超高层建筑桩筏基础的理论分析和工程应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高层及超高层建筑(尤其是软土地基上的此类建筑)的桩基础和上部筏板可以形成桩筏基础。桩筏基础具有良好的承受载荷、减少平均沉降、调节差异沉降功能。本文拟采用共同作用的思路对桩筏基础分析方法进行研究,同时通过超高层建筑——上海环球金融中心桩筏基础实测进行验证,并引入计算机图形学中的Voronoi算法来考虑土层的横向不均匀性。本文开展的研究主要有以下内容:
     1)以修正的Poulos弹性理论解为基础,分析单桩、双桩、桩土、土土影响系数,进而计算桩土刚度。在桩土刚度的影响因素中,对桩长、桩径、土层压缩模量、泊松比等因素的具体影响进行研究。同时通过对实际工程中长短桩和后浇带问题进行分析,验证程序的有效性。
     2)Geddes弹性理论解把桩阻力分为:均匀分布侧阻力、三角形(线性增长)分布侧阻力和端阻力三种形式。本文对Geddes弹性应力解进行修正后,分析桩—桩影响系数,进行群桩分析,通过分析模型结构验证方法的合理性。并研究桩长、桩径、土层压缩模量等因素的对桩身刚度的影响。
     3)以Reissner厚板理论为基础,采用八结点等参元分析筏板结构,采用有限元软件ANSYS中壳元验证程序分析结果,进而分析板计算的影响因素。分析共同作用方法的特点,找到分析上部结构的简化方法,并应用到工程实际中。把共同作用的分析方法应用到中央电视台电视文化中心(TVCC)的工程分析中,验证程序的实用性。
     4)总结Voronoi图和其对偶图Delaunay三角形的定义和性质,同时分析其算法,主要研究间接法得到Voronoi图的算法。采用此算法分析一个理想模型考虑横向不均匀性与否的差别,同时分析转炉桩筏基础在考虑横向不均匀性与否的差别,总结考虑土层横向不均匀性与否的影响。
     5)采用共同作用的方法分析超高层建筑——上海环球金融中心桩筏基础的沉降、桩项反力、弯矩等项目,整理环球金融中心工程实测数据。通过精密水准仪测量筏板标高,由变化值得到沉降,绘制等值线图。采用桩顶压力盒和表面应变计测试桩项反力,分析其变化规律。利用钢筋应力计和混凝土应变计测量筏板钢筋和混凝土的应力、应变变化,同时用温度计测试筏板混凝土的温度,观测水化热的影响。采用孔隙水压力计和土压力盒测试孔隙水压力和桩间土的水土压力,分析桩土荷载的分担比。总结此类桩筏结构的规律,验证程序分析结果的有效性,为此类超高层建筑桩筏基础的设计总结经验。
To the high-rise building and super high-rise building, especially sited in soft-soil ground, pile-raft can be formed by the pile foundation and the upper raft. Pile-raft foundation has right function that is big carrying capacity, reduce the average settlement and adjust the difference settlement and so on. In this paper, pile-raft foundation analysis method will be researched through the method of the interaction of superstructure, raft, pile and soil, and it will be validated by the super high-risebuilding------Shanghai Round-the-world Finance Center's engineering measurementdata. At the same time, the Voronoi method in computer graphics will be applied to analysis the horizontal nonhomogeneous soil. The main research content is as follow:
     1) Calculating the single pile, double pile, pile to soil and soil to soil's influence coefficient through the correction Poulos elastic theory solution, then the pile-soil stiffness will acquire. To the influencing factor of the pile-soil stiffness, it should be analyzed that is pile length, pile diameter, soil modulus of compression, Poisson ratio and so on. The program can be validated through the long-and-short pile and latter pouring belt analyzing in actual project.
     2) Based on the Geddes elastic stress solution, it can describe to the analytic solution, that is the pile end resisting force, linearity distribute and triangle distribute force coming form the pile side resisting force. Base on the solution, the pile-pile coefficient can calculate, so the group piles may analyze. The rationality of theory can be testified through the mode structure. At the same time, it should be analyzed the influence to the pile rigid, that is the factors, such as the pile long, pile diameter, soil modulus of compression and so on.
