LPAR3对人类子宫内膜容受性调控的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类胚胎植入是一个十分复杂的过程,在这个过程中胚胎和子宫内膜互相作用,在一段非常短的时期共同作用完成胚胎着床。一个成功的植入过程需要三个重要的条件:优质的胚胎、良好的子宫内膜容受性以及胚胎和子宫内膜的同步发育。子宫内膜仅在一段十分短暂的时间内具有接受胚胎的能力,这一时期叫做“着床窗口期”。子宫内膜的容受性受到多种生物信号的调控,包括:特殊的生长因子、细胞因子、磷脂分子、细胞粘附因子以及转录因子等。这些生物信号受女性甾体激素、前列腺素和肽类激素的调节,它们的变化会造成子宫内膜容受性的改变,导致胚胎植入率和妊娠率的下降。
     溶血磷脂酸(Lysophosphatidic acid, LPA)是一种具有多生物效应的生长因子。它可以调控细胞的生存、增殖、分化、抑制细胞间的缝隙连接和改变细胞骨架的重新排列。LPA在生殖方面也起到了重要的调控作用,包括刺激卵子的成熟、调节2-4卵裂球的胚胎向囊胚的转化、影响胚胎在输卵管的运输。LPA主要依靠细胞外基质的溶血磷脂酶D水解磷脂生成,也可以由活化的血小板、红细胞、有丝分裂后的神经元细胞、卵巢和宫颈癌细胞、脂肪细胞和肥大细胞分泌产生。LPA通过G偶联蛋白受体LPAR1-4发挥生物学效应。敲除LPAR1和LPAR2的雌性小鼠生育能力正常,但是敲除LPAR3基因的雌性小鼠生育能力发生改变,主要表现为胚胎植入空间的改变、胚胎缠绕以及种植时间延迟。在小鼠交配后的2.5d,小鼠子宫内膜上LPAR3的表达开始上升,在围植入期即交配后的3.5d表达达到顶峰,然后在交配后4.5d下降恢复到基础水平直至分娩后。目前对LPAR3在人类子宫内膜容受性方面的研究很少,仅仅知道反复植入失败的患者和子宫内膜异位症的患者在他们月经周期的分泌期LPAR3在其子宫内膜上的表达较正常妇女低。
     在控制性超促排卵(Controlled ovarian hyperstimulation, COH)中,由于为了在一个促排卵周期中同时得到多个发育的成熟卵子,因而使用了大量的促排卵药物。长效长方案是目前应用的较多的一种促排卵方案,该方案可以获得优质的卵子,受精率和优胚率都比较高,但是胚胎的植入率比较低。分析原因,多数学者认为是由于促排卵药物的使用造成体内产生超生理浓度的激素,从而干扰了子宫内膜的内环境,降低了子宫内膜的容受性。因此,找到子宫内膜容受性下降的原因并找到解决的方法,可以提高IVF的妊娠率,具有很好的临床意义。至今,还没有文献报道人类长方案促排卵的患者子宫内膜上LPAR3的表达方式。
     多囊卵巢综合征(Polycystic ovary syndrome, PCOS)患者由于体内内分泌紊乱,造成雌孕激素分泌异常和促黄体生成素(LH)的升高,导致子宫内膜上影响子宫内膜容受性的因素表达异常,从而降低了PCOS患者子宫内膜的容受性。目前对PCOS患者的子宫内膜容受性的研究主要集中在对甾体激素及其受体、整合素、基质金属蛋白酶、同源框基因等因子,对于目前新近发现在生殖过程中发挥重要作用的LPAR3的研究甚少,国内外均未见报道。此外在我们研究的临床部分,我们在改善PCOS患者子宫内膜容受性的原理的基础上,采用了降调节人工周期子宫内膜准备的方法,目的是找到一种有效的提高PCOS患者的子宫内膜的容受性的方法。
     本研究主要利用RT-PCR, Western blot和免疫组化等技术研究了正常妇女月经周期、IVF促排卵患者围着床期以及PCOS患者月经周期中子宫内膜LPAR3的表达情况和差异。初步说明了LPAR3在子宫内膜容受性建立过程中的重要作用。研究分为四个部分,前三个部分为实验部分,最后一个部分为临床部分,实验方法和结果如下:
     第一部分LPAR3在正常妇女月经周期子宫内膜上的表达
     目的:研究溶血磷脂酸受体3(Lysophosphatidic acid receptor3,LPAR3) mRNA及其蛋白在正常妇女月经周期中子宫内膜上的表达规律。
     方法:采用RT-PCR, Western blot和免疫组化法,检测LPAR3mRNA和蛋白在正常妇女月经周期中子宫内膜上的表达规律。
     结果:
     1.在整个人类月经周期中均可在子宫内膜组织中检测到LPAR3mRNA和蛋白的表达。
     2.在整个增生期LPAR3mRNA和蛋白的表达呈低表达状态,在早分泌期LPAR3mRNA和蛋白表达明显升高,并且达到峰值,但是在中分泌期LPAR3mRNA和蛋白的表达骤然下降,恢复到增生期水平。但在晚分泌期LPAR3mRNA和蛋白表达又上升,逐级恢复到早分泌期水平。
     3.在早增生期LPAR3蛋白主要分布在子宫内膜的腔上皮、腺上皮的细胞浆中。在中晚增生期虽然间质细胞的细胞浆中LPAR3的阳性着色范围扩大,但仍是主要在子宫内膜的腺上皮和腔上皮细胞的胞浆中呈阳性表达。在早分泌期腺上皮和子宫内膜腔上皮细胞呈强阳性免疫染色,间质细胞也出现强阳性反应。在中分泌期LPAR3在子宫内膜间质细胞和上皮细胞的表达骤然下降,主要表达在子宫内膜腔上皮的细胞浆中,但是表达降低呈弱阳性反应。在晚分泌期LPAR3王要在子宫内膜间质细胞中和血管上表达,呈强阳性反应。在子宫内膜的腔上皮和腺上皮上呈弱阳性表达。
     4.在早中增生期主要分泌雌激素(estrogen, E), LPAR3处于低表达状态;在晚增生期成熟卵泡的颗粒细胞在黄体生成素(luteinizinghormone, LH)排卵高峰的作用下,开始分泌孕酮(progestin,P),排卵后P逐渐增加,E分泌下降,子宫内膜上LPAR3的表达开始在早分泌期增加。在中分泌期E水平又增加,LPAR3在子宫内膜上的表达下降。在晚分泌期E水平下降,LPAR3在子宫内膜上的表达开始上升
     结论:
     1. LPAR3在人类月经周期中子宫内膜上呈周期性的变化,在人类的围着床期LPAR3的表达达到顶峰,这种变化规律揭示LPAR3可能参与了子宫内膜容受性的建立,可作为预测子宫内膜容受性的分子参考指标。
     2.我们把月经周期中E、LH和P的表达规律和LPAR3在子宫内膜上的表达方式相比较,我们推测LPAR3可能受到LH和P的正向调控,而E可能对这种正向调控有抑制作用(见下图)。
     第二部分GnRHa长方案促排卵对围着床期人类子宫内膜上LPAR3表达的影响
     目的:研究GnRHa/rFSH/hCG控制性超促排卵(COH)对围着床期人类子宫内膜溶血磷脂酸受体3(LPAR3)表达的影响。
     方法:将研究对象分为自然周期对照组(NC组)和COH实验组,用RT-RCR和Western blot方法观察两组排卵后3d~6d子宫内膜上LPAR3mRNA和蛋白的表达变化。
     结果:
     1.NC组子宫内膜中LPAR3的表达在排卵后d4达到顶峰,COH组子宫内膜LPAR3的表达高峰较NC组要提前1d,即在排卵后d3达到顶峰。
     2.COH组子宫内膜LPAR3在各时间点的表达水平均低于对照组,有统计学差异(P<0.05)。
     3.COH组血清中E2和P浓度水平在相应各时间点均高于NC对照组,E2/P比值也高于NC对照组,有统计学差异(P<0.05)。
     结论:
     1. GnRHa控制性超促排卵可能通过改变子宫内膜LPAR3表达的水平和时序变化,一方面降低了子宫内膜的容受性,同时一方面也使子宫内膜与胚胎发育不同步从而降低胚胎的着床率。这提示我们可能通过改善目前移植胚胎的时间,达到子宫内膜和胚胎发育同步,从而提高IVF妊娠率。
     2.可能由于在GnRHa控制性超促排卵中超生理剂量的E2和P水平,以及不协调的E2/P比造成了LPAR3表达的异常。我们可能通过调节E2/P比值,使LPAR3的表达恢复正常状态,提高IVF妊娠率。
     第三部分LPAR3在PCOS患者月经周期子宫内膜上的表达
     目的:研究溶血磷脂酸受体3(Lysophosphatidic acid receptor3,LPAR3) mRNA及其蛋白在PCOS月经稀发患者月经周期中子宫内膜上的表达。
     方法:采用RT-PCR, Western blot方法,检测LPAR3mRNA和蛋白在PCOS月经稀发患者月经周期中子宫内膜上的表达。
     结果:
