印度洋表层海水石油降解菌多样性分析及生物表面活性剂发酵工艺优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋微生物在海洋石油污染的自然消除及生物修复中发挥着重要的作用。本文利用2007年“大洋一号”第19次科考期间从德班到珀斯走航过程中采集的印度洋表层海水,通过石油富集,对降解菌多样性进行了分析。此外,本文还对石油降解菌Alcanivorax dieselolei B-5进行了产表面活性剂的发酵培养基优化。
     主要研究内容及结论如下:
     (1)为了研究印度洋石油降解菌多样性,并获得新的石油降解菌。本研究通过印度洋表层海水样品采集、以柴油与原油1:1混合物作为碳源,从中富集、分离筛选石油降解菌,并通过PCR-DGGE对13个站点富集菌群的菌群结构进行分析。通过形态观察、生理生化反应和16SrRNA分析,共得到29个属的51株不同的细菌,它们主要是属于α亚群和γ亚群。其中,Alcanivorax属(占18%),Novosphingobium属(占10%),Marinobacter(占6%)和Thalassospira(占6%)为主要的优势菌。通过生态多样性分析表明,Shannon-Winner指数(H)为4.57968,说明其具有较高的多样性;均匀度指数(E)为0.8664771,表示其分布比较均匀。单菌实验表明,49株具有石油降解能力,其中,Sinomonas, Knoellia, Mesoflavibacter等属的细菌为首次发现有降解能力。DGGE分析表明Alcanivorax属的细菌是印度洋表层海水中的重要石油降解菌。本研究首次揭示了印度洋表层海水中石油降解菌的多样性,并获取了若干在海洋石油污染生物修复中具有应用前景的降解菌。
     (2)由于缺乏快速有效准确的方法,生物表面活性剂产量的定量一直是一个耗时且困难的工作。本研究旨在利用表面活性剂在低pH时会形成沉淀而浑浊的原理,将浑浊度与标准曲线结合,用于定量表面活性剂的产量。由不同碳源诱导菌株A. dieselolei B-5所产的表面活性剂经配成标准浓度后沉淀,实验表明浑浊度与标准浓度制成的曲线具有良好的线性相关性。经MSM、MMSM和DMSM培养基验证后显示,该方法可适用于多种培养基中生物表面活性剂产量的定量。
     利用以上实验的表面活性剂产量定量方法为检测手段。本研究对菌株A.dieselolei B-5产生的生物表面活性剂进行了发酵培养基的优化。采用Plackett-Burman设计进行优化实验,结果分析表明,影响表面活性剂产量的3个重要的培养基成分为:液体石蜡、TWEEN-80、SrCl2。进一步用Design Expert软件的响应面回归方法对培养基进行了优化。结果表明,其最适浓度分别为33.18ml/L、4.15 ml/L和0.22 g/L。此时表面活性剂的产量为最大(4.31 g/L),比优化前提高了95.91%。
Marine microorganisms play an important role in elimination and bioremediation of marine oil pollution. Biosurfactant play a role of promoting dissolution and degradation in hydrophobic substrate. In this study, we have analyzed the diversity of oil-degrading bacteria acrossing the Indian Ocean surface seawater during the 19th scientific expedition of "DAYANG YIHAO" in 2007. In addition, we optimized the production of a biosurfactant from the oil-degrading bacteria Alcanivorax dieselolei B-5.