     3) Based on the Reissner thick plank theory, the raft plank has been analyzed by the 8-node isoparametric element. It will be verified by the analysis result ofthe universal finite element software------ANSYS Shell element. The plankcomputing influencing factor will be discussed. Through summarized the characteristic of interaction method, it will be found and applied in actual project that is the simplified analysis method for the superstructure. The program's validation will be tested throng calculating the Beijing Television Culture Center (TVCC) engineering design.
     4) Summarizing the definition, feature and algorithm of the Voronoi graph and its dual graph Delaunay triangle, the indirection algorithm to Voronoi graph will be researched. Based on this algorithm, it will be analyzed that is the difference result of considering the horizontal nonhomogeneous or not for the ideal model. At the same time, converter pile-raft foundation design will be analyzed. So the validation of considering horizontal nonhomogeneous will be summarized.
     5) Based on the interaction analyzing method, settlement, pile counterforce, moment and so on have been calculated for the Shanghai Round-the-world Finance Center's engineering. It should be arranged this engineering's measurement data. Contour chart will be plotted throng the precision gradienter measure the raft plank height mark and settlement from the difference. Taking the pressure cell on the pile and surface strain cell to measure pile counterforce, the variation law will be summarized. Taking reinforce bar stress gauge and concrete stress gauge to survey the change of raft reinforce bar and concrete stress, and taking thermometer to scale the raft concrete temperature to gain the influence of the heat of hydration. At the same time, adopting pore pressure gauge to scale the pore water pressure and taking soil pressure cell to measure the soil pressure, then the share scale of pile and soil among the pile will be analyzed. Summarizing the law of this kind of pile-raft foundation, the program is validation should be tested, so it will give some good experience to this kind of high-rise building's pile-raft foundation analyses and design.
引文
[1]Aichholzer O.Skew Voronoi diagrams[J].International Journal of Computational Geometry and Applications,1999,9(3):235-246
    [2]Albers G.Voronoi diagrams of moving points[J].International journal of computational geometry & applications,1998,8(3):365-380
    [3]Amenta N,Bern M,Kamvysselis M.A new Voronoi-based surface reconstruction algorithm[J].Computer Graphics,1998,32:415-421
    [4]Amenta N,Bern M.Surface reconstruction from Voronoi filtering[J].Discrete and Computational Geometry,1999,22:481-504
    [5]Augenbaum J M,Peskin C S.On the construction of the Voronoi mesh on a sphere[J].Journal of Computational Physics,1985,59:177-192
    [6]Aurenhammer F.Voronoi diagrams——a survey of a fundamental data structure[J].ACM Computing Surveys,1991,23:345-405
    [7]Bhattacharya S.,Madabhushi S.P.G.& Bolton M.D.An alternative mechanism of pile failure in liquefiable deposits during earthquakes[J].Geotechnique,2004,3:203-213
    [8]Boris Jeremic,Sashi Kunnath & Xiong Feng.Influence of soil-foundation-structure interaction on seismic response of the 1-880 viaduct[J].Engineering structures,2004,26:391-402
    [9]Bouzid Dj.Amar,Vermeer P.A.& Tiliouine B.Finite element vertical slices model Validation and application to an embedded square footing under combined loading[J].Computers and geotechnics,2005,32:72-91
    [10]Bowyer A.Computing Dirichlet Tessellations[J].The Computer J.,1981,24(2):162-166.