     1.PCOS组患者月经周期天数为39.75天,明显多于NC对照组月经周期天数30.5天(P<0.01)。在增殖期PCOS组血清中LH水平为8.61miu/ml,高于NC组增殖期血清中LH水平3.10miu/ml,有统计学差异(P<0.01)。在早、中分泌期PCOS组患者血清中P水平1.64ng/ml、6.36ng/ml,明显低于NC组P水平4.46ng/ml、14.2ng/ml,有统计学差异(P<0.05)。
     2. PCOS组在整个增生期LPAR3mRNA和蛋白在子宫内膜上呈低表达状态,但与NC对照组增生期相比要高于NC对照组,有统计学差异。在早分泌期LPA3mRNA和蛋白表达明显升高,并且达到峰值,在中分泌期LPAR3mRNA和蛋白的表达骤然下降,恢复到增生期水平。PCOS组中LPAR3mRNA和蛋白水平在早分泌期子宫内膜上的表达要明显低于NC对照组,有统计学差异(见下图)。
     结论:
     1.PCOS组中增生期LPAR3的异常表达可能和PCOS患者子宫内膜过度增殖相关。
     2.PCOS组中在早分泌期即围着床期LPAR3的表达较NC对照组低,这可能干扰了其子宫内膜容受性的建立,降低了子宫内膜的容受性
     3. PCOS组在增生期血清中LH水平的高表达以及在分泌期P的低表达状态可能和其子宫内膜上LPAR3异常表达相关。
     第四部分两种雌孕激素替代法内膜准备对多囊卵巢综合症冷冻胚胎移植临床效果的比较
     目的:比较非降调节雌孕激素替代法与降调节雌孕激素替代法作为子宫内膜准备方法对多囊卵巢综合症患者(PCOS)冻融胚胎移植(FET)的妊娠结局。
     方法:在PCOS患者FET周期中,分别采用非降调节雌孕激素替代法(GnRHa组,n=89)、降调节雌孕激素替代法(HRT组,n=37)准备内膜,比较周期妊娠率、种植率、流产率、宫外孕发生率等指标。
     结果:
     1.HRT组和GnRHa组2组患者年龄分别为29.53±3.39岁、29.24+2.85岁(P>0.05);基础体重指数分别为23.07±3.51、22.20+2.96(P>0.05);不孕年限分别为3.14±1.89年、3.86+136年(P>0.05);
     2.在黄体支持日HRT组和GnRHa组2组患者E水平分别为189.72±110.88pg/ml、133.08±55.33pg/ml (P<0.05); LH水平分别为11.74±6.49miu/ml、1.3±0.67miu/ml (P<0.01)。
     3.2组移植周期临床妊娠率为55.06%、72.9%(P<0.05);种植率分别为38.7%、53.6%(P<0.05);流产率分别为16.3%、14.8%(P>0.05);宫外孕率分别为4.1%、3.7%(P>0.05)。
     结论:对于PCOS患者使用降调节雌孕激素替代法可能改善子宫内膜的容受性,是一种合适的子宫内膜准备方案。
Implantation in humans is an intricate process that involves complex interactions between the embryo and the uterus during the initial period of gestation. There are three important conditions for successful implantation:good embryo quality, high endometrial receptivity and a synchronized dialogue between maternal and embryonic tissues. The endometrium is not receptive to embryo implantation except for during a strict frame of time called the'implantation window'. The uterine receptivity is regulated by several kinds of molecular signals, such as specific growth factors, cytokines, lipid mediators, adhesion molecules, and transcription factors. They are further regulated by female sex steroids, prostaglandins (PGs) and peptide hormones. The expression level of any factors is abnormal will contribute to change the endometrial receptivity and lead to reduce the pregnancy rate.
     Lysophosphatidic acid (LPA) is a growth factor that triggers many cellular responses. These responses include cell survive, proliferation, differentiation, inhibition of gapjunction communication and action cytoskeletal rearrangements. LPA also plays an important role on reproduction, including stimulation of oocyte maturation, the preimplantation development of two-or four-cell embryos to the blastocyst stage and embryo transport in the oviduct. It could be produced through the hydrolysis of phospholipids by extracellular lysophospholi-pase D or by activating platelets, erythrocytes, postmitotic neurons, ovarian and cervical cancer cells, adipocytes and mast cells. LPA functions through its G protein-couple receptors, LPA1-4. Mice kicking out LPA1and LPA2reproduce normally, but LPA3-null mice showed reduced litter size and altered embryo spacing, embryo crowding, and delayed implantation. It provided additional evidence for its role in murine implantation. Expression of LPA3in the mouse uterus is strictly regulated during early pregnancy. Within the mouse uterus, LPA3mRNA increased on2.5days post coitus (2.5d.p. c), peaking around3.5d. p.c, peri-implantation period, then returned to the basal levels on4.5d. p. c. through the end of pregnancy. In the generation domain, there is lack of information about the function of LPA3on endometrial receptivity until now. Recent research showed that LPA3expression is low during secretory phase of endometrium in those patients with repeated implantation failure and endometriosis.