     The main contents and findings are as following:
     (1) In order to investigate the diversity of the oil-degrading bacteria in the surface seawater across the India Ocean, and obtain new oil-degrading bacteria. Potential oil-degrading bacteria were selected out via 1:1 mixture of diesel and crude oil as sole carbon source. Meanwhile, the community structure of 13 enrichments was analyzed by polymerase chain reaction with denaturing gradient gel electrophoresis (PCR-DGGE). We obtained 51 unique strains of 29 genera after screening via morphological, physiological, biochemical and 16S rRNA analyses. They mainly belonged to a andγ-Proteobacteria. The four genera Alcanivorax (accounting for 18%), Novosphingobium (10%), Marinobacter (6%) and Thalassospira (6%) were the most predominant bacteria. Ecological analyses showed that the bacteria had high diversity with Shannon-Winner index (H) of 4.57968, and distributed even with Evenness index (E) as 0.8664771. Then Further experiments revealed oil-degrading capability of 49 strains. In addition, our investigation revealed oil-degrading ability of genera Sinomonas, Knoellia and Mesoflavibacter for the first time. DGGE fingerprint patterns indicated that the genus Alcanivorax was an important oil-degrading bacteria in the surface seawater across the India Ocean. This study demonstrated a high diversity of the oil-degradation bacteria in the surface seawater of Indian Ocean, these bacteria are of potential in bioremediation of marine oil pollution.
     (2) Quantification of the biosurfactants produced by a variety of microorganisms is a time taking and dif fi cult task due to the lack of rapid, ef fi cient and accurate methods. This work presents a simple turbidometric method forquanti fi cation of crude biosurfactants based on their property to become insoluble at low pH values. Biosurfactants obtained from A. dieselolei B-5 using different carbon substrates showed a good linear correlation(R2>0.95) between biosurfactant concentrations and turbidity in the range of 2 to 10 g/L of crude biosurfactants. The MSM, MMSM, DMSM developed in this work effectively predicted the amount of crude biosurfactant produced in different sets of fermentation experiments validating the method.
     The biosurfactant produced in the fermentation medium was quantified directly by cell-free solution turbidity corresponding standard curve. The nutritional medium requirement for biosurfactant production by A. dieselolei B-5 was optimized. The important medium components, identified by the initial screening method of Plackett-Burman, were liquid paraffin, TWEEN-80 and SrCl2. Box-Behnken response surface methodology was applied to further optimize biosurfactant production. The optimal concentrations for higher production of biosurfactants were:liquid paraffin, 33.18 ml/L; TWEEN-80,4.15 ml/L; SrCl2,0.22 g/L respectively. Using this statistical optimization method, the biosurfactant yield was increased from 2.2 g/L to 4.31 g/L, which is 95.91 percent higher than the non-optimized rich medium.
引文
[l]万邦和.海洋石油污染及其危害[J].海洋环境科学.1986,5(3):52-63.
    [2]格拉赫SA(李占生等译).海洋污染[M],海洋出版社.1987,106-132.
    [3]国家环保总局信息中心,国家海洋局 2002年中国海洋环境质量报[R].2003.
    [4]李盲涛.海上溢油的处理与回收[J].海洋湖沼通报.1996,5(1):73-83.
    [5]李进道,丁美丽,陈德辉,等.用长效肥料提高微生物分解海面油膜试验[J].青岛海洋大学学报,1990,20(3):84-89.
    [6]郑天凌,庄铁城,蔡立哲,等.微生物在海洋污染环境中的生物修复作用[J].2001,厦门大学学报,40(2):524-534.
    [7]Ronald M, Atlas, Bioremediation of petroleum, Biodegradation [J]. Bio. Sci,1999, 45 (5); 332-338.
    [8]Madsen EL. Determining in situ biodegradation; Facts and Challenges [J]. Envrion. Sci. Technot.,1991,25(10):1663 - 1672.
    [9]Markovetz AJ, Subterminal oxidation ofaliphatic hydrocarbons by mieroorganisms[J], Crit Rev Microbiol.1971,1:225-237.
    [10]Rittman BE, Valocchia J, Seseren EA. Critical Review of In-situ bioremediation [D], University oflllinois at urbaaa-Ahampaign,1991.
    [11]Singer ME, Finnerty WR. Microbial metabolism ofstraight-chain and branched alkane [M]. Macmillan publishing Company,1984.
    [12]张蓉真,李珑,李建才等.大豆水解蛋白对乳酸菌增殖的促进作用.1997,12:40-43.
