卵巢癌c-Fos的表达及其与MAPK信号通路关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究c-Fos蛋白在人卵巢癌细胞和组织中的表达及其与丝裂原活化蛋白激酶(mitogen activated protein kinases, MAPKs)信号通路关系的研究。
     方法:采用MaxVisionTM免疫组织化学法研究c-Fos蛋白和磷酸化细胞外调节激酶1/2(phosphated extracellular-signal regulated kinase 1/2, p-ERK1/2)蛋白在正常卵巢组织、卵巢良性肿瘤组织、上皮性卵巢癌组织中的表达,用MTT比色法检测PD98059对卵巢癌细胞株HO-8910活性的影响,用流式细胞仪检测PD98059对HO-8910细胞周期的变化,用MaxVisionTM免疫细胞化学法研究c-Fos蛋白的表达,用western blot检测细胞内c-Fos蛋白及p-ERK1/2蛋白的表达。
     结果:c-Fos蛋白及p-ERK1/2蛋白在上皮性卵巢癌组织中过度表达,与正常卵巢组织、卵巢良性肿瘤组织相比差异十分显著,并且c-Fos蛋白和p-ERK1/2蛋白的表达量与分化程度呈负相关(rs= -0.445, P<0.01; rs=-0.389, P <0.05 respectively),与临床分期呈正相关( rs=0.492, P<0.01; rs=0.521, P <0.01 respectively),与淋巴结转移呈正相关(rs=0.338, P <0.05; rs=0.343, P <0.05 respectively),与年龄、组织学类型等无关。并且卵巢癌中c-Fos蛋白表达与p-ERK1/2蛋白表达呈正相关(rs=0.409, P<0.01)。与对照组相比,150μmol/L和200μmol/L PD98059组可显著降低人卵巢癌细胞株HO-8910的活性(P<0.01);PD98059呈浓度依赖性抑制细胞p-ERK1/2蛋白的表达及抑制细胞进入S期(P<0.01);PD98059还能抑制细胞内c-Fos蛋白的表达。
     结论:ERK1/2信号通路可能通过c-Fos蛋白而促进卵巢癌的发生。
Objective: To study the expression of c-Fos in the human ovarian carcinoma tissues and cell line HO-8910 and the role of c-Fos in the mitogen activated protein kinases(MAPKs) signal transduction in the human ovarian carcinoma.
     Methods: The MaxVisionTM immunohischemistry was used to observe the expression of c-Fos and phosphated extracellular-signal regulated kinase 1/2(p-ERK1/2) in the normal ovary tissues, benign ovary tissues and epithelial ovarian carcinoma. The MTT was used to observe the effect of PD98059 on the viability of human ovarian carcinoma cell line HO-8910 and the flow cytometry was utilized to observe the cell cycle. The MaxVisionTM immunocytochemistry was used to observe the expression of c-Fos in the human ovarian carcinoma cell line HO-8910. The western blot was used to observe the content of p-ERK1/2 and c-Fos in the human ovarian carcinoma cell line HO-8910.
     Results: Compared with the normal ovary tissues and benign ovary tissues, the contents of c-Fos and p-ERK1/2 in the epithelial ovarian carcinoma increased significantly. We also inverstigated that the expression of c-Fos and p-ERK1/2 in ovarian carcinoma were correlated with differentiation negatively (rs=-0.445, P =0.004; rs=-0.389, P <0.05 respectively), with clinical staging positively (rs=0.492, P=0.001; rs=0.521, P <0.01 respectively), with lymphatic metastasis positively (rs=0.338, P=0.033; rs=0.343, P <0.05 respectively) and had no correlation with age and histological types. The expression of c-Fos in ovarian carcinoma was correlated with p-ERK1/2 positively (rs=0.409, P<0.01). Compared with the control group, PD98059 with 150μmol/L and 200μmol/L concentration could significantly inhibit the viability of the ovarian carcinoma cell line HO-8910 (P<0.01); PD98059 could inhibit the content of p-ERK1/2 and S-phase entry of the ovarian carcinoma cell in a dose-dependent manner (P<0.01); PD98059 could also inhibit the expression of c-Fos in the cells.
