蒸发壁式超临界水氧化反应器处理高浓度有机废水实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对难降解、高浓度有机废水存在的处理成本高、难生化降解、处理效率低等问题,本文提出用超临界水氧化技术来处理这一类废水。以染料废水和丙烯酸废水为研究对象,以过氧化氢为氧化剂,在新兴的蒸发壁式反应器内进行连续流反应。研究反应温度、反应压力、氧化剂用量等因素对染料废水和丙烯酸废水中有机物的降解情况,通过对实验数据的回归分析,建立了染料废水和丙烯酸废水在超临界水中氧化反应的动力学方程;分析提出了染料分子在超临界水中的氧化降解路径;同时,研究了蒸发壁式反应器在反应过程中的腐蚀以及无机盐堵塞情况,最后指出了超临界水氧化技术工业化应用存在的问题。
     在温度380-460℃,压力20-30MPa,氧化剂用量比n=0.6-2.0的条件下,对染料废水进行超临界水氧化处理,研究各反应因素对染料废水的COD_(Cr)、TN、NH_3-N和色度降解效果的影响。研究结果表明,温度的提高有利于废水中有机物COD_(Cr)、TN和色度的去除,并随着温度的升高而上升。温度的影响可以从两个方面来分析。首先有机污染物的氧化反应是一个不可逆的过程。温度升高,反应速率也会随之提高,最终去除率也将随之增加。其次,在压力不变的条件下,温度升高,超临界水的密度会随之降低,反应物的浓度下降,反应速率降低。温度对反应的影响是通过这两个正反效应综合起作用的。在本研究中发现,温度对超临界水氧化反应起积极的作用。在压力为25MPa,停留时间为30s,氧化剂用量比n=1.5,反应温度为460℃的条件下,废水中COD_(Cr)、TN、TOC和色度的去除率分别达到94.65%、58.15%、97.09%和99.80%。
     反应压力的升高有利于超临界水氧化反应的进行,废水中COD_(Cr)、TN和色度的去除率随着压力的上升而提高。压力对有机物氧化降解的影响,一方面是因为温度不变时,压力升高导致水密度的增加,从而增大了有机物和氧的浓度,使反应速率加快的缘故。另一方面,由于水密度的增加,有机污染物在反应器中氧化降解的停留时间有所增加。停留时间的增加,有利于有机污染物的氧化降解。总之,压力的影响可以归结为反应物浓度和停留时间的影响,且两者都是正效应。因此,提高压力将有利于有机污染物的氧化降解。在温度为420℃,停留时间为30s,氧化剂用量比n=1.5,压力为30MPa的条件下,废水中COD_(Cr)、TN、TOC和色度的去除率分别达到93.35%、66.47%、95.30%和99.80%。
     氧化剂量对超临界水氧化反应的影响同温度和压力因素基本相似,氧化剂量的增加有利于反应的进行,废水中COD_(Cr)、TN和色度的去除随着氧化剂量的增加而上升。超临界水氧化染料废水最佳的反应条件为:温度420-440℃,压力25-28MPa,氧化剂用量比n=1.2-1.6。另外,还研究了超临界水氧化反应前后染料废水的可生化性(B/C)。研究表明,经过超临界水氧化处理后染料废水的可生化性大幅度提高,而且随着处理温度的升高和COD_(Cr)去除率的上升,B/C越来越高,由反应前的0.12,提高到反应后的0.44。可见,超临界水氧化可以大大地改善染料废水的可生化性。
     在温度370-420℃,压力20-30MPa,氧化剂用量比n=0.0-3.0的条件下,对丙烯酸废水进行超临界水氧化处理,研究结果表明,温度的提高有利于废水中有机物COD_(Cr)和TOC的去除,并随着温度的升高而上升。当反应温度达到420℃时,COD_(Cr)和TOC去除率分别为99.09%和98.36%。反应温度升高导致反应过程中活化分子增加,从而提高了氧化反应速度,反应温度升高有利于有机物的去除。
     丙烯酸废水中COD_(Cr)、TOC的去除率随着压力的上升而提高。压力升高会增加反应混合物的密度,相应地也会增加反应物的浓度,导致氧化反应的速率加快,COD_(Cr)和TOC去除率增加。另外,反应过程中超临界反应区域随着压力的升高而延长,这样相对延长了有机物在超临界状态下的停留时间,从而导致COD_(Cr)和TOC去除率的增加。
     丙烯酸废水中COD_(Cr)和TOC的去除随着氧化剂量的增加而上升。氧化剂量的增加,导致反应过程中活性自由基数量的增加,从而加快了氧化反应速率,COD_(Cr)和TOC去除率进一步提高。超临界水氧化丙烯酸废水的最佳反应条件为:温度420℃,压力为24-26 MPa,氧化剂用量比为n=1.0-1.5。
     通过GC-MS技术对超临界水氧化染料废水的产物进行分析,探讨染料分子在超临界水中氧化降解路径。研究结果表明,分散红染料在超临界水中氧化降解的过程中,蒽醌先开环生成单环或多环的中间产物,然后进一步氧化降解为短链羧酸类物质,最终氧化生成CO_2和H_2O,与此同时,也存在着中间产物或自由基之间的横向反应,如偶合、水解、取代等,但这些副产物也将经苯甲酸、苯酚氧化成为最终产物CO_2和H_2O等。
     在动力学分析中,考虑了反应诱导时间的存在,对传统经验速率方程进行修正,对实验数据进行分析,分别得到了染料废水和丙烯酸废水超临界水氧化反应的动力学方程表达式以及反应活化能和反应诱导时间的值。染料废水的反应活化能:Ea=12.12 kJ.mol~(-1),指前因子A=1.07 s~(-1);反应级数:有机物:1级,氧化剂和水:0级;不同温度下诱导时间:2.03s、1.74s、1.37s、2.93s;动力学方程表达式:-d[COD]/dt=1.07exp(-12.12/RT)[COD]。丙烯酸废水的反应活化能:Ea=20.64kJ.mol~(-1),指前因子A=4.97 s~(-1);反应级数:有机物:1级,氧化剂和水:0级;不同温度下诱导时间:7.31s、8.43s、7.98s、4.91s;动力学方程表达式:-d[COD]/dt=4.97exp(-20.64/RT)[COD]。
     对反应前后作为蒸发壁的陶瓷膜内表面的SEM照片进行对比分析,分别在反应器内部装有微孔陶瓷管和不装微孔陶瓷管的情况下测定反应液相产物中Fe元素的含量,进行对比分析,结果表明,蒸发壁式反应器能有效地阻止反应过程中对反应器的腐蚀,使得反应器的使用寿命得到延长。
     针对目前超临界水氧化技术的研究情况,根据本文的实验为依据,提出了该技术工业化所需要解决的问题,主要有设备腐蚀、无机盐沉积、高效催化剂的开发、系统运行的稳定性等。
In order to resolve problems of high cost and low destruction efficiency faced to high concentration refractory organic wastewater,supercritical water oxidation was used to treat this kind of wastewater.Dyeing wastewater and acrylic acid wastewater were adopted as research objects in transpiring wall reactor with hydrogen peroxide as oxidant.Effects of reaction temperature,reaction pressure and oxidant dosage on destruction efficiency of organic pollutants in dyeing wastewater and acrylic acid wastewater was studied.Kinetics for dyeing wastewater and acrylic acid wastewater oxidized in supercritical water were regressed from experimental data.Destruction pathway of dye molecule in supercritical water was proposed.Corrosion and inorganic salt deposition,which obstruct the industrialization of transpiring wall reactor,was investigated during the period of reaction.
