用户名: 密码: 验证码:
城市污水污泥抑制秸秆流化床燃烧粘结的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流化床燃烧技术由于其燃料适应性广、燃烧效率高及污染物排放少等优点,是大规模高效利用生物质最有前途的技术之一。秸秆资源在我国生物质资源中占有重要地位,然而由于秸秆中碱金属含量较高,在流化床燃烧过程中,易引发结焦、床料粘结、积灰及腐蚀,其中最突出的是床料粘结导致流化失败的问题。解决秸秆流化床燃烧过程中碱金属引发的粘结问题,对于秸秆的利用具有很高的实用价值。
     本论文提出利用城市污水污泥(以下简称污泥)与秸秆混烧解决秸秆流化床燃烧过程中粘结问题的新思路。主要研究了污泥与秸秆混烧特性;探索了污泥对秸秆流化床燃烧过程中粘结问题的影响;阐明了污泥中磷元素对秸秆中碱金属元素迁移转化行为的影响以及与碱金属间的反应机理;最终掌握利用污泥控制秸秆流化床燃烧粘结的方法。
     利用热重-质谱联用技术(TG-MS)对秸秆与污泥混烧特性以及气体产物释放规律进行研究。研究结果表明:秸秆、污泥单独燃烧及秸秆与污泥混烧的失重过程主要分成两个阶段:挥发分的析出和燃烧及固定碳的燃烧。对于秸秆与污泥混合燃料,挥发分析出阶段主要受秸秆燃烧控制,碳燃烧阶段主要受污泥燃烧控制,污泥的掺混降低了秸秆燃烧的综合燃烧特性,但有利于降低秸秆燃烧过程中CO2、NH3、 HCN和NO气体析出峰的离子强度。
     采用立管炉实验系统,研究了污泥对秸秆燃烧过程中碱金属迁移转化特性。研究结果表明,污泥对秸秆中碱金属具有捕集作用,形成了高熔点的硅铝酸盐KAlSi2O6、KA1Si3O8和磷酸盐Ca9MgK(PO4)7。以三种磷酸盐(磷酸二氢铵NH4H2PO4、磷酸二氢钙Ca(H2PO4)2·H2O、磷酸钙Ca3(PO4)2)为富磷添加剂与麦秆混烧,研究了混烧过程中碱金属的迁移转化规律以及含磷添加剂与碱金属的反应机理。研究结果表明:三种富磷添加剂与麦秆混烧提高了碱金属在底灰中的固留率,抑制了碱金属以气态形式析出;有利于抑制低熔点碱金属盐的生成以及低温共熔现象的发生;NH4H2PO4和Ca(H2PO4)2·H2O与麦秆中的碱金属反应主要生成CaK2P2O7; Ca3(PO4)2与麦秆中的碱金属反应主要生成Ca10K(P04)7. Ca10Na(PO4)7和Ca5(PO4)3Cl。选择Ca3(PO4)2为污泥中磷的模型化合物,深入研究污泥与麦秆混烧过程中P与碱金属的反应机理。Ca3(PO4)2与KCl在温度高于800℃时生成Ca10K(PO4)7和Ca5(PO4)3Cl,此反应揭示了污泥麦秆混烧过程中磷酸钾盐的生成机理。
     利用5kW鼓泡流化床实验装置,研究污泥对麦秆流化床燃烧粘结失流特性的影响。研究结果表明,污泥的掺混可以降低麦秆燃烧过程粘结趋势延长失流时间。污泥灰对碱金属具有捕集作用,使碱金属生成高熔点的硅铝酸盐KA1Si3O8、 KAlSi2O6和磷酸盐Ca9MgK(PO4)7,抑制了碱金属元素与石英砂床料之间的反应,从而有效抑制麦秆燃烧时粘结失流问题的发生。通过污泥中磷的模型化合物Ca3(PO4)2与麦秆混烧研究污泥中磷对麦秆燃烧粘结失流特性的影响,实验结果证明了污泥中P对麦秆燃烧粘结失流的抑制作用。随着床层温度升高,需要增加Ca3(PO4)2的掺混量以抑制粘结失流发生。
     基于Gibbs自由能最小化法,利用FactSage6.1热力学平衡软件计算了秸秆与污泥混烧过程中碱金属的平衡分布,为利用污泥控制碱金属问题提供了理论基础。计算结果表明,秸秆中K和Na的化学形态分布有很大的不同。随着燃烧温度的升高,K更易以熔融态和气态形式存在;与玉米秆相比,麦秆在燃烧时碱金属分布中熔融态和气态的摩尔百分比更大;与秸秆相比,污泥中的碱金属主要以固态或者熔融态存在;秸秆与污泥混烧会改变秸秆中碱金属的分布,掺混质量比对秸秆与污泥混合物在不同温度下对K化学形态分布的影响较大,对Na化学形态分布影响较小;污泥有助于改善秸秆单独燃烧时碱金属的分布,有利于高熔点硅铝酸盐KA1Si2O6生成,减少气态KC1的释放。
Due to the advantages of wide fuel flexibility, high combustion efficiency, and low pollutant emission, fluidized bed combustion technology has been one of the most promising technologies for efficient and large-scale utilization of biomass. Straws play an important role in biomass resources in China, but the content of alkali metals is relatively high, which will cause several problems such as slagging, bed agglomeration, deposition and corrosion during fluidized-bed combustion. Among these problems, bed agglomeration is more severe, because it can lead to defluidization. It is practically valuable for the energy-oriented utilization of straws to solve the agglomeration initiated by alkali metals during straw fluidized bed combustion.