     Controlled ovarian hyperstimulation (COH) can get many germ cell by using large amounts promoting ovulation drug. Long protocol controlled ovarian hyperstimulation is the most commonly used protocol that can get good quality eggs, high fertilization rate and high qualified embryo rate, but the implantation rate is still low. GnRHa long time superovulation program put a negative effect in the balance of internal hormone which decreasing the endometrial receptiblity. So to find the reason of decreasing in endometrial receptiblity and find an efficient means to solve the problem is with good clinical significance. So far, there is no reported about the expression of LPA3with Long protocol controlled ovarian hyperstimulation in human endometrium during periimplantation periode.
     Polycystic ovary syndrome (PCOS) patients with endocrine disorder caused by abnormal secretion of estrogen and progesterone and rising of luteinizing hormone (LH), which reduces the receptivity of the endometrium of PCOS patients. Endometrial receptivity in patients with PCOS is mainly concentrated in the steroid hormone receptors, integrins, matrix metalloproteinases, and homeobox factor. LPA3play an important role in the reproductive process. In addition, the clinical part of the study, to improve PCOS endometrial receptivity, artificial frozen-thawed embryo transfer cycles with pituitary suppression was used. The purpose is to improve the receptivity of the endometrium of women with PCOS.
     In this study, by using RT-PCR, Western blot and immunohis-tochemistry study the expression of LPA3with normal menstrual cycle of women, Long protocol controlled ovarian hyperstimulation in human endometrium during periimplantation periode and menstrual cycle of PCOS. This study is to reveal that the important role of LPA3in the process of establishing endometrial receptivity. Divided into four parts, the three parts of the experimental part, the last part of the clinical part, the experimental methods and results are as follows:
     Part1:Cyclic regulation of LPA3in human endometrium
     Object:The aims of the present study were to characterize LPA3mRNA and protein in human endometrium during the normal human menstrual cycle.
     Methods:Forty-three normally cycling volunteers without reproductive disorders were randomized to undergo endometrial sampling on a specific cycle day. Samples were assessed for relative LPA3mRNA expression using real-time PCR and for LPA3protein using immunohistochemistry and Western blot.
     Results:
     ⅰ. LPA3mRNA and protein can be detected in endometrial tissues throughout the human menstrual cycle.
     ⅱ. The expression of LPA3mRNA and protein significantly increased during the early and late secretory phase compared with other menstrual phases. Its expression dropped rapidly in the mid-secretory and remained low in the whole proliferative phase.
     iii. In proliferative samples, LPA3protein was detected and localized primarily to the cytoplasm of the luminal and glandular epithelial cells. Early secretory immunostaining for LPA3protein was markedly elevated in both the epithelial and stromal cells. Samples from the midsecretory phase (the implantation window) showed a markedly reduced intensity of LPA3staining in glandular epithelial cells and stromal cells. Late secretory immunostaining for LPA3protein expression was elevated in the nuclei of stromal cells. Thus, the intensity of immunohistochemistry staining for LPA3generally parallels the mRNA and Western blot changes.
     ⅳ. LPA3is in the low expression in the proliferative phase because of secretion of estrogen; In the late proliferative phase, follicular granulose cells begin to secrete progesterone, progensterone increased gradually after ovulation, LPA3increased during early secretory phase. In the mid-secretory phase E levels increased, LPA3decreased expression in uterine endometrial. In the late secretory phase decreased E level, LPA3in uterine endometrium on expression began to rise.
     Conclusion:
     ⅰ. LPA3during the human menstrual cycle of endometrium on the cyclic change, LPA3expression peaked in human peri-implantation. LPA3may participate in the establishment of endometrial receptivity, can be used as a predictor of endometrial receptivity
     ⅱ. LPA3is regulated by progesterone and LH, estrogen by positive or negative feedback.
     Part2The study on the effect of long protocol controlled ovarian hyperstimulation by GnRHa on expression of peri-implantation window LPA3
     Object:To study on the effect of long protocol controlled ovarian hyperstimulation by GnRHa/rFSH/hCG on the endometrial LPA3expression.
     Methods:The people were divided into NC group and COH group. LPA3mRNA and protein expression were determined by RT-RCR and Western-blot form pd3to pd6in the two groups.
     Results:
     ⅰ. The peak expression was on the pd4in NC group, the surge was on pd3in COH group.
     ⅱ. The expression of LPA3significantly lower in COH group compared with NC group.
     ⅲ. COH group serum E2and P levels in the corresponding time points were higher than the NC control group, the E2/P ratio is also higher than the NC control group.
     Conclusion:
     ⅰ. Controlled ovarian hyperstimulation by GnRHa/rFSH/hCG may transform the level of LPA3, lead to disorder of implantation window,declin the endometrial receptivity.
     ⅱ. May be due to the super physiological doses of E2and P levels, as well as uncoordinated E2/P ratio caused the LPA3expression abnormalities duing COH. We may adjust the E2/P ratios, the expression of LPA3return to normal conditions, improve the IVF pregnancy rate.
     Part3Expression of LPA3in the endometrium of patients with PCOS during menstrual cycle
     Object:The aims of the present study were to characterize LPA3mRNA and protein in endometrium during the menstrual cycle of patients with PCOS.
     Methods:Samples were assessed for relative LPA3mRNA expression using real-time PCR and for LPA3protein using Western blot.
     Results:
     ⅰ. PCOS group, patients with menstrual cycle days to39.75days, significantly more than the number of days30.5days of the menstrual cycle of the NC control group (P<0.01). In the proliferative phase in the PCOS group, serum LH levels as8.61miu/ml higher than the NC group, proliferation of serum LH levels3.10miu/ml There were significant differences (P<0.01). Early in the secretory phase in patients with PCOS group serum P level of1.64ng/ml,6.36ng/ml, significantly lower than the NC group P level of4.46ng/ml,14.2ng/ml There were significant differences (P<0.05).
     ⅱ. Low expression of LPA3mRNA and protein in the proliferative phase in PCOS group, but it was higher in PCOS group than in NC control group in the proliferative phase. In the early secretory phase LPA3mRNA and protein expression was significantly increased and reached its peak, the sharp decline in the expression of mRNA and protein in the middle secretory phase. Expression of LPA3in the early secretory phase endometrium in PCOS group was significantly lower than NC control group.
     Conclusion:
     ⅰ. Because of LPA3abnormal expression in the proliferative phase,excessive proliferation s with endometrial with PCOS patients.
     ⅱ. PCOS group in the early secretory phase has low expression of LPA3, which may interfere with the establishment of endometrial receptivity, and reduced endometrial receptivity
     ⅲ. PCOS group in the proliferative phase of serum levels of LH high expression and low P expression in secretory phase endometrium on state may relate to abnormal expression of LPA3.
     Part4Comparison of clinical outcomes of the two hormone replacement treatment for frozen-thawed embryo transfer cycle in patients with polycystic ovary syndrome
     Object:This study was designed to compare the clinical outcomes of the two hormone replacement treatment for frozen-thawed embryo transfer cycle in patients with polycystic ovary syndrome.