     Dyeing wastewater was treated under supercritical water oxidation condition, temperature 380-460℃,pressure 20-30MPa,special oxidant dosage n=0.6-2.0. Effects of reaction factors on degradation efficiency of COD_(Cr),TN,NH3-N and color were investigated.The result indicated that removal of COD_(Cr),TN,NH3-N and color was affected positively by reaction temperature,and increased with the temperature. Effect of temperature on reaction could be explained from two aspects.Firstly, organic pollutants oxidation in supercritical water was irreversible.Reaction velocity was increased with temperature,thus the removal as well as efficiency.Secondly,the density of supercritical water was debased with increase in temperature under fixed pressure condition.Accordingly,concentration of reactants and reaction velocity reduced.Effect of temperature on reaction came from these positive and negative aspects.Positive effect of temperature on reaction was discovered in this investigation. 94.65%,58.15%,97.09%and 99.80%of COD_(Cr),TN,TOC and color removal efficiency was achieved at temperature 460℃,pressure 25MPa,retention time 30s, special oxidant dosage n=1.5.
     Reaction pressure had positive effect on supercritical water oxidation.Removal efficiencies of COD_(Cr),TN and color in wastewater were increased with pressure. Effect of pressure was due to two aspects.One,density of supercritical water increased with the pressure under fixed temperature condition,resulting in augmentation of concentration of organic compound,oxidant and reaction velocity. Two,due to increase in water density,retention time of organic pollutants was prolonged,which was favorable to oxidation destruction of organic pollutants. Summarily,pressure effect could be come down to positive effect of reactant concentration and retention time.Thus,higher pressure do favor to organic pollutants destruction.93.35%,66.47%,95.30%and 99.80%of COD_(Cr),TN,TOC and color removal efficiency was achieved at temperature 420℃,pressure 30MPa,retention time 30s,oxidant dosage n=1.5.
     Effect of oxidant dosage on supercritical water oxidation was similar to temperature and pressure,which was positive to reaction.Removal efficiency of COD_(Cr),TN and color was increased with oxidant dosage.The optimum reaction conditions for oxidation of dyeing wastewater in supercritical water were temperature 420-440℃,pressure 25-28MPa,special oxidant dosage n=1.2-1.6.Additional, biodegradability of dyeing wastewater was tested,before and after supercritical water oxidation respectively.The results indicated that B/C of dyeing wastewater was advanced greatly after treatment of supercritical water oxidation,increased with temperature and COD_(Cr) removal efficiency.B/C of dyeing wastewater increased form 0.12 to 0.44.Thus,biodegradability of dyeing wastewater was improved greatly by supercritical water oxidation.