     Conclusion: ERK1/2 might play an important role in the initiation and development of the ovarian carcinoma through c-Fos.
引文
[1] Jemal A, Murray T, Ward E, et al. Cancer statistics[J]. CA Cancer J Clin, 2005, 55(1): 10-30.
    [2] Natarajan M, Saravanan SM, Elson DL. Advanced ovarian carcinoma as a chronic disease: a case report and review[J]. S D J Med, 2003, 56(12):515-521.
    [3] Santen RJ, Song RX, McPherson R, et al. The role of mitogen-activated protein (MAP)kinase in breast cancer[J]. J Steroid Biochem Mol Biol, 2002, 80(2):239-256.
    [4] Dong C, Davis RJ, Flavell RA. Map kinases in the immune response[ J]. Annu Rev Immunol, 2002, 20: 55-72.
    [5] WangY, Kristensen GB, Helland A, et al. Protein Expression and prognostic value of genes in the erb-b signaling pathway in advanced ovarian carcinomas[J]. Am J Clin Patho1, 2005, 124(3): 392-401.
    [6] Chang L, Karin M. Mammalian MAP kinase signaling cascades[J]. Nature, 2001, 410(6824): 37- 40.
    [7] Hommes DW, Peppelenbosch MP, van Deventer SJ. Mitogen activated protein (MAP) kinase signal transduction pathways and novel anti- inflammatory targets[J]. Gut, 2003, 52(1): 144-151.
    [8] Boulton TG, Yancopoulos GD, Gregory JS, et a1. An insulin-stimulated-protein kinase similar to yeast kinases involved in cell cycle control[J]. Science, 1990, 249 (4964): 64- 67.
    [9] Kolch W. Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions[J]. Biochem J, 2000, 351(2): 289- 305.
    [10] Ballare C, Uhrig M, Bechtold T, et al. Two domains of the progesterone receptor interact with the estrogen receptor and are required for progesterone activation of the c-Src/Erk pathway in mammalian cells[J].Mol Cell Biol, 2003, 23(6): 1994- 2008.
    [11] van Straaten F, Muller R, Curran T, et a1.Complete nucleotide sequence of, a hunmn c-one gene:deduced amino acid sequence of the human c-fos protein[J].Proc Nat Acad Sci USA, 1983, 80: 3183-3187.
    [12]张果忠,熊杰,华晓宁.癫痫与原癌基因C-fos的研究近况[J].现代中医结合杂志,2002. 11(10): 985-986.
    [13]许建阳,王发强,刘庆安.原癌基因C-fos在痛觉调制的研究进展[J].医学综述,2001,7(10):581-582.
    [14] Angel P, Karin M. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation[J]. Biochim Biophys Acta, 1991, 1072(2-3): 129-157.
    [15] Allegretto EA, Smeal T, Angel P, et al. DNA-binding activity of Jun is increased through its interaction with Fos[J]. JCell Biochem, 1990, 42(4):193-206.
    [16] Agarwal SK, Guru SC, Heppner C, et al. Menin interacts with the AP1 transcription factor JunD and represses JunD-activated transcription[J]. Cell, 1999, 96(1):143-152.
    [17] Inamoto T, Azuma H, Sakamoto T, et a1. Invasive ability of human renal cell carcinoma cell line Caki-2 is accelerated by gamma-aminobutyric acid, via sustained activation of ERK1/2 inducible matrix metalloproteinases[J]. Cancer Invest, 2007, 25 (7): 574- 583.
    [18] Zeng Q, Chen GG, Vlantis AC, et a1. Oestrogen mediates the growth of human thyroid carcinoma cells via an oestrogen receptor-ERK pathway[J]. Cell Prolif, 2007, 40(6): 921- 935.