     Methods:Retrospective chart review of126patients with PCOS was done,2clinical protocols for preparing endometrium were carried out, including hormone replacement group(HRT, n=89) and artificial frozen-thawed embryo transfer cycles with pituitary suppression(GnRHa, n=37).
     Results:No significant differences were found in patient's age(29.53±3.39vs29.24±2.85years), body mass index (23.07±3.51vs22.20±2.96)and duration of infertility(3.14±1.89vs3.86±1.36 years)(P>0.05), also no significant differences were found in early abortion(16.3%vsl4.8%) and ectopic pregnancy risk(4.1%vs3.7%)(P>0.05). However, compared HRT group, GnRHa group achieved significantly higher clinical pregnancy (55.06%vs72.9%, P<0.05) and implantation (38.7%vs53.6%, P<0.05).
     Conclusion:It is an effective method for patients with PCOS by using hormone replacement with pituitary suppression for artificial frozen-thawed embryo transfer cycle.
引文
[1]Psychoyos A. Uterine receptivity for nidation. Ann NY Acad Sci,1986,476: 36-42.
    [2]Strowitzki T, Germeyer A, Popovici R, et al. The human endometrium as a fertility-determining factor. Hm Reprod Update 2006; 12:617-630.
    [3]Kobayashi T, Yamano S. Murayama S:Effect of lysophosphatidic acid on the preimplantation development of mouse embryos. FEBS Lett 1994. 351(1):38-40.
    [4]Bukhtiar HS, Keivn JC:Roles of LPA3 and COX-2 in implantation. Trends Endocrinol Metab 2005,16(9):397-399.
    [5]Choi JW, Herr DR, Noguchi K, Yung YC, et al. LPA Receptors:Subtypes and Biological Actions. Annu Rev Pharmacol.2009 In press.
    [6]Tabata K, Baba K, Shiraishi A, et al. The orphan GPCR GPR87 was deorphanized and shown to be alysophosphatidic acid receptor. Biochem Biophys Res Commun 2007,363:861-866.
    [7]Murakami M. Shiraishi A, Tabata K, et al. Identification of the orphan GPCR, P2Y(10) receptor as the sphingosine-1-phosphate and lysophosphatidic acid receptor. Biochem Biophys Res Commun 2008.371:707-712.
    [8]Ye X, Hama K, Contos JJ:LPA3-mediated lysophosphatidic acid signalling in embryo implantation and spacing. Nature 2005.435:104-108.
    [9]Kotaro H, Junken A, Koji B:Lysophosphatidic receptor, LPA3, is positively and negatively regulated by progesterone and estrogen in the mouse uterus. Life Sciences 2006,79:1736-1740.
    [10]Katarzyna K, Marta W, Iwona B:Quantitative expression of lysophosphatidic acid receptor 3 gene in porcine endometrium during the periimplantation period and estrous cycle. Prostaglandins other lipid mediators 2008, 85:26-32.
    [11]Hanna A, Avi T, Diana P:Defective endometrial prostaglandin synthesis identified in patients with repeated implantation failure undergoing in vitro fertilization. Fertility and Sterility 2010,94:1271-1278.
    [12]Qingxiang W, Teresa F, Pamela S:Reduced expression of biomarkers associated with the implantation window in women with endometriosis. Fertility and Sterility 2009,91:1686-1691.
    [13]Ye X, Hama K, Contos JJ:LPA3-mediated lysophosphatidic acid signalling in embryo implantation and spacing. Nature 2005,435:104-108.
    [14]孙玉英,陈少春,王素霞.超促排卵对子宫内膜容受性影响的研究进展.中国妇幼健康研究,2006,17(6):519-521.
    [15]Achache H, Revel A. Endometrial receptivity markers, the journey to successful embryo implantation. Hum Reprod Update,2006,12(6):731-46.
    [16]Ricardo Azziz。Keslie S. The Prevalence and Features of the Polycystic Ovary Syndrome in all Unselected Population. The Journal of Clinical Endocrinology and Metabolism,2004,89:2745-2749.
    [17]李蓉,乔杰,王威.多囊卵巢综合征患者着床窗口期子宫内膜容受性的改变.中国优生与遗传杂志.2007,15(10):23-28.
    [18]Ziecik A J, Bodek G, B litek A, et al. Nongonad al LH receptors, their involvement in female reproductive function and a new appl icable approach. Vet J,2005,169(1):75-84.
    [19]凌秀凤,李红霞.黄体生成素与辅助生殖.国外医学妇幼保健分册.2003,14(5):285-289.
    [20]陈蕾,白宏伟,尹善德,等.子宫内膜癌组织中黄体生成素及其受体的表达意义.第四军医大学学报.2007,(28)4:310-313.
    [21]Rao CV, Lei ZM. Consequences.of targeted inactivation of LH receptors. Mol Cell Endocrinol,2002,187(1):57-67.
    [22]Balen AH. Hypersecretion of luteinizing hormone and polycystic ovary syndrome. Hum Reprod,1993,8:123.
    [23]Shimizu M, Saitoh Y, Itoh H. Immunohistochemical staining of Ha ras oncogene product in normal, benign, and malignant human pancrestic tissue. Hum Pathol,1990,21 (6):606-612.
    [24]Linda C Giudice. Application of functional genomics to primate endometrium: insights into biological processes. Reproductive Biology and Endocrinology 2006,4(1):201-212.
    [25]Ye X. Lysophospholipid signaling in the function and pathology of the reproductive system. Hum Reprod Update.2008.14:519-536.
    [26]Hanna Achache, Avi Tsafrir, Diana Prus, Defective endometrial prostaglandin synthesis identified in patients with repeated implantation failure undergoing in vitro fertilization. Fertility and Sterility 2010,94:1271-1278.
    [27]Wei Q, St Clair JB, Fu T, Reduced expression of biomarkers associated with the implantation window in women with endometriosis. Fertil Steril 2009;91:1686-1691.
    [28]Ye X. Jerold Chun. Lysophosphatidic Acid (LPA) signaling in vertebrate reproduction. Trends Endocrinol Metab.2010.21(1):17-26.
    [29]Cooke PS, Buchanan DL. Lubahn DB, et al. Mechanism of estrogen action: lesions from the estrogen receptor-a knockout mouse. Bio Reprod, 1998,59(3):470-475.
    [30]Diao H, Aplin JD, Xiao S:Altered spatiotemporal expression of collagen types Ⅰ.Ⅲ,Ⅳ, and Ⅵ in Lpar3-deficient peri-implantation mouse uterus. Biology of Reproduction 2011,84(2):255-265.
    [31]龚萍,黄光英.环氧化酶在胚泡着床中的作用.生殖与避孕.2004,24(6):360-364.
    [32]韩省华,吴素清,李慧卿,等。反复早期自然流产患者绒毛、蜕膜组织中溶血磷脂酸受体3和环氧合酶2的表达。河北医药。2010,32(2):123-136.