     Acrylic acid wastewater was treated under supercritical water oxidation at temperature 370-420℃,pressure 20-30MPa,oxidant dosage n=0.0-3.0.The results indicated that COD_(Cr) removal efficiency was affected significantly by temperature. COD_(Cr) removal efficiency up to 99.09%was achieved at 420℃,respectively.More Activated molecules with higher temperature,leading to higher oxidation velocity, organic removal efficiency.Temperature had positive effect on organic pollutants removal.
     Removal efficiency of COD_(Cr) in acrylic acid wastewater was increased with pressure.The density of reaction mixture was also increased with pressure,leading to increase in concentration of reactant,reaction velocity and COD_(Cr) removal efficiency. Additionally,reaction zone under supercritical condition was prolonged with pressure, resulting in prolongation of retention time of organic pollutants under supercritical condition,leading to increase in COD_(Cr) removal efficiency.
     Removal efficiency of COD_(Cr) in acrylic acid wastewater was increased with oxidant dosage.Amount of reaction active radical was increasing with oxidant dosage, favoring reaction velocity,resulting in increase in COD_(Cr) removal efficiency.The optimum reaction conditions for oxidation of acrylic acid wastewater in supercritical water were considered as temperature 420℃,pressure 24-26MPa,oxidant dosage n=1.0-1.5.
     In order to investigate destruction pathway of dye molecule in supercritical water, reaction products of dyeing wastewater oxidized under supercritical condition was examined by GC-MS method.The results indicated that anthraquinone was decomposed to monocyclic and polycyclic intermediate hydrocarbons by means of opening-ring reaction,then destructed to short-chain carboxylates,finally oxidized to CO_2 and H_2O.Simultaneous,reactions such as coupling,hydrolyzing and substitution between intermediates and radicals were also existed.But,those by-products were oxidized to benzoic acid,phenol and final products such as H_2O,CO_2.
     A modified first-order rate expression was regressed from experimental data, taking into account the influence of induction time.Kinetic equation,reaction activation energy and introduction time of dyeing wastewater and acrylic acid wastewater oxidized in supercritical water were achieved.The resulting activation energy Ea was 12.12kJ.mol~(-1),re-exponential factor A was 1.07s~(-1),introduction time were 2.03s,1.74s,1.37s,2.93s under various temperature conditions for dyeing wastewater.Meanwhile,Ea was 12.12kJ.mol~(-1),A was 4.97s~(-1),introduction time were 7.31s,8.43s,7.98s,4.91s under different temperature conditions for acrylic acid wastewater.The reaction order for feed wastewater(based on COD_(Cr)) and oxidant were assumed to be 1 and 0 for these two kinds of wastewater.Kinetic equation for dyeing wastewater was "-d[COD]/dt=1.07exp(-12.12.64/RT)[COD]",and "-d[COD]/dt=4.97exp(-20.64/RT)[COD]" for acrylic acid wastewater.
     Comparison for SEM photos of ceramic tube before and after reaction was investigated.Concentration of Fe in effluent liquid samples was analyzed using method of atom absorption with and without ceramic tube as reactor.The result indicated that corrosion against reactor could be prevented effectively,and life of reactor could be prolonged using transpiring wall reactor.
     Aiming at present situation of supercritical water oxidation,several problems such as equipment corrosion,inorganic salt precipitation,exploitation for highly effective catalyst and stability of system for industrialization of this technology were put forward in this paper.
引文
[1]刘香玲,罗光富,张德莉等.有毒生物难降解有机污染物的研究进展[J].三峡大学学报:自然科学版,2005,27(5):462-466