    [19] Kiyckawa E, Takai S, Tanaka M, et al. Overexpression of ERK,an EPH family receptor protein tyrosine kinase, in various human tumors[J]. Cancer Res, 1994, 54(14): 3645-3650.
    [20] Mandell JW, Hussaini IM, Zecevic M, et al. Immunchistochemical localization of activated ERK/MAP kinase in gial necplasms [J]. American J Pathology, 1998, 153(5): 1411-1423.
    [21] Manni A, Wechter R, Gilmour S, et a1. Omithine decarboxylase overexpression stimulates mitogen-activated protein kinase and anchorage-independent growth of human breast epithelial cells [J]. Int J Cancer, 1997, 70(2): 175-182.
    [22] Hirai SI, Ryseck RP, Mechta F, et al. Characterization of junD: a new member of the jun proto-oncogene family[J]. EMBO J, 1989, 8(5): 1433-1439.
    [23] Aronheim A, Zandi E, Hennemann H, et al. Isolation of an AP-1 repressor by a novel method for detecting protein-protein interactions[J]. Mol Cell Biol, 1997, 17(6): 3094-3102.
    [24] Ryder K, Lanahan A, Perez-Albuerne E, et al. jun-D: a third member of the jun gene family[J]. Proc Natl Acad Sci USA, 1989, 86(3):1500-1503.
    [25] Nishina H, Sato H, Suzuki T, et al. Isolation and characterization of fra-2, an additional member of the fos gene family[J]. Proc Natl Acad Sci USA, 1990, 87(9): 3619-3623.
    [26] Hartl M, Hutchins JT, Vogt PK. The chicken JunD gene and its product[J]. Oncogene, 1991, 6(9): 1623-1631.
    [27] Andresen BT, Rizzo MA, Shome K, et a1. The role of phosphatidic acidin the regulation of the Ras/MEK/Erk signaling cascade[J]. FEBS Lett, 2002, 53l(1): 65- 68.
    [28] Kato H, Nishida K, Yoshida A, et a1. Effect of NOS2 gene deficiency on the development of autoantibody mediated arthritis and subsequent articular cartilage degeneration[J]. J Rheumatol, 2003, 30(2): 247- 255.
    [29] Chabaud RM, Firestein GS. Expression and activation of mitogen-activated protein kinase kinases-3 and-6 in rheumatoid arthritis[J]. Am J Pathol, 2004, 164(1): 177- 184.
    [30] Dumont FJ, Staruch MJ, Fischer P, et a1. Inhibition of T cell activation by pharmacologic disruption of the MEK1/ERK MAP kinase or calcineurin signaling pathways results in differential modulation of cytokine production[J]. J Immunol, 1998, 160(6):2579-2589.
    [31] Sharp LL, Schwarz DA, Bott CM, et a1. The influence of the MAPK pathway on T cell lineage commitment[J]. Immunity, 1997, 7(5): 609-618.
    [32] Davidson B, Givant-Horwitz V, Lazarovici P, et a1. Matrix metalloproteinase (MMP), EMMPR IN(extracellular matrix metalloproteinase inducer) and mitotgen- activated protein kinases (MAPK): co-expression in metastatic serous ovarian carcinoma[J]. C1in Exp Metastasis, 2003, 20 (7): 62l- 631.
    [33] Choi KC, Tai CJ, Tzeng CR, et al. Adenosine triphosphate activates mitogen activated protein kinase in pre-neoplastic and neoplastic ovarian surface epithelial cells[J]. Biol Reprod, 2003, 68(1):309-315.
    [34] Wong AS, Kim SO, Leung PC, et al.Profiling of protein kinases in the neoplastic transformation of human ovarian surface epithelium[J]. Gynecol Oncol, 2001, 82(2): 305-311.
    [35] Hayakawa J, Ohmichi M, Kurachi H, et al.Inhibifon of extracellular signal-regulated protein kinase or c-Jun N-terminal protein kinase cascade, differentially activated by cisplatin, sensitizes human ovarian cancer cell line[]J. J Biol Chem, 1999, 274(44): 31648-31654.