    [13]Morgan P, Watkinson RB. Biodegradation of components of petroleum [M].[s.l.]: Kulwer AcademicPublishers,1994.
    [14]孙铁珩,周启星,李培军.污染生态学[M]北京:群学出版社,2001:309-368.
    [15]杨柳燕,肖琳.环境卫生微生物技术.北京:科学出版社,2003:180.
    [16]Sakai Y, Maeng J H, Kubota S. A non-conventional dissimilation pathway for long ohain n-alkanes in Acinetobacter sp. M-1 that starts with a dioxygenase reaction [J]. Ferment Bioeng,1996,81:286-291.
    [17]Tani A, Sakai Y Ishige T. Thermostable NADP+dependent medium-chain alcohol dehydrogenase from Acinetobacter sp. Strain M-1:Purification and characterization and gene expressionin Escherichea coli [J]. Appl Environ Microbiol,2000,66:5231-5235.
    [18]Gibson DT. Biodegradation of aromatic petroleum hydrocarbons in fate of petrolemn hydrocarbon in marine ecosystems and organisms [M]. New York: Pergamon Press.1977.
    [19]陈坚.环境生物技术.北京:中国轻工业出版社.1999.
    [20]Bouchez M, Blancher D, Vandecasteele J-P. Degradation of polycyclic aromatic hydrocarbons by pure strains and by defined strains associations:inhibition phenomena and cometabolism [J]. Appl Microbiol Biotechnol.1995(43): 156-164.
    [21]Mahaffey WR. Bacterial oxidation of chemical carcinogens:formation of polycyclic aromatic acids from benz(a)anthracene [J]. Appl. Environ. Microbiol. 1988,54(10):2415-2423
    [22]Schwab P. Biodegradation of polycyclic aromatic hydrocarbon in rhizophere [J]. In:R. E. Hinchee et al. (eds). Biotemediation of Recalcitrant Organics.1995, 23-29.
    [23]Perry J. Microbial cooxidation involving hydrocarbons[J]. Microbiological review.1979,43(1):59-72.
    [24]Tiehm A, Ffitzsehe C. Utilization of solubilized and crytalline mixtures of polycyclic aromatic hydrocadmm by a Mycobactedmnsp [J]. Appl. Microbiol. Biotechnol.1995, (42):964-968.
    [25]Coates J D. Woodward J. Anaerobic degradation of pohycyclic aromatic hydrocarbons and alkanes in petroleumcontaminated me harbor sediments [J]. Appl Environ Microbiol,1997,63:3589-3593.
    [26]Hcider J, Spormann AM, Belier HK et al. Anaerobic bacterial metabolism of hydrocarbons [J]. Fems Microbiol Rev,1998,22:459-473.
    [27]Widdle. The genome sequence of an anaerobic aromatic degrading denitrifying bacterium strain EbNI [J]. Archives of Microbiology,2005,183:27-36.
    [28]Gl'ishchenkov VG, Townsend RT. Degradation of petroleum hydrocarbons by facultative anaerobic bacteria under aerobic and anaerobic conditions[J]. Process Biochemistry,2000,35:889-896.
    [29]BS Xing, JJ. Pignatello, Competitive Sorption Between 1,3-Dichlorobenzane or 2,4-DicMorophenoland Natural Aromatic Acid in Soil Organic Matter [J]. Environ Sci Technol,1998,32(5):614-619.
    [30]Zobell CE. Action ofmicrenrganisms on hydrocarbons[J]. Bacteriol.1964,10: 1-49.
    [31]Rafledge C. Degradation of aliphaflc hydrocarbons in developmentsin biedegadatien of hydroeathnm [M]. London:Applied Science,1978.
    [32]Aurieh H. Die oxidation aliphalisch Kohlonwasscrstoffe dutch bakterioll [M]. MathNaturwiss Technik,1979,16:1-24.