     In this thesis, a new method is proposed to deal with the agglomeration by co-combusting straw and municipal sewage sludge. The co-combustion characteristics of straw/municipal sewage sludge blends are researched. The influence of municipal sewage sludge addition to straw on agglomeration characteristics during fluidized bed combustion is investigated. The effect of phosphorus in sewage sludge on the behavior of alkali metals in straw and the phosphorus-potassium reaction mechanism are explored. The ultimate objective of this thesis is to master the method of inhibiting agglomeration during straw fluidized bed combustion with municipal sewage sludge addition.
     The combustion characteristics and gas products distribution during co-combustion of straw and municipal sewage sludge (sludge for short) were investigated by thermogravimetry-mass spectroscopy(TG-MS). The results show that there are two weight loss steps for combusting straws and municipal sewage sludge separately, and their co-combusting:the volatile releasing and burning, and the fixed carbon burning. For the blends, the stage of the volatile releasing and burning is controlled by the straw, while the stage of the fixed carbon burning is controlled by the sewage sludge. Adding sewage sludge to the straw decreases the combustion performance of straw, but is helpful to lower the emission peaks of CO2, NH3, HCN, and NO.
     The behavior of alkali metals during co-combustion of municipal sewage sludge with straw was explored in a vertical tubular furnace reactor. The results indicate that adding sewage sludge to the straws enhances the retention of alkali metals retention in ash due to the formation of high melting point compounds such as potassium aluminosilicates (KA1Si2O6and KAlSi3O8) and alkali phosphates Ca9MgK(PO4)7. Chemical reaction mechanisms between alkali metals and three kinds of phosphorous-rich additives are studied to investigate the effect of phosphorus on the behavior of alkali metals during wheat straw combustion. The selected phosphrous-rich additives are ammonium dihydrogen phosphate (NH4H2PO4), monocalcium phosphate (Ca(H2PO4)2·H2O) and calcium phosphate (Ca3(PO4)2). The results results demonstrate that a certain amount of phosphorous-rich additives is positive for capturing alkali metals, restraining the volatilization of alkali metals and inhibiting the sintering of wheat straw ash. The reaction between NH4H2PO4or Ca(H2PO4)2·H2O and potassium metals in wheat straw forms CaK2P2O7, and that between Ca3(PO4)2and potassium metals produces Ca10K(P04)7,Ca10Na(P04)7and Ca5(PO4)3Cl. Calcium phosphate (Ca3(PO4)2) is selected as a model compound of phosphorus in municipal sewage sludge ash to study the reaction mechanism between phosphorus and alkali metals during co-combustion of wheat straw and municipal sewage sludge. The reaction between Ca3(PO4)2and KC1produces Ca10K(PO4)7and Ca5(PO4)3Cl at about800℃and higher temperature, revealing the mechanism of potassium phosphate formation during the co-combustion of sewage sludge and wheat straw.
     The influence of sewage sludge addition on the agglomeration characteristics during wheat straw combustion was investigated in a5kW bubble fluidized bed. The results reveal that the sewage sludge addition decreases the agglomeration tendency and can extend the defluidization time during wheat straw combustion. Adding sewage sludge to wheat straw leads to the formation of potassium aluminosilicates (KAlSi2O6and KAlSi3O8) and alkali phosphates Ca9MgK(PO4)7in the bottom ash, which will reduces the amount of K available for the reaction with the quartz bed material grains, and effectively restrains the reaction between the alkali and quartz sands, thus preventing the agglomeration. The influence of phosphorus in sewage sludge on the agglomeration characteristics during straw combustion in fluidized bed was explored using the model compound of phosphorus Ca3(PO4)2. The results proves that the phosphorus in sewage sludge can decrease the agglomeration tendency. The higher the temperature is, the more Ca3(PO4)2will be needed.