    [11]Butterfield R.and Banerjee P.K..A note to the problem of a pile reinforced half space[J].Geotechnique,1970,20(1):100-103
    [12]Butterfield R.and Banerjee P.K..The elastic analysis of compressible piles and pile groups[J].Geotechnique,1971,21(1):43-60
    [13]Chen L.T.& Poulos H.G..Piles subjected to lateral soil movments[J].Journal of geotechnical and geoenvironmental engineering,1997,9(9):802-811
    [14]Chen L.T.,Poulos H.G.& Loganathan N.Pile response caused by tunneling[J].Journal of geotechnical and geoenvironmental engineering,1999,30):207-215
    [15]Chow Y.K.Analysis of vertical loaded pile groups[J].International journal for numerical and analytical methods in geomechanics,1986,10:59-72
    [16]Chow Y.K.Axial and lateral response of pile groups embedded in nonhomogeneous soils[J].Int.J.Numer.Analyt.Mech.Geomech.,1987,11:621-638
    [17]Chow Y.K.Discrete element analysis of settlement of pile groups[J].Computer and Structures,1986,24(1):157-166
    [18]Chow Y.K.Iterative analysis of pile-soil-pile interaction[J].Geotechnique,1987,37(3):321-333
    [19]Chow,Y K.Pile-cap-pile-group interaction in nonhomogeneous soil[J].Geotech English Division ASCE,1991,11(11):1655-1668
    [20]Coyle H.M.and Reese L.C.Load transfer for axially load piles in clay[J].J.Soil Mech.Found.Div.,Proc.ASCE,1966,92(SM2):1-26
    [21]Cunha R.P.,Poulos H.G.& J.C.Small.Investigation of design alternatives for a piled raft case history[J].Journal of geotechnical and geoenvironmental engineering,2001,8(8):635-641
    [22]Deepak Badoni.Nonlinear response of pile foundation-superstructure systems[D].A dissertation presented to the Graduate college of the university of Notre Dame for the degree doctor of philosophy,1997
    [23]Desai C.S.and Appel G.C..3-D analysis of laterally loaded structure[C].Proceeding,2nd international conference on numerical methods in geomechanics,Blacksburg,Virginia,ASCE,1976
    [24]Dicleli Murat,Eng P.& Albhaisi Suhail M.Maximum length of integral bridges supported on steel H-piles driven in sand[J].Engineering structures,2003,25:1491-1504
    [25]Duan XiaoJiang.A soil structure-interaction analysis of tall buildings[D].A dissertation presented to the university of southern California for the degree doctor of philosophy,1999
    [26]Ellis E.A.& Springman S.M.Modelling of soil-structure interaction for a piled bridge abutment in plane strain FEM analyses[J].Computers and Geotechnics,2001,28:79-98
    [27]Emilios M.Comodromos,Christos T.Anagnostopoulos,Michael K.Georgiadis.Numerical assessement of axial pile group response based on load test[J].Computers and Geotechnics,2003,30:505-515
    [28]Esu.F.and Ottaviani M.Behaviour of bored piles in non-linearly elastic soil[J].Ingegneria Civile,1973,No.46
    [29]Evants Ingram.Behavior of piles supporting integral abutments[D].A dissertation presented to the university of Tennessee,Knoxville for the degree doctor of philosophy,2002
    [30]Faruque M.O.and Desai C.S.3-D materal and geometric nonlinear analysis of piles[C].Proc.,2nd Int.Conf.on Numerical Methods for Off-shore Pilings,Austin,Texas,1982
    [31]Geddes J.D.Stress in foundation soils due to vertical subsurface load[J].Geotechnique,1966,16(3):231-255
    [32]Holzlohner U.Strip load on a non-linear hcterogenous half-space[J].Geotechnique,2001,8:655-664
    [33]Hong D.C.,Chow Y.K.and Yong K.Y.A method for the analysis of large vertically loaded pile groups[J].Int.J.Numer.Anal.Meth.Geomech.,1999,23:243-262
    [34]Kambekar A.R.& Deo M.C.Estimation of pile group scour using neural networks[D].Applied ocean research,2003,25:225-234
    [35]Kerop Daniel Janoyan.Interaction between soil and full scale drilled shaft under cyclic lateral load[D].A dissertation presented to the Graduate college of the university of California Los Angeles for the degree doctor of philosophy,2001
    [36]Kim D-S.Polygon offsetting using a Voronoi diagram and two stacks[J].Computer Aided Design,1998,30(14):1096-1076
    [37]Klotz E.U.& Coop M.R.An invenigation of the effect of soil state on the capacity of driven piles in sands[J].Geothechnique 2001,9:733-751