    [33]Rehm HJ. Reiff I. Mechanism and occurrence of microbial oxidation of long-chain alkenes [J]. Adv Bio Eng,1981,24:1241-1269.
    [34]Hogg DS, Burden RJ, Riddel PJ. HmcriR&D Conference [C]. San Freneisen, 1992.
    [35]Sugiura K, Ishihnra M, Schimauchi T, et al. Physicechemical properties and biodegradability of crude oil [J]. Environmental Science andTechnology,1997, 31:45-51.
    [36]Ellis, Andrew W, Bioreactor design end piration [M]. UK:Psychology Press, 1997:695.
    [37]Ahmed Rashad. Enhancement of Biodegradation of Petroletml-Based Compounds by Surfactam [D]. The Catholic university of America 2001.
    [38]Ismail Saadoum. Isolation end characterization of bacteria from crude petroleum oil contaminated soil and their potential to degrade diese fuel [J]. Basic Mierobiol,2002,42(6):420-428.
    [39]Daniel Delille, Frederic Coulon, Emilien Pelletier. Effects oftemperature warmingduring a bioromediafon study of natural end nutrient-amended hydrocarbon-contaminated sub-Antarctic soils [J]. Cold Regions Science end Technology,2004,40:61-70.
    [40]Conkson EW. Policing waterways for hydrocarbons [J]. Sensor Review,1995,3: 21-23.
    [41]Burlage RS. Emerging technologies:Bioreporters,biosensors and microprobes [M]. Washington DC,1997.
    [42]Ishigc T, Teni A, Long-chnin aldehyde dehydrogenase that participates in n-alkane utilization end wax ester synthesis in Acinetobacter sp. Strain. M-1 [J]. Appl Environ Microbiol,2000,66:3481-3486.
    [43]Beilon JB, Analysis of Pseudomonas pufida aLkene dagrada60n gcne dusters and flanking insertion sequences:Evolution end regulation of the alk genes [J]. Microbiology,2001,147:1621-1630.
    [44]魏德洲,秦煜民.H202在石油污染土壤微生物治理过程中的作用[J].中国环境科学,1997,17(5):429-431.
    [45]白威,黄钧,李毅军等.炼油废水中乳化态石油的生物处理可行性研究[J].应用与环境生物学报.1999,10(5):59-60.
    [46]何良菊,李培杰,魏德洲等.石油烃微生物降解的营养平衡及降解机理[J].2004,25(1):90-94.
    [47]郑金秀等.高效石油降解菌的选育及其降解特性研究[J].环境科学与技术.2005,29(3):1-2.
    [48]田胜艳等.海洋潮间带石油烃降解菌的筛选分离与降解特性[J],农业环境科学.2006,25:301-305.
    [49]陆泗进等.汽油降解菌的分离及降解研究[J],环境科学研究.2006,19(4):95-99.
    [50]Fought JM, Gutnik DL, Westlake DWS. Effect of emulsion on biodegradation of crud oil in pureand mixed cultures. ppl [J] Environ Microbiol,1989,55:36-42
    [51]沈德中.污染环境的生物修复[M].北京:化学工业出版社,2002,268-279
    [52]Hary R, Michel P, Choukri H, Philippe J, Jacqueline D, Philippe T. Purification of antifungal lipopeptides by reversed-Phase high-performance liquid chromatography [J]. Journal of Chromatography,1993,639:81-85
    [53]刘波,张红梅.鼠李糖脂用于三次采油的实验研究[J].油气采收率技术,1997,26(1):20-25.
    [54]肖进新,赵振国.表面活性剂应用原理[M].北京:化学工业出版社2003:23-42.
    [55]Keith LH, Telliard WA. Priority pollutants I:a perspective review [J]. Environmental Science and Technology,1979,13(1):416-423.
    [56]范立梅.生物表面活性剂及其应用[J].微生物学通报,2000,35(8):21-22.
    [57]Morgan P, Watkinson RJ. Hydrocarbon degra-dation in soil and methods for soil biotreatment [J]. Biotechnology,1989,8(1):305-333.
