MPa、1755MPa;23.6GPa、27.1GPa、26.4GPa;7.2%、7.0%、7.0%。纤维的力学性能随竹龄略有增加,但到第4年后,纤维基本达到成熟, 4年生与6年生纤维无论是在拉伸强度、弹性模量,还是在伸长率上都已非常接近。
     (3)30年生杉木幼龄材与成熟材晚材管胞力学性能差异显著,拉伸强度分别为558MPa、1258MPa,弹性模量分别为8.5GPa、19.9GPa,均相差在两倍以上;断裂伸长率分别为9.9%、6.6%,也相差了50%。且成熟材管胞表现出了较强的线弹性特性,而幼龄材管胞在拉伸过程中则表现了明显的塑性屈服阶段。这与微纤丝角及纹孔有关。
     (4)毛竹纤维在拉伸强度、弹性模量等方面的性能明显优于杉木纤维,更适合于作为增强相用在复合材料中。
     2、几种植物单根纤维力学性能比较研究
     (1)毛竹单根纤维(为4年生中部靠近竹青的竹肉部分的纤维)断裂强度最大,平均值达1710MPa,最大达2708MPa,杉木(为30年生第25年轮晚材管胞)与其他三种纤维拉伸强度差异显著;苎麻纤维断裂伸长率最大,为8.9%,柔韧性最好;而洋麻纤维断裂伸长率明显小于其他三种纤维,只有3.2%,但其弹性模量值却明显高于其他三种纤维,平均达30.8GPa,最大达42.3GPa,刚性最大,是一种脆性纤维。
     (2)毛竹、杉木、苎麻、洋麻纤维断裂形式存在一定差异,其中苎麻纤维,毛竹纤维、杉木纤维的断口形状大多呈斜齿形,断口粗糙,表现明显的韧性断裂特性。因此这三种纤维的断裂伸长率较大。杉木纤维一般断在纹孔比较密集或者有其他结构缺陷的地方。洋麻纤维的断口相对上述三种纤维则平滑的多,表现出较强的脆性断裂特性。这与洋麻纤维较低的平均断裂伸长率的测试结果是一致的。
     (3)毛竹、杉木、洋麻、苎麻这四种纤维在纤维形貌、拉伸强度、伸长率、弹性模量、断裂形式等方面均呈现出其各自的特点,了解这些差异有利于我们更合理有效地利用好这些宝贵的资源。3、单根纤维力学性能对水分依赖特性
     (1)杉木(为30年生第25年轮晚材管胞)、毛竹(为4年生中部靠近竹青的竹肉部分的纤维)、苎麻、芳纶纤维力学性能对湿度变化的敏感程度不同,苎麻纤维对湿度变化最为敏感,而芳纶纤维几乎不感应外界湿度的变化。
     (2)与40%环境湿度下比,70%环境湿度下,毛竹、杉木、苎麻这几种天然纤维弹性模量均有所增大,90%环境湿度下却均有所下降。而芳纶纤维作为人造化学纤维,结构均匀、性能稳定,对外界湿度变化不敏感。
     4、不同处理洋麻单根纤维力学性能
     (1)离析温度对洋麻纤维力学性能影响较大,110℃下离析所得洋麻纤维力学性能优于160℃下离析所得洋麻纤维。它们的纤维平均断裂强度分别为1051MPa、810MPa;平均弹性模量分别为23.6GPa、13.5GPa,平均伸长率分别为4.5%、5.6%,均差异显著;在纤维形态上也存在一定差异,纤维的横截面面积分别为187μm2、141μm2。
     (2)100℃及160℃下纳米改性的洋麻纤维力学性能几乎不存在差异,只是在纤维形态上略有变化。它们的平均断裂强度分别为1001MPa、1032MPa,平均弹性模量分别为14.7GPa、14.6GPa,平均伸长率分别为6.6%、6.9%;纤维的横截面面积分别为150μm2、124μm2。
The measurement of the tensile properties of single plant fibers at the cellular level is one of front technology of wood science at the present. This technology is considered to be an international problem as the small size of single fiber. The investigation of mechanical properties of the single wood and bamboo fibers is a method to make the study of mechanical properties of biomass materials into deepening and enhance the study to the cell level from the macro level which making the study of macro-mechanical properties and its impact factors of materials at micro level come true. It is important to master the essence origin of mechanical properties of wood and bamboo. Meeting the urgent need of the mechanical properties data of the wood and bamboo fibers who as a reinforcement in the fiber-based polymer composite; Providing a scientific basis for the selective use of the fiber;guiding the design and improvement of manufacturing process of product and promoting the optimization of the product performance; Providing the quantifiable targets and indicators for the genetic improvement of the wood properties. So, the study is very important in practical and theoretical.