    [38]Konagai Kazuo,Yin Yuanbiao & Murono Yoshitaka.Single beam analogy for describing soil-pile group interaction[J].Soil dynamics and earthquake engineering,2003,23:213-221
    [39]Kraft L.M.,Ray R.P.and Kagawa T.Theoretical t-z curves[J],J.Geotech.Engng.Div.Proc.ASCE,1981,107(GT11):1543-1561
    [40]Kucukarslan S.& Banerjee P.K.Behavior of axially loaded pile group under lateral cyclic loading[Y].Engineering structures,2003,25:303-311
    [41]Kucukarslan S.,Banerjee P.K.& Bildik N.Inelastic analysis of pile soil structure interaction[J].Engineering structures,2003,25:1231 - 1239
    [42]Lee C.J.,Lee J.H.& Jeong S.The influence of soil slip on negative skin friction in pile groups connected to a cap[J].Geotechnique,2006,1:53-56
    [43]Liyanapathirana D.S.& Poulos H.G.A numerical model for dynamic soil liquefaction analysis[y].Soil dynamics and earthquake engineering,2002,22:1007-1015
    [44]Liyanapathirana D.S.& Poulos H.G.Assessment of soil liquefaction incorporating earthquake characteristics[J].Soil dynamics and earthquake engineering,2004,24:867-875
    [45]Liyanapathirana D.S.& Poulos H.G Seismic lateral response of piles in liquefying soil[y].Journal of geotechnical and geoenvironmental engineering,2005,12(12):1466-1479
    [46]Liyanapathirana D.S.& Poulos H.G.Numerical simulation of soil liquefaction due to earthquake loading[J].Soil dynamics and earthquake engineering,2002,22:511-523
    [47]Loganathan N.& Poulos H.G..Analytical Prediction for Tunneling-induced Ground Movements in Clays[J].Journal of Geotechnical and Geoenviroumental Engineering,1998,9(9):845-856
    [48]Lu Q.,Randolph M.E,Hu Y.& Bugarski l.C..A numerical study of cone penetration in clay[J].Geotechnique,2004,4:257-267
    [49]Maheshwari B.K.,Truman K.Z.,M.H.El Naggar & P.L.Gould.Three-dimensional nonlinear analysis for seismic soil-pile-structure interaction[J].Soil dynamics and earthquake engineering,2004,24:343-356
    [50]Makarchian M.& Poulos H.G.Simplified method for design of underpinning piles[J].Journal of geotechnical and geoenvironmental engineering,1996,9(9):745-751
    [51]Mattes N.S.,Poulos H.G.Settlement of single compressible pile[J].Journal of the soil mechanics and foundation division(ASCE),1969,95(1):189-207
    [52]Mayne EW.& Poulos H.G,.Approximate displacement influence factors for elastic shallow foundations[J].Journal of Geotechnical and Geoenvironmental Engineering,1999,6(6):453-460
    [53]Mayya N,Rajan V T.Voronoi diagrams of polygons:a framework for shape representation[C].Proceedings of IEEE CVPR.Settle,1994:638-643
    [54]Mehmet Zulfu Asik.Dynamic response analysis of the machine foundations on a nonhomogeneous soil layer[J],Computer and Geotechnics,1999,24:141-153
    [55]Mendonca A.V.& Paiva J.B.de.A boundary element method for the static analysis of raft foundations on pries[J].Engineering analysis with boundary elements,2000,24.237-247
    [56]Mendonca A.V.& Paiva J,B.de.An elastostatic FEM/BEM analysis of vertically loaded raft and piled raft foundation[J].Engineering analysis with boundary elements,2003,27:919-933
    [57]Meyerhof G.G.Some recent foundation research and its application to design[J].Structure Engineer.1953,31:151-167
    [58]Muir Wood D.,Hu W.& Nash D.ET.Group effects in stone column foundation:model tests[J].Geotechnique,2000,6:689-698
    [59]Muqtadir A.and Desai C.S.Three-dimensional analysis of pile-group foundation[J].International journal for numerical analytical methods in geomechanics,1986,10:41-58
    [60]Mylonakis G.Winkler modulus for axially loaded piles[J].Geotechnique,2001,5:455-461
    [61]O'Neill M.W.,Ghazzaly O.I.and Ha H.B.Analysis of three-dimensional pile groups with nonlinear soil response and pile-soil-pile interaction[C].Proc.9th Offshore technology Conf.1977,2:245-256
    [62]Okabe A,et al,Spatial tessellation:concetptions and applications of Voronoi diagrams[M].John Wiley and Sons,1992:1-410
    [63]Ottaviani.M.3-dimension finite-element analysis of vertically loaded pile groups.Geotechnique,1975,25(2):159-174.