    [2]别如山,李炳熙,陆慧林等.己二胺有机废液在流化床中焚烧的实验研究[J].环境科学学报,2001,21(2):184-188
    [3]孙大光.高浓度电子废液焚烧处理工艺研究[J].环境科学与技术,2005,28(2):17-19
    [4]Kaichouh G.,Oturan N.,Oturan M.A.,et al.Degradation of the herbicide imazapyr by Fenton reactions[J].Environmental Chemistry Letters,2004,2(1):31-33
    [5]芦春梅,李增文,姜桂兰.活性秸杆炭素吸附-化学氧化法在印染废水处理中的应用研究[J].工业水处理,2005,25(5):56-58
    [6]雷阳明,申哲民,贾金平等.电化学氧化法和高铁混凝法处理染料废水的研究[J].环境科学与技术,2006,29(2):75-76
    [7]王丽琼,陈震.对羟基偶氮苯电化学氧化降解机理研究[J].福建师范大学学报:自然科学版,2006,22(1):68-71
    [8]史亚君.纳米TiO_2光催化氧化法处理制革废水[J].化工环保,2006,26(1):13-16
    [9]林少华,李田.太阳能固定膜光催化反应器降解苯酚中试[J].中国给水排水,2006,22(9):14-17
    [10]赵彬侠,金奇庭,李红亚等.湿式氧化法处理吡虫啉农药生产废水的研究[J].西安建筑科技大学学报,2006,38(3):429-432
    [11]Cao S.l.,Chen G.h.,Hu X.J.,et al.Catalytic wet air oxidation of wastewater containing ammonia and phenol over activated carbon supported Pt catalysts[J].Catalysis Today,2003,88(1-2):37-47
    [12]Modell M.Processing Methods for the Oxidation of Organics in Supercritical Water[P].U.S Patent,4543190,1985
    [13]朱自强.超临界流体技术——原理和应用[M].北京:化学工业出版社,2000
    [14]田宜灵,冯季军,秦颖等.超临界水的性质及其在化学反应中的应用[J].化学通报,2002,6:396-402
    [15]张丽莉,陈丽,赵雪峰等.超临界水的特性及应用[J].化学工业与工程,2003,20(1):33-38
    [16]陈晋阳,郑海飞,曾贻善.超临界水理论研究的进展[J].化学进展,2002,14(6):409-414
    [17]周健,陆小华,王延儒.超临界水的分子动力学模拟[J].物理化学学报,1999.11(15):1017-1022
    [18]Gorbaty Y.E.,Kalinichev A.G.Hydrogen bonding in supercritical water.Experimental result[J].Journal of Physical Chemistry,1995,99(15):5336-5340
    [19]葛红光,郭小华,李利华等.催化超临界水氧化对氨基苯酚[J].环境污染治理技术与设备,2006,7(4):100-102
    [20]Matsumura Y.,Nunoura T.,Urase T.,et al.Supercritical water oxidation of high concentrations of phenol[J].Journal of Hazardous Materials,2000,73(3):245-254
    [21]Fromonteil C.,Bardelle Ph.,Cansell F.Hydrolysis and Oxidation of an Epoxy Resin in Sub-and Supercritical Water[J].Industrial & Engineering Chemistry Research,2000,39(4):922-925
    [22]Nunoura T.,Lee G.,Matsumura Y.,et al.Effect of Carbonaceous Materials on the Oxidation of Phenol in Supercritical Water:A Preliminary Study[J].Industrial &Engineering Chemistry Research,2003,42(25):3718-3720
    [23]Jeffrey T.H.,Chen Z.,Savage P.E.Inhibition and Acceleration of Phenol Oxidation by Supercritical Water[J].Industrial & Engineering Chemistry Research,2003,42(25):6303-6309
    [24]Brock E.E.,Savage P.E.,Barker J.R.A reduced mechanism for methanol oxidation in supercritical water[J].Chemical Engineering Science,1998,53(5):857-867
    [25]M.Igor S.,Andriy P.Supercritical water oxidation of o-dichlorobenzene:degradation studies and simulation insights[J].The Journal of supercritical fluids,2006,37(1):94-101
    [26]Dell'Orco P.C.,Gloyna E.F.,Buelow S.J.Reactions of Nitrate Salts with Ammonia in Supercritical Water[J].Industrial & Engineering Chemistry Research,1997,36(7):2547-2557
    [27]Vostrikov A.A.,Yu D.,Psarov S.A..Naphthalene oxidation in supercritical water[J].Russian Chemical Bulletin(Intemational Edition),2001,50(8):1481 - 1484
    [28]Lin K.S.,Wang H.P.,Yang Y.W.Supercritical water oxidation of 2-chlorophenol effected by Li+ and CuO/Zeolites[J].Chemosphere,1999,39(9):1385-1396
    [29]Hatakeda K.,Ikushima Y.,Sato O.,et al.Supercritical water oxidation of polychlorinated biphenyls using hydrogen peroxide[J].Chemical Engineering Science,1999,54(15-16):3079-3084
    [30]林春绵,金耀门,潘志彦.超临界水中苯酚的氧化分解[J].高校化工学报,1998,12(1):86-89
    [31]丁军委,陈丰秋,吴素芳等.超临界水氧化方法处理含酚废水[J].环境污染与防治,2000,22(1):1-3
    [32]林春绵,周红艺,潘志彦等.超临界水氧化法降解苯酚的研究[J].环境科学研究,2000,13(2):1-3
    [33]林春绵,袁细宁,杨馗.超临界水氧化法降解甲胺磷的研究[J].环境科学学报,2000,20(6):714-718
    [34]漆新华,庄源益,袁有才等.超临界水氧化法处理苯胺废水[J].环境污染与防治,2001,23(2):56-58
    [35]王涛,杨明,向波涛等.超临界水氧化法去除废水有机氮的工艺和动力学研究[J].化工学报,1997,48(5):639-644
    [36]赵朝成,赵东风.超临界水氧化技术处理硝基苯废水研究[J].重庆环境科学,2001,23(3):45-48