     The investigation of the mechanical properties of the single fibers is an inaugurated research in china. This paper presented a detailed technique to tensile the single fiber. And then, the fracture load、cross area、tensile strength、MOE and the elongation at break of the single bamboo fiber in different age (2,4,6 years old)、the juvenile wood (the 5th rings) and the mature wood (the 25th rings) of the latewood of the Chinese fir fibers are investigated in this paper. The mechanical properties of different plant (Bamboo、Chinese fir、Ramie、Kenaf) single fibers and the sensitivity to humidity of the different fibers (Bamboo, Chinese fir, Ramie, Kevlar)at different environment humidity (40%, 70%, 90%) are also investigated in this paper. Finally, the mechanical properties of different treatment kenaf single fibers are investigated in this paper as well.
     Results were summarized as follows:
     1、The tensile properties of the single bamboo and Chinese fir fibers
     (1) The microfibril angle(MFA) of the 2、4、6 years bamboo are less the same with 9.91°、9.61°、9.76°,respectively. The MFA of 2years is slightly larger than the 4、6 years and the 4、6 years are almost the same. The MFA of the juvenile wood and mature wood of the Chinese fir is significantly different with 15.21°、34.88°,respectively.
     (2) The average value of tensile strength、tensile modulus and elongation for the 2、4、6 years bamboo fiber was 1590MPa、1710MPa、1755MPa;23.6GPa、27.1GPa、26.4GPa;7.2%、7.0%、7.0%,respectively. The mechanical properties of single fibers was increased with age, but reach a stable after 4 years later, the 4 years and 6 years fiber are very similar in the tensile strength, or in the elastic modulus and elongation.
     (3) The mechanical properties of the single juvenile wood and mature wood of the Chinese fir fibers were vary greatly , they were more than twice difference in tensile strength and MOE with 558MPa、1258MPa,8.5GPa、19.9GPa, respectively, the elongation at break also had a difference of 50% with9.9%, 6.6%, respectively. The single mature wood fiber showed a linear behavior presented to failure, but the load-deflection curve of juvenile wood fiber testing showed a clear plastic yielding stage. It was related to the MFA and the pits.
     (4) The bamboo fiber is more suitable than Chinese fir fiber for using as reinforcement in composite materials as its better performance than Chinese fir fiber in tensile strength、MOE and some other aspects.
     2、A comparison of tensile properties of different single cellulosic fibers
     (1) The average and largest tensile strength of the bamboo fiber were 1710MPa、2708MPa respectively. It was the maximum among the Chinese fir、ramie and kenaf fiber which about the same in tensile strength. The ramie fiber had the largest elongation of 8.9% and the best flexibility, while the kenaf had the lowest elongation of 3.2% that lower than the other three fibers significantly, but the kenaf had the largest MOE with the average of 30.8GPa and the largest of 42.3GPa which higher than the other three fibers significantly and the best rigidity.
     (2) The fracture mode of bamboo、Chinese fir、ramie and kenaf fiber was different. The fracture shape of most bamboo、Chinese fir、ramie fiber presented oblique tooth profile and the fracture surface was rough. It showed obvious ductile fracture performance which lead to the large tensile elongation. The Chinese fir fiber generally broken in the pits concentrated regions or where there was some defect. The fracture shape of kenaf fiber was smoother than the other three fibers and showed strong brittle fracture characteristics. It was in agreement with the lower elongation of the fiber.
     (3) The bamboo、Chinese fir、ramie and kenaf fiber showed their own characteristics in the fiber morphology、tensile strength、elongation、MOE and fracture mode which will help us to utilize these valuable resources more rationally and effectively.
     3、Effect of moisture on the tensile properties of single fibers
     (1) The sensitivity of mechanical properties to humidity was various with different kind of fibers. Among the fibers(Including Chinese fir、bamboo、ramie and Kevlar fiber) investigated, ramie fiber shows the most sensitive to the humidity, while Kevlar fiber was almost no induction to the humidity.
     (2) The MOE of bamboo、Chinese fir、ramie was increased in the ambient humidity of 70% but declined in the ambient humidity of 90% as compared with the fiber in the ambient humidity of 40%. While, as one of the man-made fiber, Kevlar fiber has homogeneous structure and steady performance which lead to the fiber no induction to humidity.