    [36] Sengupta TK, Talbot ES, Scherle PA, et a1. Rapid inhibition of interleukin-6 signaling and Stats activation mediated by mitogen- activated protein kinase[]]. Proc Natl Acad Sci USA, 1998, 95(19): 11107- 11112.
    [37] Matsumoto E, Hatanaka M, Bohgaki M, et al. PKC pathway and ERK/MAPK pathway are required for induction of cyclin D1 and p21Waf1 during 12-o-tetradecanoylphorbol 13-acetate-induced differentiation of myeloleukemia cells[J]. Kobe J Med Sci, 2006, 52 (6): 181-194.
    [38] Yang C, Klein EA, Assoian RK, et al. Heregulin beta1 promotes breast cancer cell proliferation through Rac/ERK-dependent induction of cyclin D1 and p21Cip1[J]. Biochem J, 2008, 410(1):167-175.
    [39] Chiariello M, Gomez E, Gutkind JS. Regulation of cyclin-dependent kinase(Cdk)2 Thr-160 phosphorylation and activity by mitogen-activated protein kinase in late G1 phase[J]. Biochem J, 2000, 349(3): 869-876.
    [40] Yu L, Qi M, Sheff MA, Elion EA. Counteractive Control of Polarized Morphogenesis during Mating by Mitogen-activated Protein Kinase Fus3 and G1 Cyclin-dependent Kinase[J]. Mol Biol Cell, 2008, 19(4):1739-1752.
    [41] Hansen CA, Bartek J, Jensen S. A functional link between the human cell cycle-regulatory phosphatase Cdc14A and the atypical mitogen-activated kinase Erk3[J]. Cell Cycle, 2008, 7(3):325-334.
    [42] Fiddes RJ, Janes PW, Siverten SP, et al. Inhibition of the MAP kinase cascade blocks heregulin-induced cell cycle progression in T-47D human breast cancer cell[J]. Oncogene, 1998, 16(21):2803-2813.
    [43] Cohen DR, Ferreira PC, Gentz R, et al. The product of a fos-related gene, fra-1, binds cooperatively to the AP-1 site with Jun: transcription factor AP-1 is comprised of multiple protein complexes[J]. Genes Dev, 1989, 3(2):173-184.
    [44] Chatton B, Bocco JL, Gaire M, et al. Transcriptional activation by the adenovirus larger E1a product is mediated by members of the cellular transcription factor ATF family which can directly associate with E1a[J]. Mol Cell Biol, 1993, 13(1):561-670.
    [45] Hai T, Curran T. Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity[J]. Proc Natf Acad Sci USA, 1991, 88(9): 3720-3724.
    [46] Kovary K, Bravo R. Existence of different Fos/Jun complexes during the G0-to-G1 transition and during exponential growth in mouse fibroblasts: differential role of Fos proteins[J]. Mol Cell Biol, 1992, 12(11): 5015-5023.
    [47] Lallemand D, Spyrou G, Yaniv M, et al. Variations in Jun and Fos protein expression and AP-1 activity in cycling, resting and stimulated fibroblasts[J]. Oncogene, 1997, 14(7):819- 830.
    [48] McCabe LR, Kockx M, Lian J, et al. Selective expression of fos- and jun-related genes during osteoblast proliferation and differentiation[J]. Exp Cell Res, 1995, 218(1): 255- 262.
    [49] Sonnenberg JL, Macgregor-Leon PF, et al. Dynamic alterations occur in the levels and composition of transcription factor AP-1 complexes after seizure[J]. Neuron, 1989, 3(3):359- 365.
    [50] Weng CJ, Chau CF, Hsieh YS, et al. Lucidenic acid inhibits PMA-induced invasion of human hepatoma cells through inactivating MAPK/ERK signal transduction pathway and reducing binding activities of NF-kappaB and AP-1[J]. Carcinogenesis, 2008, 29(1):147-156.