    [37]姚华,吴素芳.超临界水氧化含芳香族有机物废水的研究[J].化学反应工程与工艺,2000,16(3):301-304
    [38]葛红光,郭小华,李星彩等.催化超临界水氧化对氨基苯酚动力学研究[J].化学世界,2006,47(7):391-394
    [39]向波涛,王涛,刘军等.超临界水氧化法处理含硫废水研究[J].化工环保,1999,19(2):75-79
    [40]Re G.Del,Giacomo G.Di.Removal and destruction of toxic micro- polluting organic compounds from waste waters by a combined NF and SCWO process[J].Desalination,2001,138(1-3):61-64
    [41]Vostrikov A.A.,Psarov S.A.The explosive oxidation of hydrocarbons in supercritical water[J].Technical Physics Letters,2002,28(9):776-778
    [42]葛红光,陈开勋,张志杰等.超临界水氧化偏二甲肼废水的研究[J].化工环保,2004,24(2):83-85
    [43]Baura S.,Schmidta H.,Kr(a|¨)merb A.,et al.The destruction of industrial aqueous waste containing biocides in supercritical water-development of the SUWOX process for the technical application[J].The Journal of Supercritical Fluids,2005,33(2):149-157
    [44]颜婉茹,王鹏,于泽华.超临界水氧化法处理含染料废水的工艺研究[J].哈尔滨商业大学学报:自然科学版,2006,22f4):30-33
    [45]马承愚,姜安玺,彭英利等.超临界水氧化法处理除草剂生产废水及热能的研究[J].环境污染与防治,2004,26(5):372-374
    [46]林春绵,潘志彦,周红艺等.超临界水氧化法处理高浓度有机发酵废水[J].环境污染与防治,2000,22(4):23-24
    [47]蔡毅,马承愚,彭英利等.超临界水氧化法处理丙烯腈剧毒废水的实验研究[J].工业水处理,2006,26(3):42-44
    [48]戴航,黄卫红,钱晓良等.超临界水氧化法处理造纸废水的研究[J].工业水处理,2000,20(8):23-25
    [49]王亮 王树众,张钦明等.超临界水氧化处理含油废水的实验研究[J].环境污染与防治,2005,27(7):546-549
    [50]王亮 王树众,张钦明等.含油废水的超临界水氧化反应机理及动力学特性[J].西安交通大学学报,2006,40(1):115-119
    [51]Dubois M.A.,Dozol J.E,Massiani C.et al.Reactivities of Polystyrenic Polymers with Supercritical Water under Nitrogen or Air.Identification and Formation of Degradation Compounds[J].Industrial & Engineering Chemistry Research,1996,35(8):2743-2747
    [52]Kocher B.S.,Azzam F.O.,Lee S.G.Single-state remediation of contaminated soil-sludge[J].Energy Sources,1995,17(5);553-563
    [53]Jin F.M.,Kishita A.,Moriya T.,et al.Kinetics of oxidation of food wastes with H_2O_2 in supercritical water[J].The Journal of Supercritical Fluids,2001,19(3):251-262
    [54]Goto M.,Nada T.,Ogata A.,et al.Supercritical water oxidation for the destruction of municipal excess sludge and alcohol distillery wastewater of molasses[J].The Journal of Supercritical Fluids,1998,13(1-3):277-282
    [55]Stark K.,Plaza E.,Hultman B.Phosphorus release from ash,dried sludge and sludge residue from supercritical water oxidation by acid or base[J].Chemosphere,2006,62(5):827-832
    [56]昝元峰,王树众,张钦明等.污泥的超临界水氧化动力学研究[J].西安交通大学学报,2005,39(1):104-110
    [57]Lilac W.D.,Lee S.Kinetics and mechanisms of styrene monomer recovery from waste polystyrene by supercritical water partial oxidation[J].Advances in Environmental Research,2001,6(1):9-16
    [58]王军.用超临界水氧化降解塑料的研究[博士学位论文].天津,天津大学,2003
    [59]葛晓冬.超临界水氧化法处理废旧轮胎的实验研究[硕士学位论文].大连,大连理工大学,2005
    [60]Dioxin C.N.,Abraham M.A.Conversion of methane to methanol by catalytic supercritical water oxidation[J].The Journal of Supercritical Fluids,1992,6(5):269-273
    [61]Li L.,Chen P.,Gloyna E.F.Generalized Kinetic Model for Wet Oxidation of Organic Compounds[J].AIChE Journal,1991,37(11 ):1687-1697
    [62]Jin F.M.,Moriya T.,Enomoto H.J.Oxidation reaction of high molecular weight acids in supercritical water[J].Environmental Science & Technology,2003,37(14):3220-3231
    [63]葛红光.超临界水氧化高浓度含氮有机废水研究[博士学位论文].西安,西安 建筑科技大学,2004
    [64]Gopalan S.,Savage P.E..Mizan T.I.,et al.Reaction at supercritical conditions:applications and fundamentals[J].AIChE Journal,1995,41(7):1723-1778
    [65]Gopalan S.,Savage P.E.Reaction mechanism for phenol oxidation in supercritical water[J].The Journal of Physical Chemistry,1994,98(48):12646-14652
    [66]Portela J.R.,Lopez J.,Nebot E.,et al.Elimination of cutting oil wastes by promoted by hydrothermal oxidation[J].Journal of Hazardous Materials,2001,88(1):95-106