     4、The mechanical properties of the different treatment kenaf single fibers
     (1) The isolation temperature has a great effect on mechanical properties of the kenaf fiber. The mechanical properties of the kenaf fiber isolated at 110℃are better than the isolated at 160℃. Their average tensile strength、MOE、elongation、cross area were 1051MPa、810MPa, 23.6GPa、13.5GPa, 4.5%、5.6%, 187μm2、141μm2, respectively.
     (2) There is almost no difference in mechanical properties and a slight change in fiber morphology between the nano-modified at 100℃and 160℃kenaf fibers. Their average tensile strength、MOE、elongation、cross area were 1001MPa、1032MPa, 14.7GPa、14.6GPa, 6.6%、6.9%; 150μm2、124μm2, respectively.
引文
[1]江泽慧.世界竹藤.辽宁:辽宁科学技术出版社,2002,3-6
    [2]江泽慧.中国林业工程.济南:济南出版社,2002,189-196
    [3]王戈.毛竹/杉木层积复合材料及其性能.中国林业科学研究院博士学位论文,2003,1
    [4]张齐生,孙丰文.我国竹材工业的发展展望.林产工业,1999,4
    [5]王恺.新形势下我国的木材供需问题.林产工业,1999,26 (3):4
    [6]叶忠华.毛竹材特性及工业利用分析.林业科技,2002,27(3):39-42
    [7]唐永裕.竹材利用现状及开发方向探讨.竹子研究汇刊,2001,20 (3)
    [8]江泽慧.中国现代林业.北京:中国林业出版社,2000
    [9]余新妥.中国杉木九十年代的研究进展2-杉木造林和经营综述.福建林学院学报,2000,20(2):12-16
    [10]彭镇华.中国杉树.北京:中国林业出版社,1999
    [11]宋孝金.杉木间伐材的材性和工业化利用.木材工业,2000,14(2):27-29
    [12]彭万喜,吴义强,张仲凤等.中国的杉木研究现状与发展途径.世界林业研究,2006,19(5):54-58
    [13]高志勇.优质的纺织原料—苎麻.广东农业科学,2009(3):43-44
    [14]崔小芹,侯俊英.浅谈亚麻/苎麻混纺纱工艺.黑龙江纺织,2005(2):11-12
    [15]周衡书,吴秋英,毛桂梅.利用苎麻前处理工艺降低苎麻纺纱毛羽.湖南工程学院学报,2006(1):89-91
    [16]聂召丰,谭柯金,崔国贤等.突破苎麻发展瓶颈,发展苎麻产业经济.作物研究,2004(5):411-413
    [17]费德政,费忠明.关于实现苎麻产业化的思考.四川纺织科技,2002(2):7-9
    [18]曹勇,吴义强,合田公.洋麻增强复合材料的开发和应用.高分子材料科学与工程,2008,24(7):11-15
    [19] [DB/OL].http://web.zgny.com.cn/User_Doc/21207/News/2211/2009121513185 64233212071.htm
    [20]江泽慧,彭镇华.世界主要树种木材科学特性.北京:科学出版社,2001
    [21]江泽慧,费本华,侯祝强等.针叶树木材细胞力学及纵向弹性模量计算纵向弹性模量的理论模型.林业科学,2002 ,38(5):101-107
    [22] Takagi H, Takura R, Ichihara Y, Ochi S, Misawa H, Niki R. The mechanical properties of bamboo fibers prepared by steam-explosion method. Journal of the Society of Materials Science, Japan, 2003, 52(4): 353-356
    [23] Niklas K J. Plant Biomechanics in wood[J]. Nature materials,2003,2:775-776
    [24] Burgert I. Exploring the micromechanical design of plant cell walls[J]. American Journal of Botany 2006,93:1391-1402
    [25]张波.马尾松木材管胞形态及微力学性能研究.中国林业科学研究院,硕士学位论文,2007,1-4
    [26] Jayne B A. Some mechanical properties of wood fibers in tension[J]. Forest products journal.1960:316-322
    [27] Page D H, El-Hosseiny F, Winkler K. Behaviour of single wood fibers under axial tensile strain[J], Nature, 1971, 229(5282): 252-253
    [28] Jayne. B. A. 1959. Mechanical properties of wood fibers.Tappi 42(6):461-467
    [29] Page D H,El-Hosseiny F,Winkler K,A. P. Lancaster. 1977. Elastic modulus of single wood pulp fibers. Tappi 60(4):114-117
    [30] Elsa L, Ehrnrooth, Petter K. The tensile testing of single wood pulp fibers in air and in water. Wood and Fiber Science, 1984, 16(4): 549-566
    [31] Groom.L.H,S. M. Shaler,L. Mott. 1995. Characterizing micro- and macromechanical properties of single wood fibers. Pages 13-18 in 1995 International Paper Physics Conference, September 11-14. 1995. Niagara-on-the-Lake. Ontario
    [32] Groom L H, Mott L, Shaler S M. Mechanical properties of individual southern pine fibers. Part I: Determination and variability of stress-strain curves with respect to tree height and juvenility. Wood and Fiber Science, 2002a , 34 (1): 14-27