    [33]HalderJB,Zh aoX.So kerS,et al.Differential expression of VEGF isoforms and VEGF(164)-specific receptor neuropilin-1 in the mouse uterus suggesta role for V EGF(164) in vascular permeability and angiogenesis during implantation. Genesis,2000,26(3):213-24.
    [34]Bstndig B, Cedrin-Durnerin I, Hugues JN. Effectiveness of low dose of gonadotropin releasing hormone agonist on hormonal flare-up. J Assist Reprod Genet,2000,17:113-117.
    [35]高敏芝,张慧琴,张兆贵.控制性超排卵对子宫内膜容受性的影响.复旦学报(医学版),2009,36(2):248-25.
    [36]Bourgain C, Devroey P. The endometrium in stimulated cycles for IVF. Hum Reprod Update,2003,9(6):515-522.
    [37]Creus M, Ordi J, Fabregues F, et al. The effect of different hormone therapies on integrin expression and pinopode formation in the human endometrium:a controlled study. Hum Reprod,2003,18(4):683-693.
    [38]罗国群,符爱珍,陈丽GnRHa长方案超促排卵对种植窗ICAM-1表达的影响极其机制的探讨.中国优生与遗传杂志.2007,15(6):25-28.
    [39]Develioglu OH ,Hsiu J G,Nikas G,et al. Endometrial estrogen and progesterone receptor and pinopode expression in stimulated cycles of oocyter donors. Fetil Steri 1,1999.71(6):1040-1047.
    [40]Noci I,Borri P,Coccia ME, et al. Hormonal patterns, steroid receptors and morphological pictures of endometrium in hyperstimulated IVF cycles. Eur J Obstet Gynecol Reprod Biol,1997,75 (2):215-220.
    [41]Liu Y, Lee KF, H. Y. Ng E, et al. Gene expression profiling of human peri-implantation endometria between natural and stimulated cycles. Fertil Steril,2008,90(6):2152-64.
    [42]Fazleabas AT, Bell SC, Fleming S, et al. Distribution of integrins and the extracellular matrix proteins in t he baboon endometrium during t he menstrual cycle and early pregnancy. Biol Reprod,1997,56 (2):348-356.
    [43]Iwahashi M. Muragaki Y, Ooshima A, et al. Decreased type IV collagen expression by human decidual tissues in spontaneous abortion. Clin Endocrinol Metab 1996; 81:2925-2929.
    [44]Jokimaa V, Oksjoki S, Kujari H. et al. Altered expression of genes involved in the production and degradation of endometrial extracellular matrix in patients with unexplained infertility and recurrent miscarriages. Mol Hum Reprod 2002; 8:1111-1116.
    [45]Richardson LC, Pollack LA. Therapy insight:Influence of type 2 diabetes on the development, treatment and outcomes of cancer. Nat Clin Pratt Oneol, 2005,2(1):48-53.
    [46]Benson S, Janssen 0 E. Hahn S, et al. Obesity depression and chronic low-grade inflammation in women with polycystic ovary syndrome. Brain Behavior and Immunity,2008,22:177-184.
    [47]Senn JJ, Klover PJ. Nowak IA, et al. Suppressor of cytokine signaling-3(SOCS-3):A potential mediator of interleukin-6 dependent insulin resistanc hepatocytes. Biol Chem.2003,278:13740-13746.
    [48]Rotter V, Nagaev I, Smith U. Interleukin—6(IL—6)induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor neerosis factor-alpha. overexpresstion in human fat cells from insulin-resistance subjects. Biol Chem,2006,278(46):45777-45784.
    [49]Moolenaar WH, van Meeteren LA, Giepmans BN. The ins and outs of Iysophosphatidic acid signaling. Bioessays,2004,26:870-881.
    [50]Amato G, Come M, Mazziotti G. Serum and follicur fluid cytokines in polycystic ovary syndrome during stimulated cycles[J]. Obstet Gynecol, 2007,101(6):1177-1182.
    [51]Chishima F, H ayakawa S, Sugita K et al. Increased express ion of cyclooxygenase-2 in local lesion s of endometrios in patients. Am J Reprod Immuno,l 2002,48-50
    [52]侯灵彤,周跃闻,张宇新等.COX-2在多囊卵巢综合症患者子宫内膜的表达.中国妇幼保健.2011,26:494-497.
    [53]Kim J, Keys JR, Eckhart AD:Vascular smooth musucle migration and proliferation in response to lysophosphatidic acid(LPA) is mediated by LPA receptors to Gq. Cell Signal 2006; 18:1695-170.
    [54]Basu GD, Pathangey LB, T inder TL et al. Mechanisms underlying the growth inhibitory effects of the cyclooxygenase-2 inhibitor celecoxib in human breast cancer cells. Breast Cancer Res,2005,7:R422.
    [55]傅强,王志宏,辛资锦.高糖对大鼠肾小球系膜细胞LPA3 (edg-7)表达影响及姜黄素的干预作用.中国实验诊断学.2009,1(13):43-47.
    [56]Fiad TM, Cunninghum SK, Mekenna RA, et al. Role of progesterone deficiency in the development of luteinizing hormone and androgen abnormalities in polycystic ovary syndrome. Eur J Endocrinol,1996, 135:335-339.
    [57]Quezada S, AveUaira C, Johnson MC, et al. Evaluation of steroid receptors, coregulators, and molecules associated with uterine receptivity in secretory endometria from untreated women with polycystic ovary syndrome. Fertil Steril,2006,85(4):1017-1026.
    [58]王丽娜,乔杰,李蓉.多囊卵巢综合征患者种植窗口期子宫内膜容受性的研究.中华妇产科杂志,2007,5(42):298-231.
    [59]Roest J, van Heusden, A.M, Verhoeff et al. A triplet pregnancy after in vitro fertilization is a procedure-related complication that should be prevented by replacement of two embryos only. Fertil Steril,1997,67:290-295.
    [60]Bruce S. Shapiro, Said T. Daneshmand, Forest C. Garner.et al. Evidence of impaired endometrial receptivity after ovarian stimulation for in vitro fertilization:a prospective randomized trial comparing fresh and frozen-thawed embryo transfer in normal responders.
    [61]Wang JX, Yap YY,Matthews CD. Frozen-thawed embryo transfer:influence of clinical factors on implantation rate and risk of multiple conception. Hum Reprod 2001:16(11):2316-9.
    [62]Noyes N, Liu HC, Sultan K, et al. Endometrial Thickness appears to be a significant factor in embryo implantation in in-vitro fertilization. Hum Reprod 1995;10(4):919-22.
    [63]ShiY, GuoM, YanJ, et al. Analysis of clinical characteristics in large-scale Chinese women with polycystic ovary syndrome. Neuro Endocrinol Lett.2007,28(6).
    [64]Muasher S.J, Krutitoff, C, Simonetti, et al. Controlled preparation of the endometrium with exogenous steroids for the transfer of frozen-thawed pre-embryos in patients with anovulatory or irregular cycles. Hum. Reprod.1991,6:443-445.
