基于聚乙烯亚胺纳米纤维亲和膜研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水资源短缺和水环境恶化是当今世界普遍存在的问题,重金属离子和有机染料污染废水由于对人和牲畜等生物体具有较高的毒性而受到研究人员的广泛关注。亲和膜分离技术同时具有亲和色谱选择性高、分离速度快、能耗低和膜分离技术操作条件温和、无污染、无相变、易放大的特点而被广泛用于环境修复领域。
     本文的主要研究了基于聚乙烯亚胺纳米纤维亲和膜对水体重金属离子和阴离子染料分子的去除性能和检测。首先,以聚乙烯醇溶液对聚乙烯亚胺进行共混改性,采用湿法静电纺丝方法制备了交联聚乙烯亚胺/聚乙烯醇纳米纤维亲和膜,用于水体重金属离子废水的去除;然后,以聚醚砜溶液对聚乙烯亚胺进行共混改性,采用干法静电纺丝-溶剂刻蚀后处理工艺制备了一种具有微纳结构的聚乙烯亚胺/聚醚砜纳米纤维亲和膜,用于重金属离子和阴离子染料废水的脱除;经上述两种纳米纤维亲和膜处理之后的水溶液中金属离子的浓度需要对其进行检测以使其达到环保的要求。因此本文最后合成了一种对水体中铜离子具有选择性识别功能的荧光化合物,并将其共混到聚醚砜体系内,采用静电纺丝方法制备出对水体微量铜离子具有高效选择性识别功能的纳米纤维亲和膜传感器。
     1、以聚乙烯亚胺(PEI)为吸附剂、聚乙烯醇(PVA)为助纺剂,采用湿法静电纺丝技术制备出对水体铜、铅、镉等重金属离子具有高效吸附功能的PEI/PVA纳米纤维亲和膜。湿法静电纺丝中凝固浴由交联剂戊二醛(GA)和PEI的不良溶剂N,N’-二甲基甲酰胺(DMF)组成。这种湿法静电纺丝方法可以消除在静电纺丝过程中溶剂挥发不完全导致纳米纤维表面粘结的现象。当PVA的掺杂量为10%时,PEI/PVA纳米纤维的微观形态结构最为理想,PEI/PVA纳米纤维的平均直径约为650nm,且纳米纤维表面光滑;PEI/PVA纳米纤维亲和膜对Cu(Ⅱ)、Cd(Ⅱ)和Pb(Ⅱ)三种金属离子的平衡吸附模型更适于用Langmuir等温模型来描述,且最大饱和吸附量分别为70.92mg/g、121.95mg/g和94.34mmg/g;PEI/PVA纳米纤维亲和膜能够在0.05MEDTA溶液中再生,经过3次吸附-脱附循环实验之后,对铜离子的吸附效率仍然能够保持95.6%。此外,和文献报道的流延膜相比,PEI/PVA纳米纤维亲和膜对铜和镉的最大吸附量分别增加了1.31倍和2.27倍。
     2、以聚醚砜(PES)为助纺剂,采用干法静电纺丝技术制备PEI/PES纳米纤维。当聚合物总浓度为30%、PEI/PES质量比为1.4/1时,所得纳米纤维截面为圆形、表面光滑的良好微观形态结构,纳米纤维平均直径约为300nm。此外,从纳米纤维的SEM照片上可以看出,在静电纺丝的过程中,PEI组分倾向于迁移到纳米纤维的表面。采用丙酮/水/戊二醛交联体系对PEI/PES纳米纤维进行交联后处理,发现纳米纤维上PEI组分在交联中由于PEI大分子和溶剂水分子的溶剂化作用而刻蚀,以微球的形式沉积在纳米纤维的表面,并且这种微纳结构的形成与交联体系中水的含量有关,当交联体系中水的含量高于20%时,能够得到均匀的微纳结构的纳米纤维膜,且纳米纤维上的突起小球的直径范围为50-250nm。由氮吸附-脱附(BET)和铜离子吸附实验证明,当交联体系中水的含量为30%时,所制备的微纳结构PEI/PES纳米纤维膜的比表面积最大,为7.27m2/g。
     3、研究了微纳结构PEI/PES纳米纤维亲和膜对水溶液中重金属离子和阴离子染料的吸附性能和机理。发现溶液起始pH值对微纳结构PEI/PES纳米纤维亲和膜表面的性质有着重要影响:在酸性条件下,微纳结构PEI/PES纳米纤维亲和膜对阴离子染料具有较好的吸附性能,而对重金属离子的吸附更需要起始溶液呈中性;微纳结构PEI/PES纳米纤维亲和膜对阴离子染料和重金属离子的吸附行为更适合用Langmuir等温吸附模型来描述,从Langmuir等温吸附模型计算出PEI/PES纳米纤维膜对日落黄、固绿、苋菜红、铅离子、铜离子和镉离子的饱和吸附量分别为1000mg/g、344.83mg/g、454.44mg/g、94.34mg/g、161.29mg/g和357.14mmg/g;微纳结构PEI/PES纳米纤维亲和膜对重金属离子的吸附速率要快于阴离子染料,吸附动力学更符合准二级动力学模型和颗粒内扩散模型;微纳结构PEI/PES纳米纤维亲和膜对重金属离子和阴离子染料的吸附过程都是自发进行且都属于物理吸附,但是对重金属离子的吸附则是放热反应,而对阴离子染料的吸附是吸热反应。亲和膜的再生研究结果表明,0.05MEDTA和0.05MNaOH分别是吸附重金属离子和阴离子染料PEI/PES纳米纤维亲和膜的理想再生溶液。
     4、经上述两种纳米纤维亲和膜处理之后的水溶液中金属离子的浓度需要对其进行检测以使其达到环保的要求,本文合成了一种罗丹明酰肼水杨醛席夫碱荧光分子,发现当铜离子与该荧光分子络合之后会导致罗丹明分子内开环,使其从非共轭结构转变成共轭结构而具有较强的荧光性质,且该荧光分子对水体铜离子的检测限为1×10-6M。此外,将罗丹明酰肼水杨醛席夫碱荧光分子与聚醚砜共混,采用静电纺丝技术成功制备了一种新型纳米纤维荧光传感器,并将其用于水体微量铜离子的检测。发现纳米纤维上的荧光分子对铜离子的高效选择性识别功能得到了增强,对铜离子的检测限为1×10-8M。研究了纳米纤维传感器对铜离子的识别机理,发现铜离子和荧光分子是以化学计量比为1:1进行络合。
Water resources shortage and pollution have been common problems currently. Among the number of polluting species at issue, heavy metal ions and organic dyes are of special concern because of their high toxicity for human and animals'health. Affinity membrane separation technology has been widely used in environmental remediation application due to its high performance of affinity chromatography and membrane technology, such as high selectivity, high efficiency, and no pollution and so on.
     This work mainly focuses on the removal of heavy metal ions and anionic dyes, and detection of trace heavy metal ions in aqueous solution. Fitstly, cross-linked electrospun poly(ethyleneimine)(PEI) nanofibrous membranes doped with PVA were fabricated by wet-electrospinning in a one-step method instead of the conventional electrospinning and subsequent crosslinking method and the PEI/PVA nanofibrous membranes were applied to metal ions adsorption from an aqueous solution; Secondly, micro-nano structure nanofibrous affinity membranes of poly(ether sulfones)(PES) blended with a functional polymer PEI were fabricated by electrospinning technique followed by solvent etching in crosslinking solution, and this novel micro-nano structure PEI/PES nanofibrous membrane was utilized as an adsorbent for anionic dyes and heavy metal ions from aqueous solutions; the concentrations of the heavy metal ions solutions treated by two kinds of nanofibrous affinity membranes should be detected whether it meet the demand of environmental protection. So, a novel nanofibrous affinity membrane sensor was fabricated from a fluorescence molecule doped PES solutions and its sensing properties to Cu2+were investaged systematically.