    [51] Badger AM, Bradbeer JN, Votta B, et al. Pharmacological profile of SB203580, a selective inhibitor of cytokine suppressive binding protein/ p38 kinase, in animal models of althritis bone resorption, endotoxin shock and immune function[J]. J Pharmacol Exp Ther, 1996, 279(5): 1453-1461.
    [52] Ouyang X, Jessen WJ, Al-Ahmadie H, et al. Activator protein-1 transcription factors are associated with progression and recurrence of prostate cancer[J]. Cancer Res, 2008, 68(7):2132-2144.
    [53] Deng ZH, Wen JF, Li JH, et al.Activator protein-1 involved in growth inhibition by RASSF1A gene in the human gastric carcinoma cell line SGC7901[J].World J Gastroenterol, 2008, 14(9):1437-1443.
    [54] Ashktorab H, Daremipouran M, Wilson M, et al. Transactivation of the EGFR by AP-1 is induced by Helicobacter pylori in gastric cancer[J].Am J Gastroenterol, 2007, 102(10): 2135 -2146.
    [1] WangY, Kristensen GB, Helland A, et a1. Protein Expression and prognostic value of genes in the erb-b signaling pathway in advanced ovarian carcinomas[J]. Am J Clin Patho1, 2005, 124(3): 392-401.
    [2] Pearson G, Robinson F, Beers Gibson T, et al. Mitogen-activated protein(MAP) kinase pathways:regulation and physiological functions[J]. Endocr Rev, 2001, 22 (2): 153-83.
    [3]Soh JW, Mao Y, Liu L. Protein kinase G activates the JNK1 pathway via phosphorylation of MEKK1[J]. J Biol Chem, 2001, 276(19): 16406-16410.
    [4] Liao Y, Hung MC. Regulation of the activity of p38 mitogen activated protein kinase by Akt in cancer and adenoviral protein E1A-mediated sensitization to apoptosis[J]. Mol Cell Biol, 2003, 23(19): 6836-6848.
    [5] Oster SK, Mao DY, Kennedy J, et a1. Functional analysis of the N-termina1 domain of the Myc oncoprotein[J]. Oncogene, 2003, 22(13): 1998-2 010.
    [6] Tsuboi Y, Ichida T, Sugitani S, et a1. Overexpression of extracellular signal-regulated protein kinase and its correlation with proliferation in human hepatocellular carcinoma[J]. Liver Int, 2004, 24(5): 432-436.
    [7] Jiang K, Sun JZ, Cheng J, et a1. Akt mediates Ras downregulation of RhoB, a suppressor of transformation,invasion and metastasis[J]. Mol Cel Bio1, 2004, 24(12): 5565 -5576.
    [8] Beiner ME, Niv H, Haklai R, et al. Ras antagonist inhibits growth and chemosensitizes human epithelial ovarian cancer cells[J].Int J Gynecol Cancer, 2006, 16(Suppl 1): 200-206.
    [9] Yuen ST, Davies H, Chan TL, et a1. Similarity of the phenotypic patterns associated with BRAF and KRAS mutations in colorectal neoplasia[J]. Cancer Res, 2002, 62(22): 6451-6455.
    [10] McPhillips F, Mullen P, MacLeod KG, et al. Raf-1 is the predominant Raf isoform that mediates growth factor-stimulated growth in ovarian cancer cells[J]. Carcinogenesis, 2006, 27(4): 729-739.
    [11] Davidson B, Givant-Horwitz V, Lazarovici P, et a1. Matrix metalloproteinase (MMP),EMMPRIN(extracellular matrix metalloproteinase inducer )and mitotgen-activated protein kinases (MAPK):co-expression in metastatic serous ovarian carcinoma[J]. C1in Exp Metastasis, 2003, 20(7): 62l-631.
    [12] Steinmetz R, Wagoner HA, zeng P, et a1. Regu1ating the constitutive activation of the extraeellular signal-regulated kinase(ERK)signaling pathway in ovarian cancer and the effect of ribonuleiec acid interference for ERK1/2 on cancer cell proliferation [J]. Mol Endoerinol, 2004, 18(10): 2570-2582.