    [64]Padipat Chaemmangkang.Behavior of batter piles in sand[D].A dissertation presented to the Graduate college of the university of Illinois at Urbana-Champaign for the degree doctor of philosophy,2001
    [65]Ponamgi M K.Incremental algorithms for collision detection between solid models[J].IEEE Transaction on Visualization and Computer Graphics,1997,3(3):51-64
    [66]Poulos H.G.& Chen L.T.Pile response due to excavation-induced lateral soil movement[J].Journal of geotechnical and geoenvironmental engineering,1995.2(2):94-99
    [67]Poulos H.G.Pile behavior-consequences of geological and construction imperfections[J].Journal ofgeotechnical and geoenvironmental engineering,2005,5(5):538-563
    [68]Poulos H.G..Pile raft and compensated piled raft foundation for soft soil sites[R].Advances in designing and testing deep foundations,2005
    [69]Poulos H.G & Somnath Bandyopadhyay.Effect of static interaction on vertical vibration of pile[J].Journal of geotechnical and geoenvironmental engineering,1999,2(2):155-157
    [70]Poulos H.G.and Davis E.H.The settlement behavior of single axially loaded incompressible piles and piers[J].Geotechnique,1968,18:351-371
    [71]Poulos H.G.and Davis E.H.Pile foundation analysis and design[M].John Wiley and Sons,New York,1980
    [72]Poulos H.G.Analysis of settlement of pile groups[J].Geotechnique,1968,18:449-471
    [73]Poulos H.G.Modified calculation of pile-group settlement interaction[J].Journal of geotechnical engineering,1988,114(6):697-706
    [74]Poulos H.G.Pile behavior-theory and application[J].Geotechnique,1989,39(3):365-415
    [75]Poulos H.G.Settlement of single piles in nonhomogeneous soil[J].Journal of geotechnical engineering division,1979,105(GT3):627-641
    [76]Poulos H.G.Piled raft foundations:design and applications[j].Geotechnique,2001,2:95-113
    [77]Preparta F P,Shamos M.I.Computational geometry:An introduction[M].Springer-Verlag,1985:226-329
    [78]Randolph M.F.and Wroth C.P.Analysis of deformation of vertically loaded piles[J].Journal of the geotechnical engineering(ASCE),1978,104(12):1465-1488
    [79]Rebay S.Efficient unstructured mesh generation by means of Delaunay triangnlation and Bowyer-Watson algorithm[J].J.Comp.Phys.,1993,106:125-138.
    [80]Ryan Thomas Cole.Full-scale effects of passive earth pressure on the lateral resistance of pile caps[D].A dissertation presented to the Graduate college of the university of Brigham Young for the degree doctor of philosophy,2003
    [81]Shen W.Y.,Chow Y.K.& Yong K.Y.A variational approach for the analysis of pile group-pile cap interaction[J].Geotechnique,2000,4:349-357
    [82]Stanley B.Lippman & Josee Lajoie.C++Primer(第三版)[M].北京:中国电力出版社,2002
    [83]Terzaghi Karl & Peck Ralph B.Soil mechanics in engineering practice(2nd Ed.)[M].New York:John Wiley,1967
    [84]Thomas W.Houston,Carl J.Costantino,Quazi Hossain & N.Earl Stone.Foundation design considerations for a pile supported critical facility[J].Soil dynamics and earthquake engineering,2002,22:1169-1174
    [85]Trifunac M.D.,Ivanovic S.S.,Todorovska M.I.,Novikova E.I.,Gladkov A.A.Experimental evidence for flexibility of a building foundation supported by concrete friction piles[J].Soil dynamics and earthquake engineering,1999,18:169-187
    [86]Vijayvergiya V.N.Load-movement characteristics of piles[J].4th Symp.Waterway.Prot,Coastal and Ocean Div.,ASCE,Long Beach,Calif.,1977,2:269-284
    [87]Vrettos C.Simple inversion procedure for shallow seismic refraction in continuously nonhomogeneous soils[J].Soil Dynamic & Earthquake Engineering,1996,15:381-386
    [88]Watson DF.Computing the n-dimensional Delaunay tessellations with application to Voronoi polytopes[J].The Computer J.,1981,24(2):167-172.