     1. PEI and PVA were chosen as functional affinity polymer and fiber-forming agent, respectively. Crosslinked PEI nanofibrous affinity membranes for effective removing heavy metal ions were fabricated via wet-electrospinning from its aqueous solution. The coagulating bath for wet-electrospinning was composed of the crosslinking agent glutaraldehyde (GA) and N,N-dimethylformamide (DMF) as a non-solvent. This wet-electrospinning method provided a new approach for fabricating the crosslinked nanofibers from the polymers, in which sticky phenomenon could occur at the process of the electrospinning. When the PEI/PVA weight ratio was90/10, the PVA doped PEI nanofibrous membranes with ideal morphology was obtained. The nanofibers had an average diameter of650nm and the surface of the nanofibers was very smooth. The Langmuir equation gave a better fit to the experimental data than the Freundlich equation, and the maximum absorption capacities (from Langmuir isotherm data) for Cu(II), Cd(II) and Pb(II) were70.92mg/g,121.95mg/g and94.34mg/g, respectively. The PEI nanofibrous affinity membrane adsorbed with heavy metal ions could be regenerated successfully in EDTA aqueous solution without significantly affecting its adsorption efficiency, it was found that the desorption efficiency reached about95.6%after the third cycles. The Cu(II) and Cd(II) adsorption data were about1.31and2.27times higher than the reported values of PEI/PVA cast membrane.
     2. PEI/PES nanofibers were fabricated by electrospinning and PES was an excellent candidate for the matrix due to its good electrospinnability. In order to obtain PEI/PES nanofibrous membrane with high PEI content and finer fiber diameter, the blend ratio of1/1.4(w/w) and the total polymer concentration of30wt%were chosen in the electrospinning process. From the SEM images, it was found that the average diameter of the nanofibers was300nm and in addition most joints of PEI/PES nanofibers were stuck together, indicating that liquid PEI with high viscocity was concentrated at the fiber surface. The nanofibrous PEI/PES membranes were crosslinked in a mixture of acetone and water with glutaraldehyde (crosslinking agent, GA), and the micro-nano structural surface of the nanofibrous membranes was created by solvent etching due to the solvation between PEI and the solvent water in the crosslinking solution during the crosslinking process. The influence of the component of the crosslinking bath on the mophology of the resulting PEI/PES nanofibers was investigated. It was found that the relatively uniform micro-nano spherules grew on the surface of the nanofibers when the content of water in crosslinking solution was more than20wt%, and the diameters of the spherules were in the range of50-250nm. From the data of BET results and Cu2+adsorption performance, it was found that when the water content in crosslinking solution was30%, the resulting PEI/PES nanofibrous membrane has the maximum specific surface area, which was7.27m2/g.
     3. Adsorption performance of the micro-nano structure PEI/PES nanofibrous membrane for anionic dyes or heavy metal ions from aqueous solutions was investigated. A series of adsorption experiments were carried out to investigate the influence of membrane dosage, initial solution pH value, contact time, initial solution concentration and adsorption temperature on the adsorption performance. The experimental results showed that the removal of the anionic dyes and metal ions on this PEI/PES nanofibrous membrane was a pH-dependent process with the maximum adsorption capacity at the initial solution pH of1for anionic dyes and5-7for metal ions, respectively. The adsorption equilibrium data were all fitted well to the Langmuir isotherm equation, with a maximum adsorption capacity values of1000mg/g,344.83mg/g,454.44mg/g,94.34mg/g,161.29mg/g and357.14mg/g for Sunset Yellow FCF, Fast Green FCF, Amaranth, Pb(II), Cu(II) and Cd(II), respectively. The kinetic study indicated that the adsorption of metal ions and anionic dyes could be well fitted by the pseudo-second-order model and intraparticle diffusion model, suggesting intra-particle diffusion process as the rate-limiting step of the adsorption process. Thermodynamic parameters such as free energy, enthalpy and entropy of adsorption of anionic dyes and metal ions were also evaluated and the results showed that the adsorption was a spontaneous physical adsorption process. In addition, the adsorption process of heavy metal ions was exothermic; however, the adsorption process of anionic dyes was endothermic. This micro-nano structure PEI/PES nanofibrous membrane could be regenerated successfully in0.05M NaOH and0.05M EDTA aqueous solution used for removal of anionic dyes and heavy metal ions, respectively.
     4. The concentrations of the heavy metal ions solutions treated by two kinds of nanofibrous affinity membranes should be detected whether it meet the demand of environmental protection. Firstly, a fluorescence molecule, rhodamine hydrazone salicylaldehyde Schiff base, was synthesized as the sensing material and its chemical structure was obtained. It was found that the ion-recognition was based on the Cu+induced spirolactam ring "close-open" switch of the fluorescence molecule, with their advantages of significant absorption and fluorescence enhancement and the detection limit was1×10-6M. Secondly, the fluorescence molecule was blended with PES solution and electrospun to prepare a novel nanofibrous membrane sensor. It was found that this novel nanofirous membrane sensor showed high selectivity and sensitivity for Cu2+. In addition, the sensitivity of the fluorescence probe on the nanofibrous membrane sensor was much higher than that in the aqueous solution and the detection limit of the nanofibrous membrane sensor was1×10-8M. The complex mechanism between rhodamine hydrazone salicylaldehyde Schiff base and Cu2+was investigated by Job method, and it was found the nonlinear fitting of the titration curve assumed a1:1stoichiometry for the Cu-complex.
引文
[1]陈兆安.CA/PEI微孔亲和膜的制备及其性能与应用的研究,中国科学院大连化学物理研究所(博士学位论文)2004.
    [2]陈灏,陈欢林.膜色谱技术在生物大分子分离与纯化中的应用,膜科学与技术2001,21,66-72.
    [3]伍艳辉,王世昌.亲和膜分离技术研究进展,化工时刊1997,11,8-12.
    [4]严希康,生化分离技术,华东理工大学出版社,1996.
    [5]时钧,袁权,高从堦.膜技术手册,化学工业出版社,2001.
    [6]孙彦.生物分离工程,化学工业出版社,1998.
    [7]Suen S Y, Caracotsios M, Etzel M R, Sorption kinetics and axial diffusion in binary-solute affinity-membrane bioseparations, Chem. Eng. Sci.1993,48, 1801-1812.
    [8]Suen S Y, Etzel M R, A mathematical analysis of affinity membrane bioseparations, Chem. Eng. Sci.1992,47,1355-1364.
    [9]Suen S Y, Etzel M R, Sorption kinetics and breakthrough curves for pepsin and chymosin using pepstatin A affinity membranes, J.Chromatogr. A 1994,686, 179-192.
    [10]Suen S Y, An isotherm model describing concave-down scatchard curve for heterogeneous affinity adsorption, J. Chem. Technol. Biotechnol.1997,70, 278-286.
    [11]Gerstner J A, Hamilton R, Cramer S N, Membrane chromatographic systems for high-throughput protein separations, J.Chromatogr.1992,596,173-180.
    [12]Shiosaki A, Goto M, Hirose T, Frontal analysis of protein adsorption on a membrane adsorber, J. Chromatogr. A 1994,679,1-9.
    [13]Sarfert F T, Etzel M R, Mass transfer limitations in protein separations using ion-exchange membranes, J. Chromatogr. A 1997,764,3-20.
    [14]Tejeda A, Ortega J, Magana I, Guzman R, Optimal design of affinity membrane chromatographic columns, J. Chromatogr. A 1999,830,293-300.
    [15]鲍时翔,姜炜,冯小黎,苏志国,袁一.中空纤维亲和膜吸附蛋白质的动力 学模型,化工学报1996,47:199-206.
    [16]Roy I, Gupta M N, Smart polymeric materials:emerging biochemical applications, Chem. Biol.2003,10,1161-1171.
    [17]Mondal K, Mehta P, Gupta M N, Affinity precipitation of Aspergillus niger pectinase by microwave-treated alginate, Protein Expr. Purif.2004,33,104-109.
    [18]Chaudhary R, Jain S, Muralidhar K, Gupta M N, Purification of bubaline luteinizing hormone by gel filtration chromatography in the presence of blue dextran, Proc. Biochem.2006,41,562-566.
    [19]Mirzaei H, Regnier F, Structure specific chromatographic selection in targeted proteomics, J. Chromatogr. B 2005,817,23-24.
    [20]高洁,汤烈贵.纤维素科学,科学出版社,1996.
    [21]Rodemann K, Staude E, Synthesis and characterization of affinity membranes made from polysulfone, J. Membr. Sci.,1994,88,271-278.
    [22]Denizli A, Rad A Y, Piskin E, Protein A immobilized on polyhydroxyethylmethacrylate beads for affinity sorption of human immunoglobulin G, J. Chromatogr. B 1995,668,13-19.
    [23]Denizli A, Salih B, Arica M Y, Kesenci K, Hasirci V, Piskin E, Cibacron Blue F3GA-incorporated macroporous poly(2-hydroxyethyl methacrylate) affinity membranes for heavy metal removal, J. Chromatogr. B,1997,758,217-226.