    [58]伍晓林,陈坚,伦世仪.表面活性剂在提高原油采收率方面的应用[J].生 物学杂志2000,17(6):25-28.
    [59]Morikawa M, Hirata Y, Imanaka T. A study on the structure-function relationship of the lipopeptide biosurfactants[J]. Biochim Biophys Acta.2000,1488,211-218.
    [60]Plaza GA, Ireneusz Z, Banat IM. Use of different methods for detection of thermophilic biosurfactant producing bacteria from hydrocarbon contaminated and bioremediated soils[J]. J. Petrol. Sci. Eng.2006.50,71-77.
    [61]Plaza GA, Zjawiony I, Banat IM. Use of different methods for detection of thermophilic biosurfactant producing bacteria from hydrocarbon-contaminated and bioremedated soils[J]. J Petro Sci Eng,2006,50(1):71-77.
    [62]Fleck LC, Bicca FC, Ayub MAZ, Physiological aspects ofhydrocarbon emulsification, metal resistance and DNA profile of biodegrading bacteria isolated from oil polluted sites[J]. Biotechnol. Lett.2000,22,285-289.
    [63]Nitschke N, Pastore GM, Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewater[J]. Bioresour. Technol.2006,97, 336-341.
    [64]Maneerat S, Phetrong K. Isolation of biosurfactant-producing marine bacteria and characteristics of selected biosurfactant[J]. Songklanakarin J. Sci. Technol. 2007,29(3),781-791.
    [65]Lin SC, Jiang HJ. Recovery and puri fi cation of the lipopeptide biosurfactant of Bacillus subtilis by ultrafiltration[J]. Biotechnol Techniques.1997,11(6), 413-416.
    [66]McInerney MJ, Javaheri M, Nagle DP. Properties of the biosurfactant produced by Bacillus licheniformis strain JF-2[J]. J Ind Microbiol.1990,5 (2-3),95-101.
    [67]Pornsunthorntawee O, Wongpanit P, Chavadej S, Abe M, Rujiravanit R, Structural and physicochemical of crude biosurfactant produced by Pseudomonas aeruginosa SP4 isolated from petroleum-contaminated soil. Bioresous Technol. 2008a,99,1589-1595.
    [68]Wang X, Gong L, Liang S, Han X, Zhu C, Li Y. Algicidal activity of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa[J]. Harmful Alg.2005,4, 433-443.
    [69]傅海燕,曾光明,袁兴中等.生物表面活性剂的分离提纯及其发展前景[J].生物学杂志2003,20(6):1-4.
    [70]Davis DA, Lynch DC, Varlery J.The production of surfactin in batch culture by Bacillus subtilis ATCC 21332 is strongly influenced by the conditions of nitrogen metabolism[J]. Enzyme Microb Technol,1999,25(4):322-331.
    [71]Wei YH, Chu IM. Enhancement of surfactin production in iron-enriched media by Bacillus subtilis ATCC 21332[J]. Enzyme Microb Technol,1998,22(2): 724-735.
    [72]Sandra L F, Greg GA. Production of surfactin from Bacillus subtilis ATCC21332 using potato substrates[J]. Biosource Technology,2000,75(3):235-240.
    [73]Rahman TJ, Mcclean S, Marchant R, et al. Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials[J]. Biotechnology progress,2002,18(6):1277-1290.
    [74]Beninasa M, Contiero J, Manresa MA, et al.Rhamnolipid production by Psedomonas aeruginose LBI growing on soapstock as the sole carbon source[J]. Journal of Food Engineering,2002,54(4):283-300.
    [75]Crosman JT, Pinchuk RJ, Cooper DG. Enhanced biosurfactant production by Corynebacterium alkanolyticum ATCC 21511 using self-cycling fermentation[J]. Journal of the American Oil Chemists Society,2002,79(5):467-490.