    [89]Weatherill NP,Hassan D.Efficient three dimensional Delaunay triangulation with automatic point creation and imposed boundary constraints[j].Int.J.Numer.Meth.Engng.,1994,37:2005-2039.
    [90]White D.J & Lehane B.M.Friction fatigue on displacement piles in sand[J].Geotechnique,2004,10:645-658
    [91]Wong Sii Chung & Poulos H.G.Approximate pile-to-pile interaction factors between two dissimilar piles[J].Computer and Geotechnics,2005,32:613-618
    [92]Xu K.J.& Poulos H.G.3-D elastic analysis of vertical piles subjected to "Passive"loadings[J].Computer and Geotechnics,2001,28:349-375
    [93]Xu K.J.& Poulos H.G.General elastic analysis of piles and pile groups[J].International Journal for Numerical and Analytical Methods in Geomechanics,2000,24:1109-1138
    [94]Xu K.J.and Poulos H.G.General elastic analysis of piles and pile groups[J].Int.J.Numer.Anal.Meth.Geomech.,2000,24:1109-1138
    [95]Y.K.Cheng.Finite strip method in structural analysis[M].Pergamon Press,1976
    [96]蔡方篯,张韫美.弹性地基板的挠度迭代法[J].建筑结构,1994,11:32-36
    [97]长—短桩复合地基性状参数弹塑性有限元分析[J].建筑结构,2005,7(7):12-16
    [98]陈善云,徐永进.间接法生成Voronoi图初探[J].零陵学院学报,2004,3(5):90-93
    [99]陈玉骥.混合边界薄板的弯曲问题[J].长沙铁道学院学报,2001,19(2):33-36
    [100]崔敏文.文克尔地基上板的有限条法[J].建筑结构学报,1992,12(2):49-56
    [101]董建国,赵锡宏,石安康,梁嘉全,秦君芳.上海某幢剪力墙结构桩箱基础的现场测试研究[C].上海高层建筑桩筏与桩箱基础设计理论.上海:同济大学出版社(1989):55-69
    [102]董建国,赵锡宏.高层建筑地基基础——共同作用理论与实践[M].上海:同济大学出版社,1997
    [103]董建国,赵锡宏.高层建筑桩筏和桩箱基础沉降计算的简易理论法[C].上海高层建筑桩筏与桩箱基础设计理论.上海:同济大学出版社(1989):179-194
    [104]独基、条基、钢筋混凝土地基梁、桩基础和筏板基础设计软件JCCAD编制原理和使用说明[M](PKPM CAD工程部).北京:中国建筑科学研究院,1999
    [105]高层建筑混凝土结构技术规程(JGJ3-2002)[S].北京:中国建筑工业出版社,2002
    [106]高层建筑箱形与筏形技术规范(JGJ6-99)[S].北京:中国建筑工业出版社,1999
    [107]高层建筑桩筏、桩箱底板沉降和内力计算高精度有限元分析程序PWMI程序编制原理[R].上海:华东建筑设计研究院,1996
    [108]郝文化.ANSYS土木工程应用实例[M].北京:中国水利水电出版社,2005
    [109]黄明挥.用有限条法分析弹性支承板结构和弹性地基板[J].南昌大学学报(工科版),2001,23(1):38-43
    [110]黄绍铭,高大钊.软土地基与地下工程(第二版)[M].北京:中国建筑工业出版社,2005