    [24]Kasper C, Meringova L, Freitag R, Tennikova T, Fast isolation of protein receptors from streptococci G by means of macroporous affinity disks, J. Chromatogr. A 1998,798,65-72.
    [25]Serafica G C, Pimbley J, Belfort G, Protein fractionation using fast flow immobilized metal chelate affinity membranes, Biotechnol. Bioeng.1994,43, 21-36.
    [26]Petsch D, Deckwer W D, Anspach F B, Legallais C, Vijayalakshmi M, Endotoxin removal with poly(ethylenimine)-immobilized adsorbers:Sepharose 4B versus flat sheet and hollow fiber membranes, J. Chromatogr. B 1998,707,121-130.
    [27]Petsch D, Anspach F B, Endotoxin removal from protein solutions, J. Biotechnol. 2000,76,97-119.
    [28]Anspach F B, Endotoxin removal by affinity sorbents, J. Biochem. Biophys. Methods,2001,49,665-681.
    [29]Say R, Tuncel A, Denizli A, Adsorption of Ni2+ from aqueous solutions by novel polyethyleneimine-attached poly(p-chloromethylstyrene) beads, J. Appl. Polym.Sci.2002,83,2467-2473.
    [30]Zhang G, Song X, Ji S, Wang N, Liu Z, Self-assembly of inner skin hollow fiber polyelectrolyte multilayer membranes by a dynamic negative pressure layer-by-layer technique, J. Membr. Sci.2008,325,109-116.
    [31]Lebrun L, Vallee F, Alexandre B, Nguyen Q T, Preparation of chelating membranes to remove metal cations from aqueous solutions, Desalination 2007, 207,9-23.
    [32]Ruckenstein E, Zeng X F, Macroporous chitin affinity membranes for lysozyme separation, Biotechnol. Bioeng.1999,15,610-617.
    [33]甘宏宇,商振华,王俊德.亲和膜色谱技术研究进展,分析化学1999,27,111-116.
    [34]Roper D K, Lightfoot E N, Separation of biomolecules using adsorptive membranes, J. Chromatogr. A 1995,702,3-26.
    [35]商振华,郭为,于亿年,周良模.化学改性纤维素亲和膜色谱用作人血清白蛋白中杂质的去除,分析测试学报1995,14,28-32.
    [36]Hermanson G T, Mattson G R, Krohn R I, Preparation and use of immunoglobulin-binding affinity supports on Emphaze beads, J. Chromatogr. A 1995,60,1900-1903.
    [37]Zou H, Luo Q, Zhou D, Affinity membrane chromatography for the analysis and purification of proteins, J. Biochem. Biophys. Methods 2001,49,199-240.
    [38]王学松.膜分离技术及其应用,科学出版社,1994.
    [39]Klein E, Affinity membranes:a 10-year review, J. Membr. Sci.2000,179,1-27.
    [40]孙彦伟,王兵,酸胺化改性聚矾亲和膜的制备及其对对硝基苯酚的吸附性能.天津工业大学学报2010,29,14-18.
    [41]吴人洁.高聚物的表面与界面,科学出版社,1998.
    [42]Guo W, Shang Z, Yu Y, Zhou L, Membrane affinity chromatography of alkaline phosphatase, J. Chromatogr. A 1994,685,344-348.
    [43]Guo W, Shang Z, Yu Y, Zhou L, Sun Z Y, Ma L R, Chen M Y, Endotoxin removal by membrane affinity chromatography, Chin. Chem. Lett.1995,6, 919-922.
    [44]Guo W, Shang Z, Yu Y, Guan Y, Zhou L, Membrane affinity chromatography used for the separation of trypsin inhibitor, Biomed. Chromatogr.1992,6,95-98.
    [45]Guo W, Shang Z, Yu Y, Zhou L, Cellulose membrane used as stationary phase of membrane affinity chromatography, Chin. Chem. Lett.1994,5,869-872.
    [46]郭为,商振华,于亿年,周康,周良模.大孔纤维素亲和膜在生化制剂纯化中的应用,中国药学杂志1998,33,731-734.
    [47]Zhou D, Zou H. Wang H, Ni J, Zhang Q, Zhang Y, Alkaline treatment of the cellulose fiber affecting membrane column behavior for high-performance immunoaffinity chromatography, Biomed. Chromatogr.2000,14,511-515.
    [48]Klein E, Eichholz E, Theimer F, Yeager D H, Chitosan modified sulfonated poly(ethersulfone) as a support for affinity separations, J. Membr. Sci.1994,95, 199-204.
    [49]Zeng X F, Ruckenstein E, Chitosan modified sulfonated poly(ethersulfone) as a support for affinity separations, J. Membr. Sci.1996,117,271-278.
    [50]吴培熙,张留城.聚合物共混改性,中国轻工业出版社,1996.
    [51]张留成,刘玉龙.互穿网络聚合物,烃加工出版社,1990.
    [52]郭宝春,邱清华,贾德民.互穿聚合物网络(IPN)技术在功能高分子中的应用,功能材料2000,31,28-32.
    [53]Ruckenstein E, Zeng X F, Macroporous chitin affinity membranes for lysozyme separation, Biotechnol. Bioeng.1997,56,610-617.
    [54]Zhou F, Gong R, Manufacturing technologies of polymeric nanofibers and nanofiber yarns, Polym. Int.2008,57,837-845.
    [55]Li D, Xia Y, Electrospinning of nanofibers:Reinventing the wheel? Adv. Mater. 2004,16,1151-1170.
    [56]Ramakrishna S, Fujihara, K, Teo W E, Yong T, Ma Z, Ramaseshan R, Electrospun nanofibers:solving global issues, Mater. Today 2006,9,40-50.
    [57]Thavasi V, Singh G, Ramakrishna S, Electrospun nanofibers in energy and environmental applications, Energy Environ. Sci.2008,1,205-221.
    [58]Yoon K, Hsiao B S, Chu B, Functional nanofibers for environmental applications, J. Mater. Chem.2008,18,5326-5334.
    [59]Boi C, Membrane adsorbers as purification tools for monoclonal antibody purification, J. Chromatogr. B 2007,848,19-27.
    [60]Huse K, Bohme H, Scholz G, Purification of antibodies by affinity chromatography, J. Biochem. Biophys. Methods 2002,51,217-231.
    [61]Przybycien T M, Pujar N S, Steele L M, Alternative bioseparation operations:life beyond packed-bed chromatography, Curr. Opin. Biotechnol.2004,15,469-478.
    [62]Gopal R, Kaur S, Ma Z, Chan C, Ramakrishna S, Matsuura T, Electrospun nanofibrous filtration membrane, J. Membr. Sci.2006,281,581-586.
    [63]Yun K M, Hogan C J, Matsubayashi Y, Kawabe M, Iskandar F, Okuyama K, Nanoparticle filtration by electrospun polymer fibers, Chem. Eng. Sci.2007,62, 4751-4759.
    [64]Ahn Y C, Park S K, Kim G T, Hwang Y J, Lee C G, Shin H S, Lee J K, Development of high effciency nanofilters made of nanofibers, Current. Appl. Phys.2006,6,1030-1035.
    [65]Kim S J, Nam Y S, Rhee D M, Park H S, Park W H, Preparation and characterization of antimicrobial polycarbonate nanofibrous membrane, Eur. Polym.J.2007,43,3146-3152.
    [66]Ki C S, Gang E H, Um I C, Park Y H, Nanofibrous membrane of wool keratose/silk fibroin blend for heavy metal ion adsorption, J. Membr. Sci.2007, 302,20-26.
    [67]Bessbousse H, Rhlalou T, Verchere J F, Lebrun L, Removal of heavy metal ions from aqueous solutions by filtration with a novel complexing membrane containing poly(ethyleneimine) in a poly(vinyl alcohol) matrix, J. Membr. Sci. 2008,307,249-259.
    [68]Bessbousse H, Rhlalou T, Verchere J F, Lebrun L, Sorption and filtration of Hg(II) ions from aqueous solutions with a membrane containing poly(ethyleneimine) as a complexing polymer, J. Membr. Sci.2008,325,997-1006.
    [69]Haider S, Park S Y, Preparation of electrospun chitosan nanofibers and their applications to the adsorption of Cu(Ⅱ) and Pb(Ⅱ) ions from an aqueous solution, J. Membr. Sci.2009,328,90-96.