     Based on Gibbs free energy minimization, the equilibrium analysis software FactSage6.1was used to simulate thermodynamics state of the transformation behavior of alkali during co-combustion of straws and municipal sewage sludge. The results show that the distribution of K and Na in straws is in different chemical forms. As the temperature increases, K exists in the form of molten and gaseous. Compared with corn stalk, the alkali metals in wheat straw are mainly in the molten and gaseous state. Compared with straw, the alkali metals in sewage sludge are mainly in the solid and molten state. The addition of sewage sludge to straws will change the distribution of alkali metals, and the blending mass ratio has greater effect on the distribution of K than Na. The addition of sewage sludge would help improve the distribution of the alkali metals in straw, due to the generation of a refractory aluminosilicate KAlSi2O6and reduction in the release of gaseous KC1.
引文
[1]Saidur R, Abdelaziz E A, Demirbas A, et al. A review on biomass as a fuel for boilers [J]. Renewable and Sustainable Energy Reviews,2011,15 (5):2262-2289.
    [2]Tao G C, Geladi P, Lestander T A, et al. Biomass properties in association with plant species and assortments. Ⅱ:A synthesis based on literature data for ash elements [J]. Renewable& Sustainable Energy Reviews,2012,16 (5):3507-3522.
    [3]国家发改委,农业部,财政部编制.《十二五”农作物秸秆综合利用实施方案》,2011.
    [4]宋景慧,湛志钢,马晓茜等.生物质燃烧发电技术[M].北京:中国电力出版社,2013.
    [5]Piotrowska P, Grimm A, Skoglund N, et al. Fluidized-bed combustion of mixtures of rapeseed cake and bark:the resulting bed agglomeration characteristics [J]. Energy & Fuels, 2012,26 (4):2028-2037.
    [6]秦建光.秸秆类生物质流态化燃烧特性研究[D].杭州:浙江大学,2009.
    [7]唐艳玲.稻秸热解过程中碱金属析出的实验研究[D].杭州:浙江大学,2004.
    [8]Ohman M, Nordin A, Skrifvars B-J, et al. Bed agglomeration characteristics during fluidized bed combustion of biomass fuels [J]. Energy & Fuels,2000,14 (1):169-178.
    [9]Khan A A, De Jong W, Jansens P J, et al. Biomass combustion in fluidized bed boilers: Potential problems and remedies [J]. Fuel Processing Technology,2009,90 (1):21-50.
    [10]Bartels M, Lin W, Nijenhuis J, et al. Agglomeration in fluidized beds at high temperatures: Mechanisms, detection and prevention [J]. Progress in Energy and Combustion Science,2008, 34 (5):633-666.
    [11]Chaivatamaset P, Sricharoon P, Tia S. Bed agglomeration characteristics of palm shell and corncob combustion in fluidized bed [J]. Applied Thermal Engineering,2011,31 (14-15): 2916-2927.
    [12]Liao C, Wu C, Yan Y, et al. Chemical elemental characteristics of biomass fuels in China [J]. Biomass and Bioenergy,2004,27 (2):119-130.
    [13]Tan Z, Lagerkvist A. Phosphorus recovery from the biomass ash:A review [J]. Renewable and Sustainable Energy Reviews,2011,15 (8):3588-3602.
    [14]Johansen J M, Jakobsen J G, Frandsen F J, et al. Release of K, Cl, and S during pyrolysis and combustion of high-chlorine biomass [J]. Energy & Fuels,2011,25 (11):4961-4971.
    [15]Johansen J M, Aho M, Paakkinen K, et al. Release of K, Cl, and S during combustion and co-combustion with wood of high-chlorine biomass in bench and pilot scale fuel beds [J]. Proceedings of the Combustion Institute,2013,34 (2):2363-2372.
    [16]Kassman H, Normann F, Amand L-E. The effect of oxygen and volatile combustibles on the sulphation of gaseous KCl [J]. Combustion and Flame,2013,160 (10):2231-2241.