    [76]Veenanadig NK, Gowthaman MK, Karanth NG. Scale up studies for the production of biosurfactant in packed column bioreactor[J]. Bioprocess engineering,2000,22(3):95-109.
    [77]王鹏,王玉珠,沈建民.均匀设计及其在药学中的应用[J].沈阳药学院学报,1989,6:297-299.
    [78]高修功,王超,章克昌.数学统计方法快速优化假单胞菌脂肪酶发酵条件[J].微生物学通报,1998,25:94.
    [79]Box GEP, Draper NR. Empirical model-building and response surface[J]. New York:John Wiley&Sona Inc.,1987
    [80]Kiran KR, Karanth NG, Divakar S. Preparation of stearoyl lactic acid ester catalyzed by lipses from Rhizomucor miehei and porcine pancreas optimization using response surface methodology [J]. Appl Microbiol Biotechnol,1999,52: 579-584.
    [81]Krishna SH, Manohar B, Divakar S, et al. Optimization of isoamyl acetate production by using immobilized lipase from Mucor miehei by response surface methodology[J].Enzyme Microb Technol,2000,26:131-136.
    [82]McDaniel LE, Bailey EG, Ethiraj S, et al. Application of Response Surface Optimization Techniques to polyenemacrolide fermentation studies in shake flasks[J]. Dev Ind Microbiol.1976,17:91.
    [83]褚以文.微生物培养基优化方法及其OPTI优化软件[J].国外医药抗生素分册,1999,20:58-61.
    [84]Wilson JG, Komakhidze A, Osadchaya T, Alyomov S, Romanov A, Tediashvili M. Evaluating ecological quality in the north-eastern Black Sea coastal zone[J]. Marine Pollution Bulletin,2008,57(1-5):202-207.
    [85]Head IM, Jones DM, Roling WF. Marine microorganisms make a meal of oil[J]. Nature Reviews Microbiology,2006,4(3):173-182.
    [86]Deppe U, Richnow HH, Michaelis W, Antranikian G. Degradation of crude oil by an arctic microbial consortium[J]. Extremophiles,2005,9(6):461-470.
    [87]Wang L, Wang W, Lai Q, Shao Z. Gene diversity of CYP153A and AlkB alkane hydroxylases in oil-degrading bacteria isolated from the Atlantic Ocean[J]. Environmental Microbiology, [Epub ahead of print]
    [88]Qiao N, Shao ZZ. Isolation and characterization of a novel biosurfactant produced by hydrocarbon-degrading bacterium Alcanivorax dieselolei B-5[J]. Journal of Applied Microbiology.2009,108:1207-1216.
    [89]乔楠.海洋微生物生物表面活性剂的成分分析及合成相关基因的初探[D].厦门大学硕十学位论文.2009.49-50
    [90]Liu C and Shao Z. Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment [J]. Int J Syst Evol Microbiol,2005,55,1181-1186.
    [91]Abraham, WR, Meyer H and Yakimov M. Novel glycine containing glucolipids from the alkane using bacterium Alcanivorax borkumensis[J]. Biochim Biophys Acta,1998,1393:57-62.
    [92]Yakimov MM, Golyshin PN, Lang S, Moore ER, Abraham WR, Lunsdorf H, Timmis KN. Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 1998; 48(2):339-348.
    [93]陈梦.对生态系统及生物多样性等理论问题的探讨[J].南京林业大学学报(Journal of Nanjing Forestry University),2003,27 (5):30-34.
    [94]S Harayama. Polycyclic hydrocarbon bioremediation design[J]. Current Opinion in Biotechnology,1997,8 (3):268-273.
    [95]Johnson GR, Olsen RH. Multiple pathways for toluene degradation in Burkholderia sp. strain JS150[J]. Applied and Environmental Microbiology, 1997,63 (10):4047-4052.
    [96]Nakajima K, Sato A, Takahara Y, Iida T. Microbial oxidation of isoprenoid alkanes, phytane, norpristane and farnesane[J]. Agricultural Biology and Chemistry.1985,49(7):1993-2002.