    [70]Ashoka G., Fereidoon S., Use of chitosan for the removal of metal ion contaminants and proteins from water, Food Chem.2007,104,989-996.
    [71]Juang R.S., Shiau R.C., Metal removal from aqueous solutions using chitosan-enhanced membrane filtration, J. Membr. Sci.2000,165,159-167.
    [72]Ngah W. S. W., Fatinathan S., Adsorption of Cu(Ⅱ) ions in aqueous solution using chitosan beads, chitosan-GLA beads and chitosan-alginate beads, Chem. Eng. J.2008,143,62-72.
    [73]Lee M.Y., Hong K.J., Kajiuchi T., Yang J.W., Synthesis of chitosan-based polymeric surfactants and their adsorption properties for heavy metals and fatty acids, Int. J. Biol. Macromol.2005,36,152-158.
    [74]Twu Y.K., Huang H.I., Chang S.Y., Wang S.L., Preparation and sorption activity of chitosan/cellulose blend beads, Carbohydr. Polym.2003,54,425-430.
    [75]Ngah W.S.W., Ghani S.A., Kamari, A., Adsorption behaviour of Fe(Ⅱ) and Fe(Ⅲ) ions in aqueous solution on chitosan and crosslinked chitosan beads Bioresour. Technol.2005,96,443-450.
    [76]Vieira R.S. Beppu M.M., Interaction of natural and crosslinked chitosan membranes with Hg(Ⅱ) ions, Colloids Surf. A 2006,279,196-207.
    [77]Vieira R.S., Beppu M.M., Dynamic and static adsorption and desorption of Hg(Ⅱ) ions on chitosan membranes and spheres, Water Res.2006,40,1726-1734.
    [78]Zhou L., Liu J., Liu Z., Adsorption of platinum(Ⅳ) and palladium(Ⅱ) from aqueous solution by thioureamodified chitosan microspheres, J. Hazard. Mater. 2009,172,439-446.
    [79]Chen A.H., Liu S.C., Chen C.Y., Chen C.Y., Comparative adsorption of Cu(Ⅱ), Zn(Ⅱ), and Pb(Ⅱ) ions in aqueous solution on the crosslinked chitosan with epichlorohydrin, J. Hazard. Mater.2008,154,184-191.
    [80]Desai K., Kit K., Li J., Davidson P.M., Zivanovic S., Meyer H., Nanofibrous chitosan non-wovens for filtration applications, Polymer 2009,50,3661-3669.
    [81]Desai K., Kit K., Li J., Zivanovic S., Morphological and surface properties of electrospun chitosan nanofibers, Biomacromolecules 2008,9,1000-1006.
    [82]An H, Shin C, Chase G G, Ion exchanger using electrospun polystyrene nanofibers, J. Membr. Sci.2006,283,84-87.
    [83]Kaur S, Kotaki M, Ma Z, Gopal R, Ramakrishna S, Ng S C, Oligosaccharide functionalized nanofibrous membrane, Int. J. Nanosci.2006,5,1-11.
    [84]Zhang X, Du A J, Lee P, Sun D D, Leckie J O, TiO2 nanowire membrane for concurrent filtration and photocatalytic oxidation of humic acid in water, J. Membr. Sci.2008,313,44-51.
    [85]Yoon K, Kim K, Wang X, Fang D, Hsiao B S, Chu B, High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating, Polymer 2006,47,2434-2441.
    [86]Xu R, Jia M, Zhang Y, Li F, Sorption of malachite green on vinyl-modified mesoporous poly(acrylic acid)/SiO2 composite nanofiber membranes, Micropor. Mesopor. Mater.2012,149,111-118.
    [87]Xiao S, Shen M, Guo R, Huang Q, Wang S, Shi X, Fabrication of multiwalled carbon nanotube-reinforced electrospun polymer nanofibers containing zero-valent iron nanoparticles for environmental applications, J. Mater. Chem. 2010,20,5700-5708.
    [88]Ma Z, Kotaki M, Ramakrishna S, Electrospun cellulose nanofiber as affinity membrane, J. Membr. Sci.2005,265,115-123.
    [89]Ma Z, Kotaki M, Ramakrishna S, Surface modified nonwoven polysulphone (PSU) fiber mesh by electrospinning:A novel affinity membrane, J. Membr. Sci. 2006,272,179-187.
    [90]Chen Z, Deng M, Chen Y, He G, Wu Ming, Wang J, Preparation and performance of cellulose acetate/polyethyleneimine blend microfiltration membranes and their applications, J. Membr. Sci.2004,235,73-86.
    [91]Yang L, Hsiao W W, Chen P, Chitosan-cellulose composite membrane for affinity purification of biopolymers and immunoadsorption, J. Membr. Sci.2002, 197,185-197.
    [92]Boi C, Facchini R, Sorci M, Sarti G C, Characterization of affinity membranes for IgG separation, Desalination 2006,199,544-546.
    [93]Newcombe A R, Cresswell C, Davies S, Watson K, Harris G, Donovan K 0, Francis R, Optimised affinity purification of polyclonal antibodies from hyper immunised ovine serum using a synthetic Protein A adsorbent, MAbsorbent(?) A2P, J. Chromatogr. B 2005,814,209-215.
    [94]Wang X, Drew C, Lee S H, Senecal K J, Kumar J, Samuelson L A, Nano Lett. 2002,2,1273-1275.
    [95]Lee S H, Kumar J, Tripathy S K, Thin Film Optical Sensors Employing Polyelectrolyte Assembly, Langmuir 2000,16,10482-10489.
    [96]Rahman M A, Won M S, Kwon N H, Yoon J H, Park D S, Shim Y B, Water sensor for a nonaqueous solvent with poly(1,5-diaminonaphthalene) nanofibers, Anal. Chem.2008,80,5307-5311.
    [97]Li Z, Zhang H, Zheng W, Wang W, Huang H, Wang C, MacDiarmid A G, Wei Y, Highly sensitive and stable humidity nanosensors based on LiCl doped TiO2 electrospun nanofibers, J. Am. Chem. Soc.2008,130,5036-5037.
    [98]Kuo C C, Wang C T, Chen W C, Highly-Aligned Electrospun Luminescent Nanofibers Prepared from Polyfluorene/PMMA Blends:Fabrication,Morphology, Photophysical Properties and Sensory Applications, Macromol. Mater. Eng.2008, 293,999-1008.
    [99]Bai H, Zhao L, Lu C, Li C, Shi G, Composite nanofibers of conducting polymers and hydrophobic insulating polymers:Preparation and sensing applications, Polymer 2009,50,3292-3301.
    [100]Ding B. Kim J, Miyazaki Y, Shiratori S, Electrospun nanofibrous membranes coated quartz crystal microbalance as gas sensor for NH3 detection, Sens. Actuators B 2004,101,373-380.
    [101]Aussawasathien D, Dong J H, Dai L, Electrospun polymer nanofiber sensors, Synthetic Met.2005,154,37-40.
    [102]Ozkan T, Naraghi M, Chasiotis I, Mechanical properties of vapor grown carbon fanofibers, Carbon 2009,48,239-244.
    [103]Ahn S, Lee H, Kim B, Tan L, Baek J, Epoxy/amine-functionalized short-length vapor-grown carbon nanofiber composites, J. Polym. Sci. A 2008,46,7473-7482.
    [104]Zhou F, Gong R, Manufacturing technologies of polymeric nanofibres and nanofibre yarns, Polym. Int.2008,57,837-845.
    [105]Pike R D. Superfine microfiber nonwoven web. US Patent 5935883,1999.
    [106]Martin C H, Nanomaterials:a membrane-based synthetic approach, Science 1994,266,1961-1966.
    [107]Hulteen J C, Martin C R, A general template-based method for the preparation of nanomaterials, J. Mater. Chem.1997,7,1075-1087.
    [108]Ma B X, Zhang R Y, Synthetic nano-scale fibrous extracellular matrix, J. Biomed. Mater. Res.1999,46,60-72.
    [109]Kimizuka N. Self-assembly of supramolecular nanofibers, Adv. Polym. Sci. 2008,219,1-26.
    [110]Vauthey S, Santoso S, Gong H, Watson N, Zhang S, Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles, Proceed. Nation. Acad. Sci. USA 2002,99,5355-5360.
    [111]Horii A, Wang X, Zhang S, Designer self-assembling peptide scaffolds for tissue engineering and regenerative medicine. Nanotechnol. Tissue Eng.2008, 283-292.