    [17]Knudsen J N, Jensen P A, Dam-Johansen K. Transformation and release to the gas phase of Cl, K, and S during combustion of annual biomass [J]. Energy & Fuels,2004,18 (5): 1385-1399.
    [18]Van Lith S C, Jensen P A, Frandsen F J, et al. Release to the gas phase of inorganic elements during wood combustion. Part 2:Influence of fuel composition [J]. Energy & Fuels,2008,22 (3):1598-1609.
    [19]Wei X, Schnell U, Hein K R G. Behaviour of gaseous chlorine and alkali metals during biomass thermal utilisation [J], Fuel,2005,84 (7-8):841-848.
    [20]徐婧.生物质燃烧过程中碱金属析出的实验研究[D].杭州:浙江大学,2006.
    [21]杨光.生物质燃烧过程中碱金属迁移研究[D].广州:华南理工大学,2012.
    [22]Zheng Y, Jensen P A, Jensen AD, et al. Ash transformation during co-firing coal and straw [J]. Fuel,2007,86 (7-8):1008-1020.
    [23]孟凡华,杨天华,孙洋等.生物质燃烧过程中碱金属迁移转化研究进展[J].可再生能源,2010,28(5):111-114.
    [24]Elled A L, Amand L E, Steenari B M. Composition of agglomerates in fluidized bed reactors for thermochemical conversion of biomass and waste fuels:Experimental data in comparison with predictions by a thermodynamic equilibrium model [J]. Fuel,2013,111:696-708.
    [25]Llorente M J F, Laplaza J M M, Cuadrado R E, et al. Ash behaviour of lignocellulosic biomass in bubbling fluidised bed combustion [J]. Fuel,2006,85 (9):1157-1165.
    [26]滕海鹏.生物质流态化燃烧粘结失流特性研究[D].北京:中国科学院大学,2011.
    [27]Ohman M, Nordin A. A new method for quantification of fluidized bed agglomeration tendencies:A sensitivity analysis [J]. Energy & Fuels,1998,12 (1):90-94.
    [28]滕海鹏,李诗媛,吕清刚.生物质流态化燃烧黏结失流特性分析[J].中国电机工程学报,2010,30(增刊):138-143.
    [29]Manzoori A R, Agarwal P K. Agglomeration and defluidization under simulated circulating fluidized-bed combustion conditions [J]. Fuel,1994,73 (4):563-568.
    [30]尚琳琳.生物质流化床燃烧粘结特性及控制研究[D].北京:中国科学院大学,2012.
    [31]Lundholm K, Nordin A, Ohman M, et al. Reduced bed agglomeration by co-combustion biomass with peat fuels in a fluidized bed [J]. Energy & Fuels,2005,19 (6):2273-2278.
    [32]Grimm A, Skoglund N, Bostrom D, et al. Bed agglomeration characteristics in fluidized quartz bed combustion of phosphorus-rich biomass Fuels [J]. Energy & Fuels,2011,25 (3): 937-947.
    [33]Arvelakis S, Jensen P A, Dam-Johansen K. Simultaneous thermal analysis (STA) on ash from high-alkali biomass [J]. Energy & Fuels,2004,18 (4):1066-1076.
    [34]Armesto L, Bahillo A,Veijonen K, et al. Combustion behaviour of rice husk in a bubbling fluidised bed [J]. Biomass and Bioenergy,2002,23 (3):171-179.
    [35]Bjorkman E, Stromberg B. Release of chlorine from biomass at pyrolysis and gasification conditionsl [J]. Energy & Fuels,1997,11 (5):1026-1032.
    [36]Bostrom D, Skoglund N, Grimm A, et al. Ash transformation chemistry during combustion of biomass [J]. Energy & Fuels,2011,26 (1):85-93.
    [37]Wu H, Castro M, Jensen P A, et al. Release and transformation of inorganic elements in combustion of a high-phosphorus fuel [J]. Energy & Fuels,2011,25 (7):2874-2886.
    [38]Wang L, Hustad J E, Skreiberg ?, et al. A critical review on additives to reduce ash related operation problems in biomass combustion applications [J]. Energy Procedia,2012,20: 20-29.
    [39]Steenari B M, Lindqvist O. High-temperature reactions of straw ash and the anti-sintering additives kaolin and dolomite [J]. Biomass and Bioenergy,1998,14 (1):67-76.
    [40]Ohman M, Nordin A, Lundholm K, et al. Ash transformations during combustion of meat-, bonemeal, and rdf in a (bench-scale) fluidized bed combustor [J]. Energy & Fuels,2003,17 (5):1153-1159.