    [65]Alex Simon, Arye Hurwitz, Bat-Sheva Zentner, et al. Transfer of frozen-thawed embryos in artificially prepared cycles with and without prior gonadotrophin-releasing hormone agonist suppression:a prospective randomized study. Hum Reprod,1998,13:2712-2717.
    [66]Griesingerl, M. Weig, A. Schroer, et al. Mid-cycle serum levels of endogenous LH are not associated with the likelihood of pregnancy in artificial frozen-thawed embryo transfer cycles without pituitary suppression Human Reproduction,22:112-115.
    [67]T.El-Toukhy, A.Taylor, Y.Khalaf,et al. Pituitary suppression in ultrasound-monitored frozen embryo replacement cycles. A randomised study. Human Reproduction,2004,19(4):874-879.
    [68]乐杰.妇产科学[M].北京:人民卫生出版社,2008:313-316.
    [69]Giudice LC. Endometrium in PCOS:implamation and predisposition to endocrine CA. Best Pratt Res Clin Endocrinol Metab,2006,20(2):235-244.
    [70]Elizur SE, Lerner-Geva L, Levron J,et al. Factors predicting IVF treatment outcome:a multivariate analysis of 5310 cycles. Reprod Biomed Online 2005;10(5):645-649.
    [71]Jansen RP. The effect of female age on the likelihood of a live birth from one in-vitro fertilisation treatment. Med J Australia 2003;178(6):258-261.
    [72]宋娟,陈士岭.PCOS不孕患者的卵子和胚胎质量与临床特征及治疗结局关系的研究。硕士论文,2008.
    [73]Meriano Js, Alexis J.Visram-Zaver S, et al. Tracking of occyte dysmorphism for ICSI patients may prove relevant to the outcome in subsequent patient cycles. Hum Reprod.2001,16:2118-2123.
    [74]Kodama H, Fukuda J, Karube H, et al. High incidence of embryo transfer cancellations in patients with polycystic ovarian syndrome. Hum Reprod. 1995,10:1962-1967.
    [75]Antoine JM, Merviel P,Cornet D, et al. Therapeutic management of ovarian dystrophy and insufficiency in abortion disorders:recent date. Gynecol Obstet Fertil.2000,28(3):205-210.
    [76]Ma WG, Song H, Das SK, Paria BC, Estrogen is a critical determinant that specifies the duration of the window of uterine receptivity for implantation. Proc National Acad Sci, USA 2003;100(5):2963-2968.
    [77]Remohi J, Vidal A, Pellicer A.Oocyte donation in low responders to conventional ovarian stimulation for in-vitro fertilisation. Fertil Steril,1993: 59:1208-1215.
    [78]Webber LJ, Stubbs S, Stark J, et al. Formation and early development of follicles in the polycystic ovary. Lancent.2003,302:1017-1021.
    [79]庄广伦.现代辅助生育技术.北京,人民卫生出版社,2005.
    [80]Ziecik AJ, Derecka-Reszka K and Rzucidlo SJ. Extragonadal gonadotropin receptors their distribution and function. J Physiol Pharmacol,1992,4:33-49.
    [81]Pellatt L,Hanna L,Brincat M,et al. Granulosa cell production of anti-Mullerian hormone is increased in Polycystic Ovaries. Journal of Clinical Endocrinology an Metabolism,2007,92:240-245.
    [82]邹燕琴,李红.多囊卵巢综合症患者自然流产的相关因素分析.国外医学计划生育分册.2004,23(4):219-221.
    [83]Ku SY, Choi YM, Suh CS, et al. Effect of gonadotropins on human endometrial cell proliferation in vitro. Arch Gynecol Obstet.2002:223-228.
    [84]Griesinger, M. Weig, A. Schroerl, et al.Mid-cycle serum levels of endogenous LH are not associated with the likelihood of pregnancy in artificial frozen-thawed embryo transfer cycles without pituitary suppression Human Reprod,2007(22):2589-2593.
    [85]Leal AlmeidaM, Saucedo de la Llata E, Batiza Resendiz V.Endometrial thickness. Prognostic factor in assisted reproduction? [Spanish] Ginecologiay Obstetricia de Mexico 2004:72:116-119.
    [1]Lygia T. Budnik, Amal K, Mukhopadhyay. Lysophosphatidic acid and its Role in reproduction. Biol Reprod.2002.66:859-865.
    [2]Ye X. Lysophospholipid signaling in the function and pathology of the reproductive system. Hum Reprod Update.2008.14:519-536.
    [3]Ye X. Jerold Chun. Lysophosphatidic Acid (LPA) signaling in vertebrate reproduction. Trends Endocrinol Metab.2010.21(1):17-26.
    [4]Nakanaga K, Hama K. Aoki J:Autotaxin—An LPA producing enzyme with diverse functions. J Biochem 2010;148:13-24.
    [5]Gardell SE, Dubin AE, Chun J. Emerging medicinal roles for lysophospholipid signaling. Trends Mol Med 2006;12:65-75.
    [6]Tanyi JL. Hasegawa Y, Lapushin R et al. Role of decreased levels of lipid phosphate phosphatase-1 in accumulation of lysophosphatidic acid in ovarian cancer. Clin Cancer Res,2003,10(1):3534-3545.
    [7]Moolenaar WH. Lysophosphatidic signaling. Curr Opin Cell Biol 1995,7:203-210.
    [8]Pustilnik TB, Estrella V, Wiener JR. et al Lysophosphatidic acid induces urokinase secretion by ovarian cancer cells. Clin Cancer Res.1999, 11:3704-3710.
    [9]Stahle M, Veit C, Bachfischer U, et al. Mechanisms in LPA induced tumor cell migration:Critical role of phosphorylated ERK. J Cell Sci 2003;116:3835-3846.
    [10]Budnik LT,Mukhopadhyay AK. Lysophosphatidic acid antagonizes the morphoregulatory effects of luteinizing hormone on luteal cells:possible role of small Rho-G-proteins. Biol Reprod,2001,65:180-187.
    [11]Shiokawa S, Sakai K, Akinio Y, et al. Function of the small guanosinetrisphosphate binding protein RhoA in the process of implantation. Clin Endocrinol Metab,2000.85:4742-4749.
    [12]van Dijk MC, Postma F, Hilkamann H. et al.Exogenous phospholipase D generates lysophosphatidic acid and activates ras, rho and Ca2+ signaling pathways. Curr Biol 1998,8:386-392.
    [13]Kim J, Keys JR. Eckhart AD:Vascular smooth musucle migration and proliferation in response to lysophosphatidic acid(LPA) is mediated by LPA receptors to Gq. Cell Signal 2006; 18:1695-1701.
    [14]Choi JW, Herr DR, Noguchi K, Yung YC, et al. LPA Receptors:Subtypes and Biological Actions. Annu Rev Pharmacol.2009 In press.
    [15]Tabata K, Baba K, Shiraishi A. et al. The orphan GPCR GPR87 was deorphanized and shown to be alysophosphatidic acid receptor. Biochem Biophys Res Commun 2007 363:861-866.