    [112]Eichhorn, S J, Dufresne A, Aranguren M, Marcovich N E, Capadona J R, Rowan S J, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito A N, Mangalam A, Simonsen J, Benight A S, Bismarck A, Berglund L A, Peijs T, Review:current international research into cellulose nanofibres and nanocomposites. J. Mater. Sci.2010,45, 1-33.
    [113]Sen R, Zhao B, Perea D, Itkis M E, Hu H, Love J, Bekyarova E, Haddon R C, Preparation of Single-Walled carbon nanotube reinforced polystyrene and polyurethane nanofibers and membranes by electrospinning, Nano Lett.2004,4, 459-464.
    [114]Yarin A L, Koombhongse S, Reneker D H, Bending instability in electrospinning of nanofibers. J. Appl. Phys.2001,89,3018-3026.
    [115]Formhals A, US Patent 2187306,1940
    [116]Khil M S, Shanta R B, Kim H Y, Kim S Z, Lee K H, Novel fabricated matrix via electrospinning for tissue engineering, J Biomed. Mater. Res. B 2005,72, 117-124.
    [117]Baumgarten P K, Electrostatic spinning of acrylic microfibers, J. Colliod Interf. Sci.1971,36,71-77.
    [118]Huang C, Chen S, Lai C, Reneker D H, Qiu H, Ye Y, and Hou H, Electrospun polymer nanofibres with small diameters, Nanotechnology 2006,17,1558-1563.
    [119]Reneker D H, Yarin A L, Electrospinning jets and polymer nanofibers, Polymer 2008,49,2387-2425.
    [120]Zarkoob S, Eby R K, Reneker D H, Hudson S D, Ertley D, Adams W W, Structure and morphology of electrospun silk nanofibers, Polymer 2004,45, 3973-3977.
    [121]Zong X, Kim K, Fang D, Ran S, Hsiao B S, Chu B, Structure and process relationship of electrospun bioabsorbable nanofiber membranes, Polymer 2002, 43,4403-4412.
    [122]Yang Q B, Li Z, Hong Y, Zhao Y, Qiu S, Wang C, Y Wei, Influence of solvents on the formation of ultrathin uniform poly(vinyl pyrrolidone) nanofibers with electrospinning, J. Polym. Sci. B 2004,42,3721-3726.
    [123]Casper C L, Stephens J S, Tassi N G, Chase D B, Rabolt J F, Controlling Surface Morphology of Electrospun Polystyrene Fibers:Effect of Humidity and Molecular Weight in the Electrospinning Process, Macromolecules 2004,37, 573-578.
    [124]唐宁,柴立元,闵小波.含汞废水处理技术的研究进展,工业水处理2004,24,5-9.
    [125]苏海佳,贺小进,谭天伟.球形壳聚糖树脂对含重金属离子废水的吸附性能研究,北京大学学报2003,30,19-22.
    [126]尹爱君.PAS在冶炼废水处理中应用,湖南冶金,1995,3,25-27.
    [127]Fu F, Wang Q, Removal of heavy metal ions from waste waters:A review, J. Environ. Mange.2011,92,407-418.
    [128]Kannan, N., Sundaram M.M., Kinetics and mechanism of removal of methylene blue by adsorption on various carbons-a comparative study, Dyes Pigment.2001, 51,25-40.
    [129]Foo K.Y., Hameed B.H., Microwave assisted preparation of activated carbon from pomelo skin for the removal of anionic and cationic dyes, Chem. Eng. J. 2011,173,385-390.
    [1]Vijayaraghavan K, Jegan J R, Palanivelu K, Velan M, Copper removal from aqueous solution by marine green alga Ulva reticulata, Electron. J. Biotechnol. 2004,7,61-71.
    [2]Chauhan G S, Chauhan K, Chauhan S, Kumar S, Kumari A, Functionalization of pine needles by carboxymethylation and network formation for use as supports in the adsorption of Cr6+, Carbohydr. Polym.2007,70,415-421.
    [3]Fong H, Chun I, Reneker D H, Beaded nanofibers formed during electrospinning, Polymer 1999,40,4585-4592.
    [4]Deitzel J M, Kleinmeyer J D, Hirvonen J K, Beck-Tan N C, Controlled deposition of electrospun polyethylene oxide) fibers, Polymer 2001,42,8163-8170.
    [5]Ki C S, Baek D H, Gang K D, Lee K H, Um I C, Park Y H, Characterization of gelatin nanofiber prepared from gelatin-formic acid solution, Polymer 2005,46, 5094-5102.
    [6]Teo W E, Ramakrishna S, A review on electrospinning design and nanofibre assemblies, Nanotechnology 2006,17,89-106.
    [7]Reneker D H, Chun I, Nanometer diameter fibers of polymer, produced by electrospinning, Nanotechnology 1996,7,216-223.
    [8]Qdais H A, Moussa H, Removal of heavy metals from wastewater by membrane processes:a comparative study, Desalination 2004,164,105-110.
    [9]Haider S, Park S Y, Preparation of electrospun chitosan nanofibers and their applications to the adsorption of Cu(II) and Pb(II) ions from an aqueous solution, J. Membr. Sci.2009,328,90-96.
    [10]Zhang Y Z, Venugopal J, Huang Z M, Lim C T, Ramakrishna S, Crosslinking of the electrospun gelatin nanofibers, Polymer 2006,47,2911-2917.
    [11]Ma Z, Kotaki M, Ramakrishna S, Electrospun cellulose nanofiber as affinity membrane, J. Membr. Sci.2005,265,115-123.
    [12]Saeed K, Haider S, Oh T J, Park S Y, Preparation of amidoxime-modified polyacrylonitrile (PAN-oxime) nanofibers and their applications to metal ions adsorption, J. Membr. Sci.2008,322,400-405.
    [13]Ki C S, Gang E H, Um I C, Park Y H, Nanofibrous membrane of wool keratose/silk fibroin blend for heavy metal ion adsorption, J. Membr. Sci.2007, 302,20-26.
    [14]Babacan S, Pivarnik P, Letcher S, Rand A, Evaluation of antibody immobilization methods for piezoelectric biosensor application, Biosens. Bioelectron.2000,15, 615-621.
    [15]Bunde R, Jarvi E, Rosentreter J, A piezoelectric method for monitoring formaldehyde induced crosslink formation between poly-lysine and poly-deoxyguanosine, Talanta 2000,51,159-171.
    [16]Kikuchi M, Shiratori S, Quartz crystal microbalance (QCM) sensor for CH3SH gas by using polyelectrolyte-coated sol-gel film, Sens. Actuators B 2005,108, 564-571.
    [17]Wang X, Ding B, Sun M, Yu J, Sun G, Nanofibrous polyethyleneimine membranes as sensitive coatings for quartz crystal microbalance-based formaldehyde sensors, Sens. Actuators B 2010,144,11-17.
    [18]Duru P E, Bektas S, Gene O, Parir S, Denizli A, Adsorption of Heavy-Metal Ions on poly(ethylene imine)-immobilized poly(methyl methacrylate) microspheres, J. Appli. Polym. Sci.2001,81,197-205.
    [19]Lebrun L, Vallee F, Alexandre B, Nguyen Q T, Preparation of chelating membranes to remove metal cations from aqueous solutions, Desalination 2007, 207,9-23.
    [20]Rivas B L, Pereira E D, Moreno-Villoslada I, Water-soluble polymer-metal ion interactions, Prog. Polym. Sci.2003,28,173-208.
    [21]Bessbousse H, Rhlaloub T, Verchere J F, Lebruna L, Sorption and filtration of Hg(II) ions from aqueous solutions with a membrane containing poly(ethyleneimine) as a complexing polymer, J. Membr. Sci.2008,325, 997-1006.
    [22]Bessbousse H, Rhlaloub T, Verchere J F, Lebruna L, Removal of heavy metal ions from aqueous solutions by filtration with a novel complexing membrane containing poly(ethyleneimine) in a poly(vinyl alcohol) matrix, J. Membr. Sci. 2008,307,249-259.
    [23]Ghizdavu L, Cristea C, Silberg I A, Balan C and David L, Coordination compounds of copper(II) with new 1,4-benzothiazino-[2,3-β]phenothiazine derivatives, Synth. React. Inorg. Met-Org. Chem.2008,38,750-757.
    [24]Chen S Y, Shen W, Yu F, Wang H P, Kinetic and thermodynamic studies of adsorption of Cu2+ and Pb2+ onto amidoximated bacterial cellulose, Polym. Bull. 2009,63,283-297.