    [111]黄殉,李杰等.桩筏基础共同作用计算方法[J].岩土工程界,2004,7(增刊):63-66
    [112]黄帧权,程瑞华.弹性地基上的平板计算—差分法[J].水运工程,1996,8:58-65
    [113]建筑地基基础设计规范(GB50007-2002)[S].北京:中国建筑工业出版社,2002
    [114]建筑桩基技术规范(JGJ94-94)[S].北京:中国建筑工业出版社,1995
    [115]蒋刚,宰金珉.复合桩基设计与沉降分析[J].岩土力学,2003,3(6):405-409
    [116]李小凯,林伟宏.桩筏基础的实体单元模拟[J].国外建材科技,2004,3:86-88
    [117]凌道盛,陈云敏,丁皓江.任意基础板的有限元分析[J].岩土工程学报,2000,4(7):450-455
    [118]刘金砺,迟铃泉.桩土变形计算模型和变刚度调平设计[J].岩土工程学报,2000,2(3):151-157
    [119]刘金义,刘爽.Voronoi图应用综述[J].工程图学学报,2004,2:125-132
    [120]刘就女,李哲林,李毓勤,何秀群.Voronoi多边形在网点规划决策支持系统的应用[J].工程图学学报,2005,5:110-113
    [121]刘正兴,孙雁,王国庆.计算固体力学[M].上海:上海交通大学出版社,2000
    [122]罗立平,赵锡宏.空间框架结构—厚筏—地基共同作用分析[C].上海高层建筑桩筏与桩箱基础设计理论.上海:同济大学出版社(1989):122-145
    [123]梅国雄,宰金珉.固结有限层理论与应用[M].北京:科学出版社,2006
    [124]裴捷,陆见飞,王建华.考虑地基固结和流变的上部结构和地基基础的共同作用问题[J].力学季刊,2001.22(2):167-173
    [125]裴捷,水伟厚,曹晖.上海软土地基长桩荷载传递新模型[J].工业建筑,2005,35(7):50-55
    [126]钱家欢,殷宗泽.土工原理与计算(第二版)[M].北京:中国水利水电出版社,1996
    [127]钱宇平,赵锡宏,沈伟跃.上海某幢框剪结构桩箱基础的现场实测研究[C].上海高层建筑桩筏与桩箱基础设计理论.上海:同济大学出版社(1989):43-54
    [128]乔朝飞,赵仁亮等.基于Voronoi内邻近的等高线树生成法[J].武汉大学学报,2005,9:801-804
    [129]曲小刚.具有边梁加国的板弯曲问题的差分方法[J].计算物理,1997,14(4-5):558-560
    [130]上海市工程建设规范——地基基础设计规范(DGJ08.11-1999)[S].上海:上海市建设委员会,1999
    [131]申兆武,王社良,王洁,赵祥.大型火电厂剪力墙抗震性能有限元研究.河北建筑科技学院学报,2006,23(1):37-40
    [132]申兆武,王社良,王洁,赵祥.带边框柱剪力墙抗震性能研究.建筑技术,2007,38(5):357-360
    [133]申兆武,朱合华,马启明.基于Poulos解的交叉厂房柱桩基础设计.地下空间与工程学报,2006,2(5):842-846
    [134]史宝军,袁明武,陈永强.无网格方法数值结果的可视化方法与实现[J].工程力学,2004,21(6):51-55
    [135]史宝军,袁明武,陈永强.无网格方法数值结果的可视化方法与实现[J].工程力学,2004,6(12):51-55
    [136]史佩栋.实用桩基工程手册[M].北京:中国建筑工业出版社,1999
    [137]孙家乐,刘之珩,张镭.从上部结构与地基基础相互作用研讨基础内力的计算方法[J].北京工业大学学报,1984,1:21-31
    [138]孙家乐,吴观今.框架结构与地基基础共同作用等逐次弹性杆法[J].北京工业大学学报,1984,2:61-72
    [139]王建华,陈锦剑,裴捷.考虑固结与流变的层状粘弹性地基与上部结构的共同作用[J].建筑结构学报,2002,23(4):59-64
    [140]王建华,高绍武,陆建飞.表面堆载作用下群桩负摩擦研究[J].计算力学学报,2003,20(2):169-174
    [141]王建华,徐强勋,张锐.任意形状三维物体的Delaunay网格生成算法[J].岩石力学与工程学报,2003,22(5):717-722
    [142]王社良,赵祥,申兆武,苗晓瑜.带边框柱剪力墙模型结构抗震性能试验研究.工业建筑.2005,35(1):33-36