    [16]Murakami M, Shiraishi A, Tabata K, et al. Identification of the orphan GPCR, P2Y(10) receptor as the sphingosine-1-phosphate and lysophosphatidic acid receptor. Biochem Biophys Res Commun 2008,371:707-712.
    [17]Tokumura A, Kanaya Y, Miyake M, et al. Increased production of bioactive lysophosphatidic acid by serum lysophospholipase D in human pregnancy. Biol Reprod 2002:67:1386-1392.
    [18]Chen SU, Chou CH, Lee H, et al.Lysophosphatidic acid up-regulates expression of interleukin-8 and -6 in granulosa-lutein cellsthrough its receptors and nuclear factor-kappaB-dependent pathways:implications for angiogenesis of corpus luteum and ovarian hyperstimulation syndrome. J Clin Endocrinol Metab 2008,93:935-943.
    [19]Komatsu J, Yamano S, Kuwahara A, et al. The signaling pathways linking to lysophosphatidic acid-promoted meiotic maturation in mice. Life Sci 2006.79:506-511.
    [20]Niesporek S, Denkert C, Weichert W,et al. Expression of lysophosphatidic acid acyltransferase beta (LPAAT-beta) in ovarian carcinoma:correlation with tumour grading and prognosis. Br J Cancer 2005,92:1729-1736.
    [21]Ye X, Hama K, Contos JJ, et al. LPA3-mediated lysophosphatidic acid signalling in embryo implantation and spacing. Nature 2005,435:104-108.
    [22]Contos JJ, Ishii I, Chun J. Lysophosphatidic acid receptors. Mol Pharmacol 2000;58:1188-1196.
    [23]Yue J, Yokoyama K, Balazs L, et al. Mice with transgenic over expression of lipid phosphate phosphatase-1 display multiple organotypic deficits without alteration in circulating lysophosphatidate level. Cell Signal 2004;16:385-399.
    [24]Ye X, Skinner MK, Kennedy G, Chun J. Age-dependent loss of sperm production in mice via impaired lysophosphatidic acid signaling. Biol Reprod 2008;79:328-336.
    [25]Guo R, Kasbohm EA, Arora P, et al. Expression and function of lysophosphatidic acid LPA1 receptor in prostate cancer cells. Endocrinology 2006;147:4883-4892.
    [26]Raj GV, Sekula JA, Guo R,et al. Lysophosphatidic acid promotes survival of androgen-insensitive prostate cancer PC3 cells via activation of NF-kappaB. Prostate 2004;61:105-113.
    [27]Kunikata K, Yamano S, Tokumura A, et al. Effect of lysophosphatidic acid on the ovum transport in mouse oviducts. Life Sci 1999,65:833-840.
    [28]Contos JJ, Ishii I. Fukushima N.et al. Characterization of lpa(2) (Edg4) and lpa(1)/lpa(2) (Edg2/Edg4) lysophosphatidic acid receptor knockout mice: signaling deficits without obvious phenotypic abnormality attributable to lpa(2). Mol Cell Biol 2002.22:6921-6929.
    [29]Kobayashi T, Yamano S, Murayama S. et al. Effect of lysophosphatidic acid on the preimplantation development of mouse embryos. FEBS Lett 1994:351.38-40.
    [30]van Meeteren LA, Ruurs P, Stortelers C, et al. Autotaxin, a secreted lysophospholipase D, is essential for blood vessel formation during development. Mol Cell Biol 2006,26:5015-5022.
    [31]Lloyd B, Tao Q, Lang S.et al. Lysophosphatidic acid signaling controls cortical actin assembly and cytoarchitecture in Xenopus embryos. Development 2005.132:805-816.
    [32]Kimura Y, Schmitt A, Fukushima N,et al. Two novel Xenopus homologs of mammalian LP(Al)/EDG-2 function as lysophosphatidic acid receptors in Xenopus oocytes and mammalian cells. J Biol Chem 2001,276:15208-15215.
    [33]Seo H, Kim M, Choi Y, et al.Analysis of lysophosphatidic acid (LPA) receptor and LPA induced endometrial prostaglandin-endoperoxide synthase 2 expression in the porcine uterus. Endocrinology 2008;149:6166-6175.
    [34]Woclawek-Potocka I. Komiyama J, Saulnier-Blache JS, et al. Lysophosphatic acid modulates prostaglandin secretion in the bovine uterus. Reproduction 2009.137:95-105.
    [35]Kim H, Lee J, Kim S, et al. Differential expression of phospholipases D1 andD2 in mouse tissues. Cell Biol Int 2007;31:148-155.
    [36]Kaminska K, Wasielak M, Bogacka I, et al. Quantitative expression of lysophosphatidic acid receptor 3 gene in porcine endometrium during the periimplantation period and estrous cycle. Prostaglandins Other Lipid Mediat 2008;85:26-32.
    [37]Hama K, Aoki J. Bandoh K. et al. Lysophosphatidic receptor, LPA3, is positively and negatively regulated by progesterone and estrogen in the mouse uterus. Life Sci 2006;79:1736-1740.
    [38]Hama K. Aoki J, Inoue A, Embryo spacing and implantation timing are differentially regulated by LPA3-mediated lysophosphatidic acid signaling in mice. Biol Reprod 2007;77:954-959.
    [39]Kinoshita K, Satoh K, Ishihara O, et al. Involvement of prostaglandins in implantation in the pregnant mouse. Adv Prostaglandin Thromboxane Leukot Res 1985:15:605-607.
    [40]Woclawek-Potocka I. Kondraciuk K. Skarzynski DJ. Lysophosphatidic Acid Stimulates Prostaglandin E2 Production in Cultured Stromal Endometrial Cells through LPA1 Receptor. Exp Biol Med (Maywood) 2009:234:986-93.
    [41]Woclawek-Potocka I, Brzezicka E, Skarzynski DJ. Lysophosphatic Acid Modulates Prostaglandin Secretion in the Bovine Endometrial Cells Differently on Days 8-10 of the Estrous Cycle and Early Pregnancy. J Reprod Dev.2009 In press.
    [42]Bulun SE. Endometriosis. N Engl J Med 2009;360:268-279.
    [43]Wei Q, St Clair JB, Fu T, Reduced expression of biomarkers associated with the implantation window in women with endometriosis. Fertil Steril 2009:91:1686-1691.
    [44]Lin CI, Chen CN, Huang MT, Lysophosphatidic acid upregulates vascular endothelial growth factor-C and tube formation in human endothelial cells through LPA (1/3), COX-2, and NF-kappaB activation-and EGFR transactivation-dependent mechanisms. Cell Signal 2008;20:1804-1814.
    [45]Hanna Achache, Avi Tsafrir, Diana Prus, Defective endometrial prostaglandin synthesis identified in patients with repeated implantation failure undergoing in vitro fertilization. Fertility and Sterility 2010,94:1271-1278.
    [46]Shiokawa S, Sakai K, Akimoto Y, et al. Function of the small guanosine triphosphate-binding protein RhoA in the process of implantation. J Clin Endocrinol Metab 2000;85:4742-4749.