    [41]Konsomboon S, Pipatmanomai S, Madhiyanon T, et al. Effect of kaolin addition on ash characteristics of palm empty fruit bunch (EFB) upon combustion [J]. Applied Energy,2011, 88 (1):298-305.
    [42]Lindstrom E, Sandstrom M, Bostrom D, et al. Slagging characteristics during combustion of cereal grains rich in phosphorus [J]. Energy & Fuels,2007,21 (2):710-717.
    [43]Davidsson K O, Amand L E,Steenari B M, et al. Countermeasures against alkali-related problems during combustion of biomass in a circulating fluidized bed boiler [J]. Chemical Engineering Science,2008,63 (21):5314-5329.
    [44]Brostrom M, Kassman H, Helgesson A, et al. Sulfation of corrosive alkali chlorides by ammonium sulfate in a biomass fired CFB boiler [J]. Fuel Processing Technology,2007,88 (11-12):1171-1177.
    [45]Kassman H, Bafver L, Amand L-E. The importance of SO2 and SO3for sulphation of gaseous KC1-An experimental investigation in a biomass fired CFB boiler [J]. Combustion and Flame,2010,157 (9):1649-1657.
    [46]李诗媛,矫维红,吕清刚.不同床料流化床生物质燃烧粘结机理研究[J].工程热物理学报,2009,30(5):869-872.
    [47]Sun Z, Jin B, Zhang M, et al. Experimental studies on cotton stalk combustion in a fluidized bed [J]. Energy,2008,33 (8):1224-1232.
    [48]Shimizu T, Han J, Choi S, et al. Fluidized-bed combustion characteristics of cedar pellets by using an alternative bed material [J]. Energy & Fuels,2006,20 (6):2737-2742.
    [49]Brus E, Ohman M, Nordin A, et al. Bed agglomeration characteristics of biomass fuels using blast-furnace slag as bed material [J]. Energy & Fuels,2004,18 (4):1187-1193.
    [50]Grimm A, Ohman M, Lindberg T, et al. Bed agglomeration characteristics in fluidized-bed combustion of biomass fuels using olivine as bed material [J]. Energy & Fuels,2012,26 (7): 4550-4559.
    [51]Fernandez Llorente M J, Escalada Cuadrado R, Murillo Laplaza J M, et al. Combustion in bubbling fluidised bed with bed material of limestone to reduce the biomass ash agglomeration and sintering [J]. Fuel,2006,85 (14-15):2081-2092.
    [52]Kumar V, Doshi V. Investigation into ash related issues during co-combustion of coal and biomass:Development of a co-firing advisory tool [D]. Perth, Australia:Curtin University of Technology,2007.
    [53]Gogebakan Z, Gogebakan Y, Selcuk N, et al. Investigation of ash deposition in a pilot-scale fluidized bed combustor co-firing biomass with lignite [J]. Bioresource Technology,2009, 100 (2):1033-1036.
    [54]Westberg H M, Bystrom M, Leckner B. Distribution of potassium, chlorine, and sulfur between solid and vapor phases during combustion of wood chips and coal [J]. Energy & Fuels,2003,17 (1):18-28.
    [55]Robinson A L, Junker H, Baxter L L. Pilot-scale investigation of the influence of coal-biomass cofiring on ash deposition [J]. Energy & Fuels,2002,16 (2):343-355.
    [56]Aho M, Ferrer E. Importance of coal ash composition in protecting the boiler against chlorine deposition during combustion of chlorine-rich biomass [J]. Fuel,2005,84 (2):201-212.
    [57]宁新宇,李诗媛,吕清刚,等.秸秆类生物质与石煤在流化床中的混烧与黏结机理[J].中国电机工程学报,2008,28(29):105-110.
    [58]中国人民共和国国家统计局.中华人民共和国2013年国民经济和社会发展统计公报.[EB/OL].http://www.stats.gov.cn/tjsj/zxfb/201402/t20140224_514970.html.
    [59]Werther J, Ogada T. Sewage sludge combustion [J]. Progress in Energy and Combustion Science,1999,25(1):55-116.
    [60]Rulkens W. Sewage sludge as a biomass resource for the production of energy:Overview and assessment of the various options [J]. Energy & Fuels,2007,22 (1):9-15.
    [61]Elled A L, Davidsson K O,Amand L E. Sewage sludge as a deposit inhibitor when co-fired with high potassium fuels [J]. Biomass and Bioenergy,2010,34 (11):1546-1554.