    [33] Groom L H , Shaler SM, Mott L. Mechanical properties of individual Southern Pine fibers. Part III : Global relationships between fiber properties and fiber location within an individual tree. Wood and Fiber Science, 2002b, 34 (2) : 238-250
    [34] Kellogg R M, Wangaard F F. Influence of fiber strength on sheet properties of hardwood pulps. Tappi, 1964 , 47 (6) : 361-367
    [35] Tamolang F N , Wangaard F F. Strength and stiffness of hardwood fibers. Tappi, 1967, 50 (2) : 68-72
    [36] Mclntosh D C , Unrig L O. Effect of refining on load-elongation characteristics of Loblolly Pine holocellulose and unbleached kraft fifers. Tappi, 1968, 51(6) :265-273
    [37] Hartler N.,G. Kull.,L. Stockman.1963. Determination of fiber Strength through measurement of individual fibers. Sven. Papperstidn. 66(8):301-311
    [38] Hardacker KW. The automatic recording of the load-elongation characteristics of single papermaking fibers. Tappi . 1963 , 45 (3) : 237-246
    [39] Van Den Akker. J. A. ,A. L. Lathrop.M.Voelker,M. Dearrh.1958. Importance of fiber strength to sheet strength.Tappi 41(8):416-425
    [40] Mclntosh D C. 1963.Tensile strength of loblolly pine fibers cooked to different yields. Tappi 46(5):237-277
    [41] Luner.P,K. P. Vemuri,F.Womeldorf.1976. The effect of chemical modification on the mechanical properties of paper.Ⅲ. Dry strength of oxidized springwood and summerwood southern pine kraft fibers. Tappi50(5):227-230
    [42] Duncker.B.,L. Nordman.1965. Determination of strength of single fibers. Paperi Jaa Puu 10:539-552.
    [43] Leopold B, Thorpe J L. Effect of pulping on strength properties of dry and wet pulp fibers from Norway Spruce.Tappi, 1968, 51(7): 304-308
    [44] Leopold B, McIntosh D C. Tensile strength of individual fibers from alkali extracted Loblolly Pine holocellulose. Tappi, 1961, 44(3): 235-240
    [45] Kersavage P C. A systemfor automatically recording the load-elongation characteristics of single wood fibers under controlled relative humidity conditions. USDA. U. S. Government Printing Office, 1973
    [46] Leopold B. Effect of pulp processing on individual fiber strength. Tappi, 1966, 49(7): 315-318
    [47] Armstrong J P , Kyanka G H , Thorpe J L. S2 fibril angle and elastic modulus relationship of TMP Scotch Pine fibers. Wood Science, 1977, 10 (2) : 72–80
    [48] Mott L. Micromechanical properties and fracture mechanism of single wood pulp fibers. Doctoral dissertation from Maine University, USA, 1995
    [49] Groom.L.H,S. M. Shaler,L. Mott. 1996. Physical and mechanical properties of virgin and recycled wood fibers. Pages 20-35 in Proc.,Forest Products Society Southeast Section Annual Meeting November 11-12. 1994. Atlanta,GA
    [50] Mott L , GroomL H, Shaler S M. Mechanical properties of individual Southern Pine fibers. Part II : Comparison of early wood and latewood fibers with respect to tree height and juvenility. Wood Fiber and Science , 2002 , 34 (2) : 221-237
    [51] Mott L , Shaler S M, Groom L H. A technique to measure strain distribution in single wood pulp fibers. Wood and Fiber Science, 1996 , 28 (4): 429-437
    [52] Shaler S M, Mott L. Microscopic analysis of wood fibers using ESEM and confocal microscopy. Proceeding of the Wood fiber-Plastic Composites , 1996 : 25 - 32