    [67]Holgate H.R.,Tester J.W.Oxidation of HZ and CO in sub-and supercritical water reaction kinetics,pathways,and water density effect,experimental results[J].The Journal of Physical Chemistry,1994,98(3):800-809
    [68]Krajnc M.,Levec J.On the kinetics of phenol oxidation in supercritical water[J].AIChE Journal,1996,42(7):1977-1984
    [69]Gopalan S.,Savage P.E.A reaction network model for phenol oxidation in supercritical water[J].AIChE Journal,1995,41(8):1864-1873
    [70]Thammanayakatip C,OshimaY.,Koda S.Inhibition Effect in Supercritical Water Oxidation of Hydroquinone[J].Industrial & Engineering Chemistry Research,1998,37(5):2061-2063
    [71]Lee D.S.,Park S.D.Decomposition of nitrobenzene in supercritical water[J].Journal of Hazardous Materials,1996,51(1-2):67-76
    [72]Lee D.S.,Park K.S.,Nam Y.W.,et al.Hydrothermal decomposition and oxidation of p-nitroaniline in supercritical water[J].Journal of Hazardous Materials,1997,56(3):247-256
    [73]Lee D.S.,Gloyna E.F.Hydrolysis and oxidation of acetamide in supercritical water[J].Environmental Science & Technology,1992,26(8):1587-1593
    [74]Foy B.R.,Waldthausen K.,Sedillo M.A.,et al.Hydrothermal Processing of Chlorinated Hydrocarbons in a Titanium Reactor[J].Environmental Science & Technology,1996,30(9):2790-2799
    [75]Marrone P.A,Gschwend P.M.,Swallow K.C,et al.Product distribution and reaction pathways for methylene chloride hydrolysis and oxidation under hydrothermal conditions[J].The Journal of Supercritical Fluids,1998,12(3):239-254
    [76]Schanzenb(a|¨)cher J.,Taylor J.D.,Tester J.W.Ethanol oxidation and hydrolysis rates in supercritical water[J].The Journal of Supercritical Fluids,2002,22(2):139-147
    [77]Boock L.T.,Klein M.T.Experimental Kinetics and Mechanistic Modeling of the Oxidation of Simple Mixtures in Near-Critical Water[J].Industrial & Engineering Chemistry Research,1994,33(11):2554-2562
    [78]Hunter T.B.,Rice S.F.,Hanush R.G.Raman Spectroscopic Measurement of Oxidation in Supercritical Water.2.Conversion of Isopropyl Alcohol to Acetone[J].Industrial & Engineering Chemistry Research,1996,35(11):3984-3990.
    [79]Savage P.E.,Yu J.L.,Stylski N.,et al.Kinetics and mechanism of methane oxidation in supercritical water[J].The Journal of Supercritical Fluids,1998,12(2):141-153
    [80]Holgate H.R.,Meyer J.C.,Tester J.Glucose hydrolysis and oxidation in supercritical water[J].AIChE Journal,1995,41(3):637-647.
    [81]Portela J.R.,Nebot E.,Martinez de la Ossa E.Generalized kinetic models for supercritical water oxidation of cutting oil wastes[J].The Journal of Supercritical Fluids,2001,21(2):135-145
    [82]袁细宁.超临界水氧化法处理高浓度萘系有机物的研究[硕士学位论文].浙江,浙江工业大学,2001
    [83]杨馗.催化超临界水氧化法处理高浓度有机废水的研究[硕士学位论文].浙江,浙江工业大学,2002
    [84]丁军委,陈丰秋,吴素芳等.苯胺在超临界水中氧化反应动力学的研究[J].高校化学工程学报,2001,15(1):66-70
    [85]葛红光,甄宝勤,杨海涛等.对氨基苯酚超临界水氧动力学研究[J].工业用水与废水,2005,36(4):1-3
    [86]葛红光,甄宝勤,陈开勋等.偏二甲肼超临界水氧化动力学研究[J].安全与环境学院,2005,5(4):17-19
    [87]Jeffrey.Water density effects on supercritical water oxidation[doctoral dissertation].Michigan,University of Michigan,2004
    [88]Aki SNVK,Abraham M.A.Catalytic supercritical water oxidation of pyridine:kinetics and mass transfer[J].Chemical Engineering Science,1999,54(15-16):3533-3542
    [89]Yang H.H.,Eckert C.A.Homogeneous catalysis in the oxidation of p-chlorophenol in supercritical water[J].Industrial & Engineering Chemistry Research,1988,27(11):2009-2014
    [90]Qi X.H.,Zhunag Y.Y.,Yuan Y.C,et al.Decomposition of aniline in supercritical water[J].Journal of Hazardous Material,2002,90(1):51-62
    [91]Gizir A.M.,Clifford A.A.,Bartle K.D.The catalytic role of transition metal salts on supercritical water oxidation of phenol and chlorophenos in a titantium reactor[J].Reaction Kinetic Catalyst Letter,2003,78(1):175-182