    [25]Bester-Rogac M, Electrical conductivity of concentrated aqueous solutions of divalent metal sulfates, J. Chem. Eng. Data 2008,53,1355-1359.
    [26]Akilan C, Hefter G, Rohman N, Buchner R, Ion association and hydration in aqueous solutions of copper(II) sulfate from 5 to 65℃ by dielectric spectroscopy, J. Phys. Chem. B 2006,110,14961-14970.
    [27]Chen A H, Liu S C, Chen C Y, Comparative adsorption of Cu(II), Zn(II), and Pb(II) ions in aqueous solution on the crosslinked chitosan with epichlorohydrin, J. Hazard. Mater.2008,154,184-191.
    [28]Qin Q, Wang Q, Fu D, Ma J, An efficient approach for Pb(Ⅱ) and Cd(Ⅱ) removal using manganese dioxide formed in situ, Chem. Eng. J.2001,172,68-74.
    [29]Bhattacharyya K G, Gupta S S, Adsorptive accumulation of Cd(II), Co(II), Cu(II), Pb(II), and Ni(II) from water on montmorillonite:influence of acid activation, J. Colloid Interf. Sci.2007,310,411-424.
    [30]El-Sikaily A, Nemr A E, Khaled A, Abdelwehab O, Removal of toxic chromium from wastewater using green alga Ulva lactuca and its activated carbon, J. Hazard. Mater.2007,148,216-228.
    [31]Chen S Y, Zou Y, Yan Z Y, Shen W, Shi S K, Zhang X, Wang H P, Carboxymethylated-bacterial cellulose for copper and lead ion removal, J. Hazard. Mater.2009,161,1355-1359.
    [32]Shukla S R, Pai R S, Shendarkar A D, Adsorption of Ni(Ⅱ), Zn(Ⅱ) and Fe(Ⅱ) on modified coir fibres, Sep. Purif. Technol.2006,47,141-147.
    [33]Liu C X, Bai R B, Adsorptive removal of copper ions with highly porous chitosan/cellulose acetate blends hollow fiber membranes, J. Membr. Sci.2006, 284,313-322.
    [34]Shen W, Chen S Y, Shi S K, Li X, Zhang X, Hu W L, Wang H P, Adsorption of Cu(Ⅱ) and Pb(Ⅱ) onto diethylenetriamine-bacterial cellulose, Carbohydr. Polym. 2009,75,110-114.
    [1]Gao X F, Jiang L, Water-repellent legs of waterstriders, Nature 2004,432,36.
    [2]Valentin R, Molvinger K, Quignard F and Brunel D, Supercritical CO2 dried chitosan:an efficient intrinsic heterogeneous catalyst in fine chemistry, New J. Chem.2003,27,1690-1692.
    [3]Ruiz J, Pedros M, Tallon J M, Dumon M., Micro and nano cellular amorphous polymers (PMMA, PS) in supercritical CO2 assisted by nanostructured CO2-philic block copolymers-One step foaming process, J. Supercrit. Fluids 2011,58,168-176.
    [4]Prathap M, Srivastava R, Morphological controlled synthesis of micro/nano-polyaniline, J. Polym. Res.2011,18,2455-2467.
    [5]Chauhan R S, Agarwal D C, Kumar S, Khan S A, Kabiraj D, Sulania I, Avasthi D K, Bolse W, Nano/micro-structuring of oxide thin film under SHI irradiation, Vacuum 2011,86,96-100.
    [6]Jensen B, Smith A, Fejerskov B, Postma A, Senn P, Reimhult E, Pla-Roca M, Isa L, Sutherland D S, Stadler B and Zelikin A N, Poly(vinyl alcohol) physical hydrogels:noncryogenic stabilization allows nano-and microscale materials design, Langmuir 2011,27,10216-10223.
    [7]Numthuam S, Kakegawa T, Anada T, Khademhosseini A, Suzuki H, Fukuda J, Synergistic effects of micro/nano modifications on electrodes for microfluidic electrochemical ELISA, Sens. Actuators B 2011,156,637-644.
    [8]Zhang W, Yu Z, Chen Z, Li M, Preparation of super-hydrophobic Cu/Ni coating with micro-nano hierarchical structure, Mater. Lett.2012,67,327-330.
    [9]Zhao Y, Watanabe K and Hashimoto K, Hierarchical micro/nano structures of carbon composites as anodes for microbial fuel cells, Phys. Chem. Chem. Phys. 2011,13,15016-15021.
    [10]Yu Q Z, Dai Z W, Lan P, Fabrication of high conductivity dual multi-porous poly (1-lactic acid)/polypyrrole composite micro/nanofiber film, Mater. Sci. Eng. B 2011,176,913-920.
    [11]An Z and He J, Direct electronic communication at bio-interfaces assisted by layered-metal-hydroxide slab arrays with controlled nano-micro structures, Chem. Commun.2011,47,11207-11209.
    [12]Park J, Lim H, Kim W, Ko J S, Design and fabrication of a superhydrophobic glass surface with micro-network of nanopillars, J. Colloid Interf. Sci.2011,360, 272-279.
    [13]Reneker D H, Chun I, Nanometer diameter fibers of polymer, produced by electrospinning, Nanotechnology 1996,7,216-223.
    [14]Qdais H A, Moussa H, Removal of heavy metals from wastewater by membrane processes:a comparative study, Desalination 2004,164,105-110.
    [15]Haider S, Park S Y, Preparation of electrospun chitosan nanofibers and their applications to the adsorption of Cu(Ⅱ) and Pb(Ⅱ) ions from an aqueous solution, J. Membr. Sci.2009,328,90-96.
    [16]Ashoka G, Fereidoon S, Use of chitosan for the removal of metal ion contaminants and proteins from water, Food Chem.2007,104,989-996.
    [17]Juang R S, Shiau R C, Metal removal from aqueous solutions using chitosan-enhanced membrane filtration, J. Membr. Sci.2000,165,159-167.
    [18]Ngah W, Fatinathan S, Adsorption of Cu(Ⅱ) ions in aqueous solution using chitosan beads, chitosan-GLA beads and chitosan-alginate beads, Chem. Eng. J. 2008,143,62-72.
    [19]Lee M Y, Hong K J, Kajiuchi T, Yang J W, Synthesis of chitosan-based polymeric surfactants and their adsorption properties for heavy metals and fatty acids, Int. J. Biol. Macromol.2005,36,152-158.
    [20]Twu Y K, Huang H I, Chang S Y, Wang S L, Preparation and sorption activity of chitosan/cellulose blend beads, Carbohydr. Polym.2003,54,425-430.
    [21]Ngah W, Ghani S A, Kamari A, Adsorption behaviour of Fe(Ⅱ) and Fe(Ⅲ) ions in aqueous solution on chitosan and crosslinked chitosan beads Bioresour. Technol. 2005,96,443-450.
    [22]Vieira R S, Beppu M M, Interaction of natural and crosslinked chitosan membranes with Hg(II) ions, Colloids Surf. A 2006,279,196-207.
    [23]Vieira R S, Beppu M M, Dynamic and static adsorption and desorption of Hg(II) ions on chitosan membranes and spheres, Water Res.2006,40,1726-1734.
    [24]Zhou L, Liu J, Liu Z, Adsorption of platinum(IV) and palladium(II) from aqueous solution by thioureamodified chitosan microspheres, J. Hazard. Mater.2009,172, 439-446.
    [25]Chen A H, Liu S C, Chen C Y, Chen CY, Comparative adsorption of Cu(II), Zn(Ⅱ), and Pb(Ⅱ) ions in aqueous solution on the crosslinked chitosan with epichlorohydrin, J. Hazard. Mater.2008,154,184-191.
    [26]Desai K, Kit K, Li J, Davidson P M, Zivanovic S, Meyer H, Nanofibrous chitosan non-wovens for filtration applications, Polymer 2009,50,3661-3669.
    [27]Desai K, Kit K, Li J, Zivanovic S, Morphological and surface properties of electrospun chitosan nanofibers, Biomacromolecules 2008,9,1000-1006.
    [28]Kumar V, Talreja N, Deva D, Sankararamakrishnan N, Sharma A, Verma N, Development of bi-metal doped micro-and nano multi-functional polymeric adsorbents for the removal of fluoride and arsenic(V) from wastewater, Desalination 2011,282,27-38.
    [29]Jang M, Chen W, Cannon F S, Preloading hydrous ferric oxide into granular activated carbon for arsenic removal, Environ. Sci. Technol.2008,42, 3369-3375.