    [97]Van Beilen JB, Wubbolts MG, Witholt B. Genetics of alkane oxidation by Pseudomonas oleovorans[J]. Biodegradation.19945(3-4):161-174.
    [98]Stackebrandt E, Goebel BM. Tax onomic note:a place for DNA-DNA reass ociation and 16S rRNA sequence analysis in the present species definition in bacteriology[J]. International Journal of Systematic and Evolutionary Microbiology,1994,44 (4):846-849.
    [99]Harayama S, Kishira H, Kasai Y, Shutsubo K. Petroleum biodegradation in marine environments[J]. Journal of Molecular Microbiology and Biotechnology, 19991(1):63-70.
    [100]Kasai Y, Kishira H, Sasaki T, Syutsubo K, Watanabe K, Harayama S. Predominant growth of Alcanivorax strains in oil-contaminated and nutrient-supplemented sea water[J]. Environmental Microbiology,2002,4 (3): 141-147.
    [101]Yakimov MM, Timmis KN, Golyshin PN. Obligate oil-degrading marine bacteria[J]. Current Opinion in Biotechnology,2007,18 (3):257-266.
    [102]Sheng XF, He LY, Zhou L, Shen YY. Characterization of Microbacterium sp. F10a and its role in polycyclic aromatic hydrocarbon removal in low-temperature soil[J]. Canadian Journal of Microbiology,2009,55 (5):529-535.
    [103]Supaphol S, Panichsakpatana S, Trakulnaleamsai S, Tungkananuruk N, Roughjanajirapa P, O'Donnell AG. The selection of mixed microbial inocula in environmental biotechnology:example using petroleum contaminated tropical soils[J]. Journal of Microbiological Methods,2006,65 (3):432-441.
    [104]Mata-Sandoval JC, Kams J, Tonents A. High-perfonnance liquid chromatography method for the characterization of rhamnolipid mixtuma produced by pseusomonas aeruginasa UG2 on corn oil[J]. Journal of Chromatography A,1999,864:211-220.
    [105]Lotfy WA,2007. The utilization of beet molasses as a novel carbon source forcephalosporin C production by Acremonium chrysogenum:Optimization of process parameters through statistical experimental designs. Bioresour. Technol. 98,3491-3498.
    [106]Li XY, Liu ZQ, Chi ZM. Production of phytase by a marine yeast Kodamaea ohmeri BG3 in an oats medium:optimization by response surface methodology[J]. Bioresour. Technol.2008a,99,6386-6390.
    [107]Seghal KiranG, Anto T Thomas, Selvin Joseph, Sabarathnam B, Lipton AP. Optimization and characterization of a new lipopeptide biosurfactant produced by marine Brevibacterium aureum MSA 13 in solid state culture[J]. Bioresource Technology.2010:2389-2396.
    [108]Marcia Nitschke, Glaucia Maria Pastore. Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewater[J]. Bioresource Technology.2006:336-341.
    [109]Joshi, Sanket, Sanjay Yadav, Anuradha Nerurkar, Desai Anjana J. Statistical Optimization of Medium Components for the Production of Biosurfactant by Bacillus licheniformis K51[J]. Journal of Microbiology and Biotechnology. 2007:17(2),313-319
    [110]Satputea Surekha K, Banat Ibrahim M, Dhakephalkar Prashant K, Banpurkar Arun G., Chopade Balu A. Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms[J]. Biotechnology Advances 2010,28(4):436-450.
    [111]Sivapathasekaran C, Soumen Mukherjee, Arja Ray, Ashish Gupta, Ramkrishna Sen. Artificial neural network modeling and genetic algorithm based medium optimization for the improved production of marine biosurfactant[J]. Bioresource Technology.2010,101(8):2884-2887.
    [112]Zobell CE. Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes[J]. J. Marine Res.1941 (Sears Foundation) 4,173-188.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700