    [62]Li L, Ren Q, Li S, et al. Effect of phosphorus on the behavior of potassium during the co-combustion of wheat straw with municipal sewage sludge [J]. Energy & Fuels,2013,27 (10):5923-5930.
    [63]Aho M, Yrjas P, Taipale R, et al. Reduction of superheater corrosion by co-firing risky biomass with sewage sludge [J]. Fuel,2010,89 (9):2376-2386.
    [64]Amand L-E, Leckner B, Eskilsson D, et al. Deposits on heat transfer tubes during co-combustion of biofuels and sewage sludge [J]. Fuel,2006,85 (10-11):1313-1322.
    [65]Davidsson K O, Amand L E, Elled A L, et al. Effect of cofiring coal and biofuel with sewage sludge on alkali problems in a circulating fluidized bed boiler [J]. Energy & Fuels,2007,21 (6):3180-3188.
    [66]Grimm A, Skoglund N, Bostrom D, et al. Influence of phosphorus on alkali distribution during combustion of logging residues and wheat straw in a bench-scale fluidized bed [J]. Energy & Fuels,2012,26 (5):3012-3023.
    [67]Hupa M. Ash-related issues in fluidized-bed combustion of biomasses:recent research highlights [J]. Energy & Fuels,2012,26 (1):4-14.
    [68]Skoglund N, Grimm A, Ohman M, et al. Combustion of biosolids in a bubbling fluidized bed, part 1:main ash-forming elements and ash distribution with a focus on phosphorus [J]. Energy & Fuels,2014,28 (2):1183-1190.
    [69]Xieu D V, Kekish G T. Slag fusion point modification [P]. CA 1202485,1986.
    [70]Srensen L H, Fjellerup J, Henriksen U. Method for reducing agglomeration, sintering and deposit formation in gasification and combustion of biomass [P].U.S.6615781B1,2003..
    [71]Zeuthen J H, Jensen P A, Jensen J P, et al. Aerosol formation during the combustion of straw with addition of sorbents [J]. Energy & Fuels,2007,21 (2):699-709.
    [72]李艳霞,陈同斌,罗维,等.中国城市污泥有机质及养分含量与土地利用[J].生态学报,2003,23(11):2464-2474.
    [73]Hoffmann G, Schingnitz D, Bilitewski B. Comparing different methods of analysing sewage sludge, dewatered sewage sludge and sewage sludge ash [J]. Desalination,2010,250 (1): 399-403.
    [74]马孝琴.秸秆在流化床中燃烧床料聚团的试验研究[D].杭州:浙江大学,2006.
    [75]Van der Drift A, Olsen A, et al. Conversion of biomass, prediction and solution methods for ash agglomeration and related problems [R]. Petten, The Netherlands:Project Report of ECN (Energy Centre of the Netherlands),.1999.
    [76]Skoglund N, Grimm A,Ohman M, et al. Effects on ash chemistry when co-firing municipal sewage sludge and wheat straw in a fluidized bed:Influence on the ash chemistry by fuel mixing [J]. Energy & Fuels,2013,27 (10):5725-5732.
    [77]Magdziarz A, Wilk M. Thermogravimetric study of biomass, sewage sludge and coal combustion [J]. Energy Conversion and Management,2013,75:425-430.
    [78]White J E, Catallo W J, Legendre B L. Biomass pyrolysis kinetics:A comparative critical review with relevant agricultural residue case studies [J]. Journal of Analytical and Applied Pyrolysis,2011,91(1):1-33.
    [79]Arenillas A, Rubiera F, Pis J J. Simultaneous thermogravimetric-mass spectrometric study on the pyrolysis behaviour of different rank coals [J]. Journal of Analytical and Applied Pyrolysis,1999,50 (1):31-46.
    [80]Otero M, Diez C, Calvo L F, et al. Analysis of the co-combustion of sewage sludge and coal by TG-MS [J]. Biomass and Bioenergy,2002,22 (4):319-329.
    [81]Otero M, Sanchez M, Garcia A, et al. Simultaneous thermogravimetric-mass spectrometric study on the co-combustion of coal and sewage sludges [J]. Journal of Thermal Analysis and Calorimetry,2006,86 (2):489-495.
    [82]Otero M, Calvo L F, Gil M V, et al. Co-combustion of different sewage sludge and coal:A non-isothermal thermogravimetric kinetic analysis [J]. Bioresource Technology,2008,99 (14):6311-6319.