    [30]Lounici H, Belhocine D, Grib H, Drouiche M, Pauss A, Mameri N, Fluoride removal with electro-activated alumina, Desalination 2004,161,287-291.
    [31]Wang X, Si Y, Wang J, Ding B, Yu J, Al-Deyab S S, A facile and highly sensitive colorimetric sensor for the detection of formaldehyde based on electro-spinning/netting nano-fiber/nets, Sens. Actuators B 2012,153,186-193.
    [32]Liang R, Cao H, Qian D, MoO3 nanowires as electrochemical pseudocapacitor materials, Chem. Commun.2011,47,10305-10307.
    [33]Wang X, Min M, Liu Z, Yang Y, Zhou Z, Zhu M, Chen Y, Hsiao B S, poly(ethyleneimine) nanofibrous affinity membrane fabricated via one step wet-electrospinning from poly(vinyl alcohol)-doped poly(ethyleneimine) solution system and its application, J. Membr. Sci.2011,379,191-199.
    [34]Hong J H, Park M C, Hong S K, Kim B S, Preparation of an Anion-Exchange Membrane by the Amination of Chlorinated Polypropylene and Polyethyleneimine at a Low Temperature and Its Ion-Exchange Property, J. Appl. Polym. Sci.2009,112,830-835.
    [35]Saxena N, Prabhavathy C, De S, DasGupta S, Flux enhancement by argon-oxygen plasma treatment of polyethersulfone membranes, Sep. Purif. Technol.2009,70,160-165.
    [36]Hong J H, Park M C, Hong S K, Kim B S, Preparation of an Anion-Exchange membrane by the amination of chlorinated polypropylene and polyethyleneimine at a low temperature and its Ion-Exchange property, J. Appl. Polym. Sci.2009, 112,830-835.
    [37]Wu K H, Yu P Y, Hsieh Y J, Yang C C, Wang G P, Preparation and characterization of silver-modified poly(vinyl alcohol)/polyethyleneimine hybrids as a chemical and biological protective material, Polym. Degrad. Stab.2009,94, 2170-2177.
    [38]Cui W, Kerres J, Eigenberger G, Development and characterization of ion-exchange polymer blend membranes, Sep. Purif. Technol.1998,14,145-154.
    [39]Saleem A, Frormann L, Iqbal A, High performance thermoplastic composites: study on the mechanical, thermal, and electrical resistivity properties of carbon Fiber-Reinforced polyetheretherketone and polyethersulphone, Polym. Compos. 2007,28,785-796.
    [1]Cri G, Non-conventional low-cost adsorbents for dye removal:A review, Bioresour. Technol.2006,97,1061-1085.
    [2]Chiou C S, Shih J S, Bifunctional cryptand modifier for capillary electrophoresis in separation of inorganic/organic anions and inorganic cations, Analyst 1996,121, 1107-1110.
    [3]Kannan, N, Sundaram M M, Kinetics and mechanism of removal of methylene blue by adsorption on various carbons-a comparative study, Dyes Pigment.2001,51, 25-40.
    [4]Foo K Y, Hameed B H, Microwave assisted preparation of activated carbon from pomelo skin for the removal of anionic and cationic dyes, Chem. Eng. J.2011,173, 385-390.
    [5]Li N, Bai R, Liu C, Enhanced and Selective Adsorption of mercury ions on chitosan beads grafted with polyacrylamide via surface-initiated atom transfer radical polymerization, Langmuir 2005,21,11780-11787.
    [6]Horzum N, Boyaci E, Eroglu A E, Shahwan T, Demir M M, Sorption efficiency of chitosan nanofibers toward metal ions at low concentrations, Biomacromolecules 2010,11,3301-3308.
    [7]Li X, Li Y, Ye Z, Preparation of macroporous bead adsorbents based on poly(vinylalcohol)/chitosan and their adsorption properties for heavy metals from aqueous solution, Chem. Eng. J.2011,178,60-68.
    [8]Chen A, Chen S, Biosorption of azo dyes from aqueous solution by glutaraldehyde-crosslinked chitosans, J. Hazard. Mater.2009,172,1111-1121.
    [9]Huang X Y, Bin J P, Bu H T, Jiang G B, Zeng M H, Removal of anionic dye eosin Y from aqueous solution using ethylenediamine modified chitosan, Carbohydr. Polym. 2011,84,1350-1356.
    [10]Reneker D H, Chun I, Nanometer diameter fibers of polymer, produced by electrospinning, Nanotechnology 1996,7,216-223.
    [11]Qdais H A, Moussa H, Removal of heavy metals from wastewater by membrane processes:a comparative study, Desalination 2004,164,105-110.
    [12]Haider S, Park S Y, Preparation of electrospun chitosan nanofibers and their applications to the adsorption of Cu(Ⅱ) and Pb(Ⅱ) ions from an aqueous solution, J. Membr. Sci.2009,328,90-96.
    [13]Ki C S, Gang E H, Um I C, Park Y H, Nanofibrous membrane of wool keratose/silk fibroin blend for heavy metal ion adsorption, J. Membr. Sci.2007,302,20-26.
    [14]Xu R, Jia M, Zhang Y, Li F, Sorption of malachite green on vinyl-modified mesoporous poly(acrylic acid)/SiO2 composite nanofiber membranes, Micropor. Mesopor. Mater.2012,149,111-118.
    [15]Xiao S, Shen M, Guo R, Huang Q, Wang S and Shi X, Fabrication of multiwalled carbon nanotube-reinforced electrospun polymer nanofibers containing zero-valent iron nanoparticles for environmental applications, J. Mater. Chem.2010,20, 5700-5708.
    [16]Chen S Y, Zou Y, Yan Z Y, Shen W, Shi S K, Zhang X, Wang H P, Carboxymethylated-bacterial cellulose for copper and lead ion removal, J. Hazard. Mater.2009,161,1355-1359.
    [17]El-Sikaily A, Nemr A E, Khaled A, Abdelwehab O, Removal of toxic chromium from wastewater using green alga ulva lactuca and its activated carbon, J. Hazard. Mater.2007,148,216-228.
    [18]Shukla S R, Pai R S, Shendarkar A D, Adsorption of Ni(II), Zn(II) and Fe(II) on modified coir fibres, Sep. Purif. Technol.2006,47,141-147.
    [19]Mellah A, Chegrouche S, Barkat M, The removal of uranium(VI) from aqueous solutions onto activated carbon:kinetic and thermodynamic investigations, J. Colloid Interf. Sci.2006,296,434-441.
    [20]C. Cheng, L. Ma, J. Ren, L. Li, G. Zhang, Q. Yang, C. Zhao, Preparation of polyethersulfone-modified sepiolite hybrid particles for the removal of environmental toxins, Chem. Eng. J.2011,171,1132-1142.
    [21]F.C. Wu, R.L. Tseng, R.S. Juang, Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics, Chem. Eng. J.2009,153,1-8.
    [22]A. Rodriguez, G. Ovejero, M. Mestanza, J. Garcia, Removal of dyes from wastewaters by adsorption on sepiolite and pansil, Ind. Eng. Chem. Res.2010,49, 3207-3216.
    [23]Ho Y S, McKay G, Sorption of dye from aqueous solution by peat, Chem. Eng. J. 1998,70,115-124.
    [24]Mohammadi N, Khani H, Gupta V K, Amereh E, Agarwal S. Adsorption process of methyl orange dye onto mesoporous carbon material-kinetic and thermodynamic studies, J. Colloid Interf. Sci.2011,362,457-462.
    [25]Liu C C, Wang M K, Li Y S, Removal of nickel from aqueous solution using wine processing waste sludge, Ind. Eng. Chem. Res.2005,44,1438-1445.
    [26]Meng J, Yuan J, Kang Y, Zhang Y, Du Q, Surface glycosylation of polysulfone membrane towards a novel complexing membrane for boron removal, J. Colloid Interf. Sci.368 (2012) 197-207.
    [27]Yan H, Dai J, Yang Z, Yang H, Cheng R, Enhanced and selective adsorption of copper(II) ions on surface carboxymethylated chitosan hydrogel beads, Chem. Eng. J.174(2011)586-594.
    [28]C. Shen, Y. Wen, X. Kang, W. Liu, H2O2-induced surface modification:A facile, effective and environmentally friendly pretreatment of chitosan for dyes removal, Chem. Eng. J.166 (2011) 474-482.