    [53] Burgert I, Keckes J. A comparison of two techniques for wood fiber isolation evaluation by tensile tests on single fibers with different microfibril angle. Plant Biology,2002,4:9-12
    [54] Burgert I, Gierlinger N, Zimmermann T. Properties of chemically and mechanically isolated fibers of Spruce Part1: Structural and chemical characterisation. Holzforschung, 2005, 59: 240-246
    [55] Burgert I, Fruhmann K, Keckes J, et al. Properties of chemically and mechanically isolated fibers of Spruce Part 2: Twisting phenomena. Holzforschung, 2005, 59: 247-251
    [56] Burgert I, Eder M, Fruhmann K, et al. Properties of chemically and mechanically isolated fibers of Spruce Part3: Mechanical characterisation. Holzfor- schung, 2005, 59: 354-357
    [57] Ashby M F, Gibson L J, Wegst U. The mechanical properties of nature materials.I. Msterial property charts[J]. Proceedings: Mathematical and Physical Sciences. 1995,450(8):123-140
    [58] Smith L B. Molecular mechanisitic origin of the toughness of natural adhesives, fibres and composites[J]. Nature,1999,399:761-763
    [59] Peterlik H, Roschger P, Klaushofer K, Fratzl P. From brittle to ductile fracture of bone[J]. Nature Materials,2006,5:52-55
    [60] Thompson J B. Bone indentation recovery time correlates with bond reforming time[J]. Nature,2001,414:773-776
    [61] Kretschmann D. Velcro mechanics in wood[J]. Nature materials, 2003, 2:775-776
    [62]余雁.人工林杉木管胞的纵向力学性质及其主要影响因子研究.中国林业科学研究院,博士学位论文,2003
    [63] Groom L H,Mott L,Shaler S M. Relationship between fiber finish properties and the structural performance of MDF.Pages 89-100 in 33rd Proceedings of particleboard/composite materials symposium.April 13-15.Pullman WA,1999
    [64]付志一,焦群英.植物细胞力学模型研究进展.力学进展,2005,35(3):404-410
    [65]龙勉.细胞-分子生物力学:与生命科学有机融合的领域.医用生物力学,2005,35(3):133-139
    [66]赵峰,陶祖来.发育生物学中模式形成的力学模型.力学进展,2003,33(1):95-118
    [67] Page D H, El-Hosseiny F, The mechanical properties of single wood pulp fibres. PartⅥ. Fibril angle and the shape of stress-strain cure[J]. Journal of Pulp and Paper Scienve,1983,9:99-100
    [68] Tappi.1967,50(2):68-72 Jenten B A. Some mechanical properties of wood fibers in tension[J]. Forest products journal.1960:316-322
    [69]江泽慧,邹惠渝,阮锡根等.应用X衍射技术研究研究竹材超微观结构I竹材微纤丝角.林业科学,2000,36(3):122-125
    [70]余雁,王戈,覃道春,张波. X衍射法研究毛竹微纤丝角的变异规律.东北林业大学学报,2007,35(8):28-30
    [71] Burgert I, Fruhmann K. Structure-function relationships of four compression wood types:micromechanical properties at the time and fiber level[J]. Trees-Structure and Function,2004,18(4)480-485
    [72] Cousins W J.Elastic Modulus of Lignin as Related to Moisture Content[J].Wood Science and Technology, 1976, (10):9-17
    [73] Cousins W J.Young’s Modulud of Hemicellulose as Related to Moisture Content[J]. Wood Science and Technology, 1978, (12):161-167
    [74] Nissan A H. The elastic modulus of lignin as related to moisture content[J]. Wood Science and Technology.1997, 11(2):147-151
    [75] Tanaka F, Okamura K, Characterization of cellulose molecules in bio-system studied by modeling methods[J]. Cellulose,2005,12:243-252
    [76] Tanaka F, Iwata T. Estimation of the elastic modulusof cellulose crystal by molecular mechanicsSimulation[J]. Cellulose,2006,13:509-517
    [77] Duchesne I, Hult E-L, Molin U, Daniel G. The influence of hemicellulose on fibril aggregation of kraft pulp fibres as revealed by FE-SEM and CP/MAS 13C-NMR[J], Cellelose,2001,8:103-111