    [83]Otero M, Sanchez M E, Gomez X. Co-firing of coal and manure biomass:A TG-MS approach [J]. Bioresource Technology,2011,102 (17):8304-8309.
    [84]Su W, Ma H, Wang Q, et al. Thermal behavior and gaseous emission analysis during co-combustion of ethanol fermentation residue from food waste and coal using TG-FTIR [J]. Journal of Analytical and Applied Pyrolysis,2013,99:79-84.
    [85]郭献军.生物质燃烧氯的析出与控制研究[D].武汉:华中科技大学.2009年.
    [86]Werle S, Wilk R K. A review of methods for the thermal utilization of sewage sludge:The Polish perspective [J]. Renewable Energy,2010,35 (9):1914-1919.
    [87]Idris S S, Rahman N A, Ismail K. Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blends via thermogravimetric analysis (TGA) [J]. Bioresource Technology,2012,123:581-591.
    [88]Muthuraman M, Namioka T, Yoshikawa K. Characteristics of co-combustion and kinetic study on hydrothermally treated municipal solid waste with different rank coals:A thermogravimetric analysis [J]. Applied Energy,2010,87 (1):141-148.
    [89]Wang C, Wang F, Yang Q, et al. Thermogravimetric studies of the behavior of wheat straw with added coal during combustion [J]. Biomass and Bioenergy,2009,33 (1):50-56.
    [90]Guo Q, Zhang X, Li C, et al. TG-MS study of the thermo-oxidative behavior of plastic automobile shredder residues [J]. Journal of Hazardous Materials,2012,209-210:443-448.
    [91]Stubenberger G, Scharler R, Zahirovic S, et al. Experimental investigation of nitrogen species release from different solid biomass fuels as a basis for release models [J]. Fuel,2008,87 (6): 793-806.
    [92]Gil M V, Casal D, Pevida C, et al. Thermal behaviour and kinetics of coal/biomass blends during co-combustion [J]. Bioresource Technology,2010,101 (14):5601-5608.
    [93]Liu N A, Fan W, Dobashi R, et al. Kinetic modeling of thermal decomposition of natural cellulosic materials in air atmosphere [J]. Journal of Analytical and Applied Pyrolysis,2002, 63 (2):303-325.
    [94]Font R, Fullana A, Conesa J A, et al. Analysis of the pyrolysis and combustion of different sewage sludges by TG [J]. Journal of Analytical and Applied Pyrolysis,2001,58-59: 927-941.
    [95]廖艳芬,马晓茜.城市污水污泥燃烧特性和动力学特性分析[J].燃料化学学报,2009,37(3):296-301.
    [96]Zhu Y, Chai X, Li H, et al. Combination of combustion with pyrolysis for studying the stabilization process of sludge in landfill [J]. Thermochimica Acta,2007,464 (1-2):59-64.
    [97]Wang Q, Zhao W, Liu H, et al. Interactions and kinetic analysis of oil shale semi-coke with cornstalk during co-combustion [J]. Applied Energy,2011,88 (6):2080-2087.
    [98]Parshetti G K, Liu Z, Jain A, et al. Hydrothermal carbonization of sewage sludge for energy production with coal [J]. Fuel,2013,111:201-210.
    [99]Varhegyi G, Szabo P, Till F, et al. TG, TG-MS, and FTIR characterization of high-yield biomass charcoals [J]. Energy & Fuels,1998,12 (5):969-974.
    [100]Liu Y, Che D. Releases of NO and its precursors from coal combustion in a fixed bed [J]. Fuel Processing Technology,2006,87 (4):355-362.
    [101]李琳娜,任强强,吕清刚,李诗媛.城市污水污泥与麦秆混烧过程中钾的转化特性[J].工程热物理学报,2013,34(6):1166-1169.
    [102]Bostrom D, Eriksson G, Boman C, et al. Ash transformations in fluidized-bed combustion of rapeseed meal [J]. Energy & Fuels,2009,23 (5):2700-2706.
    [103]Olanders B, Steenari B-M. Characterization of ashes from wood and straw [J]. Biomass and Bioenergy,1995,8 (2):105-115.
    [104]杜新民,沈定坤K2O—CaO—Al2O3—SiO2系统玻璃的分相[J].硅酸盐通报,1994,13(3):11-14.
    [105]Elled A-L, Amand L-E, Leckner B, et al. Influence of phosphorus on sulphur capture during co-firing of sewage sludge with wood or bark in a fluidised bed [J]. Fuel,2006,85 (12-13): 1671-1678.