    [29]Chen Q, Yin D, Zhu S, Hua X, Adsorption of cadmium(II) on humic acid coated titanium dioxide, J. Colloid Interf. Sci.367 (2012) 241-248.
    [30]Li X G, Feng H, Huang M, Redox sorption and recovery of silver ions as silver nanocrystals on poly(aniline-co-5-sulfo-2-anisidine) nanosorbents, Chem. Eur. J. 2010,16,10113-10123.
    [31]Lu Q F, Li X G, Huang M R, Synthesis and heavy-metal-ion sorption of pure sulfophenylenediamine copolymer nanoparticles with intrinsic conductivity and stability, Chem. Eur. J.2007,13,6009-6018.
    [32]Lin Y F, Chen H W, Chien P S, Chiou C S, Liu C C, Application of bifunctional magnetic adsorbent to adsorb metal cations and anionic dyes in aqueous solution, J. Hazard. Mater.2011,185,1124-1130.
    [33]Tanthapanichakoon W, Ariyadejwanich P, Japthong P, Nakagawa K, Mukai S R, Tamon H, Adsorption-desorption characteristics of phenol and reactive dyes from aqueous solution on mesoporous activated carbon prepared from waste tires, Water Res.2005,39,1347-1353.
    [34]Purkait M K, DasGupta S, De S, Adsorption of eosin dye on activated carbon and its surfactant based desorption, J. Environ. Manage.2005,76,135-142.
    [1]High B, Bruce D, Richter M M, Determining copper ions in water using eletrochemiluminescence, Anal. Chim.Acta 2001,449,17-22.
    [2]Tapia L, Suazo M, Hodar C, Cambiazo V, Gonzalez M, Copper exposure modifies the content and distribution of trace metals in mammalian cultured cells, Biometals 2003,16,169-174.
    [3]Sigel H, Metal ions in biological systems,1981, Vol 12:properties of copper.
    [4]Waggoner D J, Bartnikas T B, Gitlin J D, The role of copper in neurodegenerative disease, Neurobiol. Dis.1999,6,221-230.
    [5]http://www.envir.gov.cn/law/standard/6.htm
    [6]Kovacs J, Rodler T, Mokhir A, Chemodosimeter for Cu(Ⅱ) detection based on cyclic peptide nucleic acids, Angew. Chem. Int. Ed.2005,45,7815-7817.
    [7]Kovacs J, Mokhir A, Catalytic hydrolysis of esters of 2-hydroxypyridine derivatives for Cu2+ detection, Inorg. Chem.2008,47,1880-1882.
    [8]Wu Q, Anslyn E V, Catalytic signal amplification using a heck reaction:An example in the fluorescence sensing of Cu(Ⅱ), J. Am. Chem. Soc.2004,126, 14682-14683.
    [9]Graf N, Goeritz M, Kraemer R, A metal-ion-releasing probe for DNA detection by catalytic signal amplification, Angew. Chem.2006,45,4013-4015.
    [10]Mokhir A, Kraemer R, Double discrimination by binding and reactivity in fluorescent metal ion detection, Chem. Commun.2005,2244-2246.
    [11]Qi X, Jun E J, Xu L, Kim S J, Yoon Y J, Yoon J, New BODIPY derivatives as OFF-ON fluorescent chemosensor and fluorescent chemodosimeter for Cu2+: cooperative selectivity enhancement toward Cu2+, J. Org. Chem.2006,71, 2881-2884.
    [12]Xiang Y, Tong A, Ratiometric and selective fluorescent chemodosimeter for Cu(Ⅱ) by Cu(Ⅱ)-induced oxidation, Luminescence 2008,23,28-31.
    [13]Xiang Y, Li N, Chen X, Tong A, Highly sensitive and selective optical chemosensor for determination of Cu2+in aqueous solution, Talanta 2008,74, 1148-1153.
    [14]Kim Y R, Kim H J, Kim J S, Kim H, Rhodamine-based "Turn-On" fluorescent chemodosimeter for Cu(Ⅱ) on ultrathin platinum films as molecular switches, Adv. Mater.2008,20,4428-4432.
    [15]Francioso L, Russo M, Taurino A M, Siciliano P, Micrometric patterning process of sol-gel SnO2, In2O3 and WO3 thin film for gas sensing applications:towards silicon technology integration, Sens. Actuators B 2006,119,159-166.
    [16]Carturan S, Tonezzera M, Quaranta A, Maggioni G, Buffa M, Milan R, Optical properties of free-base tetraphenylporphyrin embedded in fluorinated polyimides and their ethanol and water vapours sensing capabilities, Sens. Actuators B 2009, 137,281-290.
    [17]Zheng Y, Orbulescu J, Ji X, Andreopoulos F M, Pham S M, Leblanc R M, Development of fluorescent film sensors for the detection of divalent copper, J. Am. Chem. Soc.2003,125,2680-2686.
    [18]Lee M H, Lee S J, Jung J H, Lima H, Kim J S, Luminophore-immobilized mesoporous silica for selective Hg2+ sensing, Tetrahedron 2007,63, 12087-12092.
    [I9]Saxena A, Fujiki M, Rai R, Kwak G, Fluoroalkylated polysilane film as a chemosensor for explosive nitroaromatic compounds, Chem. Mater.2005,17, 2181-2185.
    [20]Naddo T, Yang X, Moore J S, Zang L, Highly responsive fluorescent sensing of explosives taggant with an organic nanofibril film, Sens. Actuators B 2008,134, 287-291.
    [21]Basu P K, Jana S K, Saha H, Basu S, Low temperature methane sensing by electrochemically grown and surface modified ZnO thin films, Sens. Actuators B 2008,135,81-88.
    [22]Yang X F, Guo X Q, Zhao Y B, Development of a novel rhodamine-type fluorescent probe to determine peroxynitrite, Talanta 2002,57,883-890.
    [23]Xiang Y, Tong A, Jin P, and Ju Y, New fluorescent rhodamine hydrazone chemosensor for Cu(Ⅱ) with high selectivity and sensitivity, Org. Lett.2006,8, 2863-2866.
    [24]Zhang X, Shiraishi Y, Hirai T, Cu(Ⅱ)-Selective Green fluorescence of a rhodamine-diacetic acid conjugate, Org. Lett.2007,9,5039-5042.
    [25]Kou S, Lee H N, Noort D, Swamy K, Kim S H, Soh J H, Lee K M, Nam S W, Yoon J, Park S, Fluorescent molecular logic gates using microfluidic devices, Angew. Chem. Int. Ed.2008,47,872-876.
    [26]Yang Y K, Yook K J, Tae J, A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in aqueous media, J. Am. Chem. Soc.2005,127,16760-10761.
    [27]Wu J S, Hwang I C, Kim K S, Kim J S, Rhodamine-based Hg2+-selective chemodosimeter in aqueous solution:fluorescent OFF-ON, Org. Lett.2007,9, 907-910.
    [28]Soh J H, Swamy K, Kim S K, Kim S, Lee S H, Yoon J, Rhodamine urea derivatives as fluorescent chemosensors for Hg2+, Tetrahedron Lett.2007,48, 5966-5969.
    [29]Kwon J Y, Jang Y J, Lee Y J, Kim K M, Seo M S, Nam W, Yoon J, A highly selective fluorescent chemosensor for Pb2+, J. Am. Chem. Soc.2005,127, 10107-10111.
    [30]Mao J, Wang L, Dou W, Tang X, Yan Y, Liu W, Tuning the selectivity of two chemosensors to Fe(Ⅲ) and Cr(Ⅲ), Org. Lett.2007,9,4567-4570.
    [31]Lee M H, Kim H J, Yoon S, Park N, Kim J S, Metal ion induced FRET OFF-ON in tren/dansyl-appended rhodamine, Org. Lett.2008,10,213-216.
    [32]Jiang L, Wang L, Zhang B, Yin G, Wang R Y, Cell compatible fluorescent chemosensor for Hg2+ with high sensitivity and selectivity based on the rhodamine fluorophore, Eur. J. Inorg. Chem.2010,28,4438-4443.
    [33]Ma B, Wu S, Zeng F, Reusable polymer film chemosensor for ratiometric fluorescence sensing in aqueous media, Sens. Actuators B 2010,145,451-456.
    [34]Aksuner N, Henden E, Yilmaz I, Cukurovali A, Selective optical sensing of copper(Ⅱ) ions based on a novel cyclobutane-substituted Schiff base ligand embedded in polymer films, Sens. Actuators B 2008,134,510-515.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700