    [78] Bergander A, Salmen L. The transverse elastic modulus of the native wood fiber wall[J]. Journal of Pulp and Paper Science,2000,26(6):234-238
    [79] Burgert I, Frühmann1 K, Keckes J, Fratzl P, Tschegg S. E. S. Microtensile Testing of Wood Fibers Combined with Video Extensometry for Efficient Strain Detection. Holzforschung, 2003, 57(6): 661-664
    [80]袁兰.激光扫描共聚焦显微镜技术教程.北京大学医学出版社2004:3-12
    [81]于文吉,江泽慧,叶克林.竹材特性研究及其进展.世界林业研究, 2002, 4,l5 (2)
    [82]黄盛霞,马丽娜,邵卓平等.毛竹微观构造特征与力学性质关系的研究.安徽农业大学学报,2005,32(2):203-206
    [83]嵇伟兵,姚文斌,马灵飞.龙竹和绿竹竹材壁厚方向的梯度力学性能.浙江林学院学报,2007,24(2):125-129
    [84]王朝辉.竹材材性变异规律与加工利用研究.中国林业科学研究院博士论文. 2001
    [85]张晓东,程秀才,朱一辛.毛竹不同高度径向弯曲性能的变化.南京林业大学学报(自然科学版),2006,30(6):44-46
    [86]虞华强,费本华,任海青等.毛竹顺纹抗拉性质的变异及气干密度的关系.林业科学,2006,42(3):72-76
    [87]赵仁杰,喻云水.竹材人造板工艺学.北京:中国林业出版社,2002,2-8
    [88]汪克来,蔡键.竹纤维增强塑料材料性能研究.安徽建筑工业学院学报(自然科学版),2005,l3 (2)
    [89]江泽慧,姜笑梅等.木材结构与其品质特性的相关性.科学出版社,北京:2008,207-234
    [90]于文吉,余养伦,江泽慧.竹材纤维增强材料的特性.东北林业大学学报,2006,34(4):3-6
    [91]李坚,刘一星,崔永志等.人工林杉木幼龄材与成熟材的界定及材质早期预测.东北林业大学学报:1999,27(4),24 -28
    [92]李栋高.纤维材料学.北京:中国纺织出版社,2006
    [93]邵卓平,周学辉,魏涛等.竹材在不同介质中加热处理后的强度变异.林产工业,2003,30(3)
    [94]黄安民,费本华,刘君良.杉木木材性质研究进展.世界林业研究,2006,19(1):47-52
    [95] Mark R E. Cell wall mechanics of trachieds. Yale Univ. Press ,1967
    [96]刘一星,赵广杰.木质资源材料学.北京:中国林业出版社,2004,8
    [97] Green D W , Link C L, DeBonis A L, et al. Predicting the effect of moisture content on the flexural properties of southern pine dimension lumber[J]. Wood Fiber Sci. 1986, 18 (1) : 134-156
    [98] Wang S Y, Wang H L. Effects of moisture content and specific gravity on static bending properties and hardness of six wood species[J]. Wood Sci Technol . 1999, 45: 127-133
    [99] Kojima Y, Yamamoto H. Properties of the cell wall constituents in relationto the longitudinal elasticity of wood[J]. Wood Sci Technol. 2004, 37: 427–434
    [100] Kretschmann D E, Green D W. Modeling Moisture Content-Mechanical Property Relationships For Clear Southern Pine[J]. Wood Fiber Sci. 2007,28(3) : 320-337
    [101] Green D W , Evans J W , Barrett J D , et al. Predicting The Effect of Moisture Content On The Flexural Properties of Douglas-Fir Dimension Lumber[J]. Wood Fiber Sci. 2007, 20 (1) : 107-131
    [102] Ishimaru Y, Arai K, Mizutani M, et al. Physical and mechanical properties of wood after moisture conditioning[J]. J Wood Sci . 2001. 47: 185-191
    [103] Sudijono , Dwianto W, Yusuf S, et al. Characterization of major, unused, and unvalued Indonesian wood species I. Dependencies of mechanical properties in transverse direction on the changes of moisture content and/or temperature[J]. J Wood Sci. 2004. 50:371–374
    [104]周芳纯.竹林培育学.北京:中国林业出版社,1998,363-379
    [105] Russell J, Kallmes O J, Mayhood C H. The influence of two wet-strength resins on fibers and fiber-fiber contacts[J]. Tappi,1967,47(1):22-25
    [106] Hofstetter K, Hinterstorisser B, Salmen L. Mositure uptake in native cellulose– the roles of different hydrogen bonds: a dynamic FT-IR study using Deuterium exchange [J].Cellulose.2006,13(2):131-145
    [107] Yamamoto H, Kojima Y. 2002. Properties of the cell wall constituents in relation to the longitudinal elasticity of wood, Part 1: Formulation of the longitudinal elasticity of an isolated wood fiber. Wood Sci Technol 36:55–74

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700