    [106]Matinde E, Sasaki Y, Hino M. Phosphorus gasification from sewage sludge during carbothermic reduction [J]. ISIJ International,2008,48 (7):912-917.
    [107]Queiroz C M, Fernandes M H V, Frade J R. Early steps of orthophosphate crystallisation in a Ca-Mg-K phosphosilicate glass frit [J]. Materials Science Forum,2004,455-456:402-405.
    [108]Sandstrom M. Structural and solid state emf studies of phases in the CaO-K2O-P2O5 System with Relevance for Biomass Combustion [D]. Umea, Sweden:Umea University, 2006.
    [109]Wang L, Skjevrak G, Hustad J E, et al. Sintering characteristics of sewage sludge ashes at elevated temperatures [J]. Fuel Processing Technology,2012,96:88-97.
    [110]Grimm A, Skoglund N, Bostrom D, et al. Influence of phosphorus on alkali distribution during combustion of logging residues and wheat straw in a bench-scale fluidized bed [J]. Energy & Fuels,2012,26 (5):3012-3023.
    [111]Novakovid A, Van Lith S C, Frandsen F J, et al. Release of potassium from the systems K-Ca-Si and K-Ca-P [J]. Energy & Fuels,2009,23 (7):3423-3428.
    [112]Shiryaev M, Safronova T, Putlyaev V. Calcium phosphate powders synthesized from calcium chloride and potassium hydrophosphate[J]. Journal of Thermal Analysis and Calorimetry,2010,101 (2):707-713.
    [113]Piotrowska P, Grimm A, Skoglund N, et al. Fluidized-bed combustion of mixtures of rapeseed cake and bark:the resulting bed agglomeration characteristics [J]. Energy & Fuels, 2012,26 (4):2028-2037.
    [114]Lin W, Dam-Johansen K, Frandsen F. Agglomeration in bio-fuel fired fluidized bed combustors [J]. Chemical Engineering Journal,2003,96 (1-3):171-185.
    [115]Elled A L, Amand L E, Steenari B M. Composition of agglomerates in fluidized bed reactors for thermochemical conversion of biomass and waste fuels:Experimental data in comparison with predictions by a thermodynamic equilibrium model [J]. Fuel,2013,123:581-591.
    [116]Klein L C, Fasano B V, Wu J M. Viscous flow behavior of four iron-containing silicates with alumina, effects of composition and oxidation condition [J]. Journal of Geophysical Research, 1983,88 (S02):A880-A886.
    [117]余春江,唐艳玲,方梦祥,等.稻秆热解过程中碱金属转化析出过程试验研究[J].浙江大学学报(工学版),2005,39(9):1435-1438.
    [118]Jensen P A, Frandsen F J, Dam-Johansen K, et al. Experimental investigation of the transformation and release to gas phase of potassium and chlorine during straw pyrolysis [J]. Energy & Fuels,2000,14 (6):1280-1285.
    [119]付献彩,沈文霞,姚天扬等.物理化学(第五版)[M].北京:高等教育出版社,2005.
    [120]沈维道,童钧耕.工程热力学(第四版)[M].北京:高等教育出版社,2007.
    [121]赵保峰,马殿国,陈雷等.生物质热解模拟计算方法与应用[J].2009,22(2):52-56.
    [122]杨光.秸秆燃烧过程中碱金属迁移数值模拟[D].广州:华南理工大学,2012.
    [123]Abanades S, Flamant G, Gagnepain B, et al. Fate.of heavy metals during municipal solid waste incineration [J]. Waste Management & Research,2002,20 (1):55-68.
    [124]http://www.factsage.cn/.
    [125]Xiong S, Ohman M, Zhang Y, et al. Com stalk ash composition and its melting (slagging) behavior during combustion [J]. Energy & Fuels,2010,24 (9):4866-4871.
    [126]Nazelius I-L, Bostrom D, Boman C, et al. Influence of peat addition to woody biomass pellets on slagging characteristics during combustion [J]. Energy & Fuels,2013,27 (7): 3997-4006.
    [127]陈安合,杨学民,林伟刚.生物质燃烧过程中Cl及碱金属逸出的化学热力学平衡分析[J].过程工程学报,2007,7(5):889-998.
    [128]Liao Y, Yang G, Ma X. Experimental study on the combustion characteristics and alkali transformation behavior of straw [J]. Energy & Fuels,2012,26 (2):910-916.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700