    [143]王社良.形状记忆合金在结构控制中的应用[M].西安:陕西科学技术出版社,2000
    [144]王伟.地基、基础与上部结构共同工作相互作用问题探讨[J].宁夏农学院学报,1993,3:76-79
    [145]王伟.控制差异沉降的桩筏基础优化研究[D].上海:同济大学博士学位论文,2005
    [146]王卫东,申兆武,吴江斌.桩土—基础底板—上部结构协同的实用分析方法与应用.建筑结构,2007,37(5):111-113
    [147]王旭东,宰金珉,梅国雄.桩筏基础共同作用的子结构分析法[J].南京建筑工程学院学报,2002,4:1-6
    [148]吴江斌.基于Delaunay构网的城市三维地层信息系统核心技术研究与应用[D].上海:同济大学博士学位论文,2003
    [149]岩土工程勘察规范(GB50021-2001)[S].北京:中国建筑工业出版社,2002
    [150]杨工明,陈言秋,黄松波.Voronoi图的描述和平分线单调性的研究[J].计算机辅助工程,2000,4:31-39
    [151]杨敏,丁万太,赵锡宏.高层建筑桩箱基础的沉降和整体倾斜[C].上海高层建筑桩筏与桩箱基础设计理论.上海:同济大学出版社(1989):195-211
    [152]杨敏,赵锡宏.简体结构一筏一桩一地基共同作用分析[C].上海高层建筑桩筏与桩箱基础设计理论.上海:同济大学出版社(1989):162-178
    [153]殷永安,赵锡宏,钱宇平,董建国.上海某幢框筒结构与超长桩(厚)筏基础的现场测试研究[C].上海高层建筑桩筏与桩箱基础设计理论.上海:同济大学出版社(1989):23-42
    [154]于国辉,李永鑫,董万杰.Voronoi图和它的偶图Delaunay镶嵌在数值分析中的应用[J].中国科技信息——科技论坛,2005,15:14-15
    [155]袁聚云,沈伟跃,赵锡宏.空间剪力墙结构—厚筏—桩—地基共同作用的分析方法[C].上海高层建筑桩筏与桩箱基础设计理论.上海:同济大学出版社(1989):146-161
    [156]宰金珉.复合桩基理论与应用[M].北京:知识产权出版社,2004
    [157]张克恭,刘松玉.土力学[M].北京:中国建筑工业出版社,2002
    [158]张奎,竺子民,陈海清.有限元网格的三角划分[J].计算机与数字工程,2004,3:37-39
    [159]张乃瑞.桩基工程的差异沉降分析总报告[R].北京:北京市勘察设计研究院,2003
    [160]赵春洪,赵锡宏.上部结构—筏—桩—地基共同作用分析的新方法[C].上海高层建筑桩筏与桩箱基础设计理论.上海:同济大学出版社(1989).70-90
    [161]赵锡宏,龚剑.桩筏(箱)基础的荷载分担实测、计算值和机理分析[J].岩土力学,2005,3(3):337-341
    [162]赵锡宏,杨敏.超长桩—筏(或箱)基础的沉降及超长桩的承载力[C].上海高层建筑桩筏与桩箱基础设计理论.上海:同济大学出版社(1989):212-222
    [163]赵锡宏.上海高层建筑桩筏和桩箱基础共同作用理论与实践[C].上海高层建筑桩筏与桩箱基础设计理论.上海:同济大学出版社(1989):1-23
    [164]周国然,赵锡宏.桩—厚筏基础共同作用分析[C].上海高层建筑桩筏与桩箱基础设计理论.上海:同济大学出版社(1989):91-121
    [165]周培德.计算几何——算法分析与设计(第2版)[M].北京:清华大学出版社,2005
    [166]周小平,周瑞忠.用Voronoi图进行新型自然邻居插值的几何学方法与特性[J].计算力学学报,2006,3(6):355-359
    [167]朱合华,缪圆冰等.组合结构有限元计算存在的问题和处理方法[J].岩土力学,2005,25(9):1437-1442
    [168]朱合华,叶勇庚,李晓军,蔡永昌.任意形状区域的自动布点技术[J].工程力学,2004,21(5):94-99
    [169]朱培烨,王红建.Delauna非结构网格生成之布点技术[J].航空计算技术1999,3(9):21-25
    [170]桩基工程手册编写委员会.桩基工程手册[M].北京:中国建筑工业出版社,1995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700