    [92]Yu J.L.,Savage R E.Catalyst activity,stability,and transformations during oxidation in supercritical water[J].Applied Catalysis B:Environmental,2001,31(2):123-132
    [93]Lin K.S.,Wang H.P.Shape selectivity of trace by-products for supercritical water oxidation of 2-chlorophenol effected by CuO/ZSM-48[J].Applied Catalysis B:Environmental,1999,22(4):261-267
    [94]Lin K.S.,Wang H.P.Byproduct shape selectivity in supercritical water oxidation of 2-chlorophenol effected by CuO/ZSM-5[J].Langmuir,2000,16(6):2627-2631
    [95]Lee G.,Nunoura T.,Matsumura Y.Comparison of the effects of the addition of NaOH on the decomposition of 2-chlorophenol and phenol in supercritical water and under supercritical water oxidation conditions[J].The Journal of Supercritical Fluids,2002,24(3):239-250
    [96]Lin K.S.,Wang H.P.Supercritical Water Oxidation of 2-Chlorophenol Catalyzed by Cu2+ Cations and Copper Oxide Clusters[J].Environmental Science & Technology,2000b,34(22):4849-4854
    [97]Arslan-Alaton I.,Ferry J.L.H_4SiW_(12)O_(40)-catalyzed oxidation of nitrobenzene in supercritical water:kinetic and mechanistic aspects[J].Applied Catalysis B:Environmental,2002,38(4):283-293
    [98]Nunoura T.,Lee G.H.,Matsumura Y.,et al.Effect of carbonaceous materials on the oxidation of phenol in supercritical water:a preliminary study[J].Industrial &Engineering Chemistry Research,2003,42(16):3718-3720
    [99]Matsumura Y.,Urase T.,Yamamoto K.,et al.Carbon catalyzed supercritical water oxidation of phenol[J].The Journal of Supercritical Fluids,2002,22(3):149-156
    [100]Nunoura T.,Lee G.H.,Matsumura Y.,et al.Modeling of supercritical water oxidation of phenol catalyzed by activated carbon[J].Chemical Engineering Science,2002,57(15):3061-3071
    [101]Muthukumaran R,Gupta R.B.Sodium-carbonate-assisted supercritical water oxidation of chlorinated waste[J].Industrial & Engineering Chemistry Research,2000,39(12):4555-4563
    [102]Suppes G.J.,Roy S.,Ruckman J.Calcium carbonate catalysis of alcohol oxidation in near-critical water[J].AIChE Journal,2001,47(9):2102-2110
    [103]韦朝海,王刚,谢波.废水处理催化超临界水氧化法影响因素及动力学分析[J].重庆环境科学,2000,20(5):44-47
    [104]贺文智,李光明,孔令照等.基于腐蚀与盐堵塞问题的超临界水氧化研究进展[J].环境工程学报,2007,1(5):1-6
    [105]薛方亮,张雁秋.染料废水处理技术最新研究进展[J].水科学与工程技术,2007,16(2):26-29
    [106]李家珍.染料、染色工业废水处理[M].北京:化学工业出版社,1997:1-10
    [107]刘梅红,苏鹤祥,俞三传,高从阶.纳滤膜分离技术在染料生产中的应用研究[J].纺织学报,2003,24(4):75-77
    [108]Santhy K.,Selvapathy R Removal of reactive dyes from wastewater by adsorption on coir pith activated carbon[J].Bioresource Technology,2006,97(11):1329-1336
    [109]刘梅红,苏鹤祥,俞三传等.纳滤膜分离技术在染料生产中的应用研究[J].纺织学报,2003,24(4):75-77
    [110]于敏.超滤膜处理分散染料废水[J].工业用水与废水,2003,34(5):36-38
    [111]刘会娟,曲久辉,雷鹏举.锰砂催化电化学方法对染料K2G脱色效果的研究[J].环境化学,2002,21(1):68-72
    [112]Joo D.J.,Shin W.S.,Choi J.H.,et al.Decolorization of reactive dyes using inorganic coagulants and synthetic polymer[J].Dyes and Pigments,2007,73(1) 59-64
    [113]施银桃,夏东升,李海燕等.臭氧氧化法处理染料废水研究[J].化工环保,2004,24(3):20-22
    [114]李绍蜂,张秀忠等.Fenton试剂氧化降解活性染料的试验研究[J].给水排水,2002,28(3):46-49
    [115]慕峰,庄惠生.染料酸性蓝水溶液光催化氧化脱色研究[J].工业用水与废水,2004,35(2):40-43
    [116]Li J.T.,Li M.,Li J.H.,et al.Decolorization of azo dye direct scarlet 4BS solution using exfoliated graphite under ultrasonic irradiation[J].Ultrasonics Sonochemistry,2007,14(2) 241-245
    [117]Kapdan I.K.,Alparslan S.Application of Anaerobic-aerobic Sequential Treatment to Real Textile Wastewater for Color and COD Removal[J].Enzyme and Microbial Technology,2005,36(2-3):273-279
    [118]Sponza D.T.,Isik M.Decolorization and Azo Dye Degradation by Anaerobic/Aerobic Sequential Process[J].Enzyme and Microbial Technology,2002,31(1-2):102-110
    [119]李茵,奚旦立.兼氧-好氧工艺处理染料废水的研究[J].环境科学研究,2003,16(2):39-42