    [13] Hickson JA, Huo D, Vander Griend DJ, et al. The p38 kinases MKK4 and MKK6 suppress metastatic colonization in human ovarian carcinoma[J]. Cancer Res, 2006, 66(4): 2264-2270.
    [14] Yamada SD, Hickson JA, Hrobowski Y, et a1. Mitogen-activated protein kinase kinase 4 (MKK4)acts as a metastasis suppressor gene in human ovarian carcinoma[J]. Cancer Res,2002, 62(22): 6717-6723.
    [15] Thompsn N, Lyons J. Recent progress in targeting the Raf/MEK/ERK pathway with inhibitors in cancer drug discovery[J]. Curr Opin Pharmacol, 2005, 5(4): 350-356.
    [16] Clark JW, Eder JP, Ryan D, et a1. Safety and pharmacokinetics of the dual action raf kinase and vascular endothelial growth factor receptor inhibitor, BAY 43-9006, in patients with advanced, refractory solid tumors[J]. Clin Cancer Res, 2005, 11(15): 5472-5480.
    [17] Klintenas M, Osterstrom A, Dimberg J, et a1. Mutation analysis of the BRAF, ARAF and RAF-l genes in human colorectal adenocarcinomas[J]. Carcinogenesis, 2004, 25: 527-533.
    [18] Pal A, Ahmad A, Khan S, et a1. Systemic delivery of Raf siRNA using cationic cardiolipin liposomes silences Raf-l expression and inhibits tumor growth in xenograft model of human prostate cancer[J]. Int J Oncol, 2005, 26(4): 1087-1091.
    [19] Kim KY, choi KC, Park SH, et a1. Extracellular signal-regulated protein kinase, but not c-Jun N-terminal kinase, is activated by typeⅡgonadotropin releasing hormone involved in the inhibition of ovarian cancer cell proliferation[J]. J C1in Endocrinol Metab, 2005, 90(3): 1670-1677.
    [20] Wei SQ, Sui LH, Zheng JH, et a1. Role of ERK1/2 kinase in cisplatin-induced apoptosis in human ovarian carcinoma cells[J]. Chin Med Sci J, 2004, 19(2): 125- 129.
    [21] Qiu L, Di W, Jiang Q, et a1. Targeted inhibition of transient activation of the EGFR-mediated cell survival pathway enhances paclitaxel-induced ovarian cancer cell death[J]. Int J Oncol, 2005, 27(5): 144l-1448.
    [22] Li S, Miner K, Fannin R, et a1. Cyclooxygenase-l and 2 in normal and malignant human ovarian epithelium[J]. Gynecol Onco1, 2004, 92(2): 622-627.
    [23] Mohan S, Epstein JB. Carcinogenesis and cyclooxygenase:the potential role of COX-2 inhibition in upper aerodigestive tract cancer[J]. Oral Ontology, 2003, 39 (6): 537-546.
    [24] Denkert C, Fumtenberg A, Daniel PT, et a1. Induction of G0/G1 cell cycle arrest in ovarian carcinoma cells by the anti-inflammatory drug NS-398,but not by COX-2 specific RNA interference[J]. Oncogene, 2003, 22(54): 8653-8661.
    [25] Ruegga C, Dormonda O, Mariotti A. Endothelial cell integrins and COX- 2: mediators and therapeutic targets of tumor angiogenesis[J]. Biochem Biophys Acta, 2004, 1654(1): 51-67.
    [26] Nakayama K, Takebayashi Y, Nakayama S, et a1. Prognostic value of over expression of p53 in human ovarian carcinoma patients receiving cisplatin [J]. Cancer Lett, 2003, 192(2): 227-235.
    [27] Ma X, Wang S, Zhou J, et a1. Induction of apoptosis in human ovarian epithelial cancer cells by antisurvivin oligonucleotides[J]. Oncol Rep, 2005, 14(1): 275-279.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700