    [47]Chen SU, Lee H, Chang DY, et al. Lysophosphatidic acid mediates interleukin-8 expression in human endometrial stromal cells through its receptor and nuclear factor-kappaB-dependent pathway:a possible role in angiogenesis of endometrium and placenta. Endocrinology 2008;149:5888-5896.
    [48]Yakubu MA, Leffler CW. Enhanced pial arteriolar sensitivity to bioactive agents following exposure to endothelin-1. Life Sci 2000;66:307-316.
    [49]李留霞,周蔚,乔玉环等。妊娠期高血压疾病患者胎盘组织中溶血磷脂酸受体蛋白Edg4、7的表达及其意义。中华妇产科杂志。2007(6):172-174.
    [50]Tokumura A, Kanaya Y, Miyake M,et al. Increased production of bioactive lysophosphatidic acid by serum lysophospholipase D in human pregnancy. Biol Reprod 2002;67:1386-1392.
    [51]van Nieuw Amerongen GP, Vermeer MA,et al. Role of RhoA and Rho kinase in lysophosphatidic acid-induced endothelial barrier dysfunction. Arterioscler Thromb Vasc Biol 2000;20:E 127-133.
    [52]Hope JM, Wang FQ, Whyte JS, LPA receptor 2 mediates LPA-induced endometrial cancer invasion. Gynecol Oncol 2009; 112:215-223.
    [53]Billon-Denis E, Tanfin Z, Robin P. Role of lysophosphatidic acid in the regulation of uterine leiomyoma cell proliferation by phospholipase D and autotaxin. J Lipid Res 2008;49:295-307.
    [54]韩省华,吴素清,李慧卿,等。反复早期自然流产患者绒毛、蜕膜组织中溶血磷脂酸受体3和环氧合酶2的表达。河北医药。201032(2):123-136.
    [55]Jarvis AA, Cain C, Dennis EA. Purification and characterization of a lysophospholipase from human amnionic membranes. J Biol Chem 1984; 259:15188-15195.
    [56]Gogarten W, Emala CW, Lindeman KS, et al. Oxytocin and lysophosphatidic acid induce stress fiber formation in human myometrial cells via a pathway involving Rho-kinase. Biol Reprod 2001;65:401-406.
    [57]Nilsson UK, Grenegard M, Berg G, Different proliferative responses of Gi/o-protein coupled receptors in human myometrial smooth muscle cells. A possible role of calcium. J Mol Neurosci 1998; 11:11-21.
    [58]Mikamo H, Kawazoe K, Sato Y, et al. Preterm labor and bacterial intra-amniotic infection:arachidonic acid liberation by phospholipase A2 of Prevotella bivia. Anaerobe 1998:4:209-212.
    [59]Mikamo H, Kawazoe K, Sato Y, et al. Preterm labor and bacterial intraamniotic infection:arachidonic acid liberation by phospholipase A2 of Fusobacterium nucleatum. Am J Obstet Gynecol 1998; 179:1579-1582.
    [60]Moolenaar WH, van Meeteren LA, Giepmans BN. The ins and outs of lysophosphatidic acid signaling. Bioessays,2004,26:870-881.
    [61]Li H. Ye X, Mahanivong C, et al. Signaling mechanisms responsible for lysophosphatidic acid-induced urokinase plasminogen activator expression in ovarian cancer cells. J Biol Chem 2005,280:10564-10571.
    [62]Mahanivong C, Chen HM, Yee SW,et al. Protein kinase Calpha-CARMA3 signaling axis links Ras to NF-kappa B for lysophosphatidic acid-induced urokinase plasminogen activator expression in ovarian cancer cells. Oncogene 2008;27:1273-1280.
    [63]Chou CH, Wei LH. Kuo ML.et al. Up-regulation of interleukin-6 in human ovarian cancer cell via a Gi/PI3K-Akt/NF-kappaB pathway by lysophosphatidic acid, an ovarian cancer-activating factor. Carcinogenesis 2005;26:45-52.
    [64]Fang X, Yu S, Bast RC, et al. Mechanisms for lysophosphatidic acid-induced cytokine production in ovarian cancer cells. J Biol Chem.2004:279:9653-9661.
    [65]Kang YC, Kim KM, Lee KS,et al. Serum bioactive lysophospholipids prevent TRAIL-induced apoptosis via PI3K/Akt-dependent cFLIP expression and Bad phosphorylation. Cell Death Differ 2004;11:1287-1298.
    [66]Kitayama J, Shida D, Sako A, et al. Over-expression of lysophosphatidic acid receptor-2 in human invasive ductal carcinoma. Breast Cancer Res 2004; 6: R640-R646.
    [67]Chen M, Towers LN, O'Connor KL. LPA2 (EDG4) mediates Rho-dependent chemotaxis with lower efficacy than LPA1 (EDG2) in breast carcinoma cells. Am J Physiol Cell Physiol 2007;292:C1927-C1933.
    [68]Stadler CR, Knyazev P, Bange J, et al. FGFR4 GLY388 isotype suppresses motility of MDA-MB-231 breast cancer cells by EDG-2 gene repression. Cell Signal 2006; 18:783-794.
    [69]Boucharaba A, Serre CM, Guglielmi J, et al.The type 1 lysophosphatidic acid receptor is a target for therapy in bone metastases. Proc Natl Acad Sci USA 2006; 103:9643-9648.
    [70]Boerner JL, Biscardi JS, Silva CM, et al. Transactivating agonists of the EGF receptor require Tyr 845 phosphorylation for induction of DNA synthesis. Mol Carcinog 2005;44:262-273.
    [71]Guo R, Kasbohm EA, Arora P,et al. Expression and function of lysophosphatidic acid LPA1 receptor in prostate cancer cells. Endocrinology 2006;147:4883-4892.
    [72]Kue PF, Taub JS, Harrington LB, et al. Lysophosphatidic acid-regulated mitogenic ERK signaling in androgen-insensitive prostate cancer PC-3 cells. Int J Cancer 2002;102:572-579.
    [73]Raj GV, Sekula JA, Guo R,et al.Lysophosphatidic acid promotes survival of androgen-insensitive prostate cancer PC3 cells via activation of NF-kappaB. Prostate 2004;61:105-113.
    [74]Sivashanmugam P, Tang L, Daaka Y.et al. Interleukin 6 mediates the lysophosphatidic acid-regulated cross-talk between stromal and epithelial prostate cancer cells. J Biol Chem 2004:279:21154-21159.
    [75]Sakamoto S, Yokoyama M, Zhang X. et al. Increased expression of CYR61, an extracellular matrix signaling protein, in human benign prostatic hyperplasia and its regulation by lysophosphatidic acid. Endocrinology 2004:145:2929-2940.
    [76]Hwang YS, Hodge JC, Sivapurapu N.et al. Lysophosphatidic acid stimulates PC-3 prostate cancer cell Matrigel invasion through activation of RhoA and NF-kappaB activity. Mol Carcinog 2006;45:518-529.
    [77]Gabardi S, Cerio J. Future immunosuppressive agents in solid-organ transplantation. Prog Transplant,2004;14:148-156.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700