    [120]袁霞光,冷冰,余启炎.丙烯酸废水湿式氧化催化剂的研究[J].石油化工,2005,34(7):684-687
    [121]郑言波,杨海,苏明伟等.活性炭纤维处理丙烯酸废水的研究[J].应用化工,2006,35(3):198-200
    [122]黄益宏.气浮-水解-序批式活性污泥法处理高浓度特种丙烯酸废水[J].化工环保,2006,26(2):126-128
    [123]苏本生,乔壮明,李鱼.EGSB反应器处理丙烯酸废水的试验研究[J].环境工程学报,2007,1(12):83-87
    [124]袁霞光.丙烯酸废水湿式催化氧化催化剂及工艺研究[硕士学位论文].北京,北京化工大学,2003
    [125]Silva A.M.T.,Marques R.R.N.,Quinta-Ferreira R.M.Catalysts based in cerium oxide for wet oxidation of acrylic acid in the prevention of environmental risks[J].Applied Catalysis B:Environmental,2004,47(4):269-279
    [126]Oliviero L.,BarbierJr.J.,Duprez D.,et al.Catalytic wet air oxidation of phenol and acrylic acid over Ru/C and Ru-CeO2/C catalysts[J].Applied Catalysis B:Environmental,2000,25(4):267-275
    [127]王向荣,杨英,原田吉明等.丙烯酸废水催化湿式氧化(CWO)技术处理试验研究[J].丙烯酸化工与应用,2007,20(3):29-31
    [128]李万海,黄江丽,王红等.催化湿式氧化处理丙烯酸废水[J].吉林化工学院学报,2007,24(3):3-6
    [1]葛红光.超临界水氧化高浓度含氮有机废水研究[博士学位论文].西安,西安建筑科技大学,2004
    [2]葛红光,郭小华,李利华等.催化超临界水氧化对氨基苯酚[J].环境污染治理技术与设备,2006,7(4):100-102
    [3]Goto M.,Nada T.,Ogata A.,et al.Supercritical water oxidation for the destruction of municipal excess sludge and alcohol distillery wastewater of molasses[J].The Journal of Supercritical Fluids,1998,13(1-3):277-282
    [4]M.Igor S.,Andriy R Supercritical water oxidation of o-dichlorobenzene:degradation studies and simulation insights[J].The Journal of supercritical fluids,2006,37(1):94-101
    [5]Hatakeda K.,Ikushima Y.,Sato O.,et al.Supercritical water oxidation of polychlorinated biphenyls using hydrogen peroxide[J].Chemical Engineering Science, 1999,54(15-16):3079-3084
    [1]Benjamin K.M.,Savage P.E.Supercritical Water Oxidation of Methylamine[J].Industrial & Engineering Chemistry Research,2005,44(14):5318-5324
    [2]Zhang G.M.,Hua I.Supercritical Water Oxidation of Nitrobenzene[J].Industrial & Engineering Chemistry Research,2003,42(2):285-289
    [3]Lee D.S.,Park S.D.Decomposition of nitrobenzene in supercritical water[J].Journal of Hazardous Materials,1996,51(1-2):67-76
    [4]Lee D.S.,Park K.S.,Nam Y.W.,et al.Hydrothermal decomposition and oxidation of p-nitroaniline in supercritical water[J].Journal of Hazardous Materials,1997,56(3):247-256
    [1]Thornton T.D.,Ladue D.E.,Savage P.E.Phenol oxidation in Supercritical Water:Formation of Dibenzofuran,Dibenzo-p-dioxin Related Compounds[J].Environmental Science and Technology,1991,25(2):1507-1510
    [2]Krajnc M.,Levee J.On the kinetics of Phenol Oxidation in Supercritical Water[J].AIChE Journal,1996,42(7):1977-1984
    [3]Thornton T.D.,Savage P.E.Phenol Oxidation Pathways in Supercritical Water[J].Industrial and Engineering Chemistry Research,1992,31(6):2451-2456
    [4]Gopalan S.,Savage P.E.Reaction Mechanism for Phenol Oxidation in Supercritical Water[J].Journal of Physical Chemistry,1994,98(2):12646-12652
    [5]Gopalan S.,Savage P E.A Reaction Network Model for Phenol Oxidation in Supercritical Water[J].AIChE Journal,1995,41(1):1864-1873
    [6]Li L.,Chen P.,Gloyna E.F.Kinetic Model for Wet Oxidation of Organic Compounds in Subcritical and Supercritical Water[J].Supercritical Fluid Engineering Science,1993,514(6):305-313
    [7]Portela J.R.,Nebot E.,Martinez de la Ossa E.Kinetic comparison between subcritical and supercritical water oxidation of phenol[J].Chemical Engineering Journal.2001,81(1-3):287-299
    [8]Henrikson J.T.,Chen Zh.,Savage P.E.Inhibition and Acceleration of Phenol Oxidation by Supercritical Water[J].Industrial and Engineering Chemistry Research,2003,42(25):6303-6309
    [9]Vogela R,DiNaro Blancharda J.L.,Marrone P.A.,et al.Critical review of kinetic data for the oxidation of methanol in supercritical water[J].The Journal of Supercritical Fluids,2005,34(3):249-286

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700