海洋微藻活性微量元素积累的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究以普通小球藻为材料,设定8个添加硒[Ⅳ]浓度处理,6个添加Cr3+浓度处理,每组浓度水平设两个平行样,测定了不同硒[Ⅳ]浓度和Cr3+浓度下小球藻的生物量(细胞密度)、小球藻对硒[Ⅳ]和Cr3+的富集量。结果表明,当硒[Ⅳ]浓度大于1mg/L时,小球藻的生长受到不同程度的抑制,当硒[Ⅳ]浓度大于12mg/L时,可导致藻体的死亡沉积。小球藻在硒[Ⅳ]浓度为1mg/L~8mg/L的范围内,随着硒[Ⅳ]浓度的增加,小球藻的富集量随之升高,从小球藻富集硒生产的经济效益、社会效益和疗效综合考虑,我们认为培养液中适宜的添加硒浓度为8mg/L,在此浓度下,小球藻的生物量较高,为0.25mg/L,富集量也较高,为83.66ug/g;当添加Cr3+浓度大于32mg/L时,小球藻的生长受到不同程度的抑制,当添加Cr3+浓度大于300mg/L时,可导致藻体的死亡沉积。富Cr3+培养小球藻的培养基中会产生大量的沉淀,沉淀率为99.74%。小球藻在添加Cr3+浓度为32mg/L~100mg/L的范围内(实际Cr3+浓度为0.08758mg/L~0.5719mg/L),随着Cr3+浓度的增加,小球藻的富集量随之升高,从小球藻富集Cr3+生产的经济效益、社会效益和疗效综合考虑,我们认为培养液中适宜的添加Cr3+浓度为100mg/L(实际Cr3+浓度为0.5719mg/L),在此浓度下,小球藻的生物量较高,为0.26 mg/L,富集量也较高,为9974.968 ug/g。
     研究目的在于采用生物富集技术研制出富含活性元素Cr3+和Se[Ⅳ]的高附加值微藻,为大规模养殖和工业化生产提供理论基础。
In this paper, we use the Chlorella pyrenoidosa as the stuff of study, set 8 Se[Ⅳ] concentration and 6 Cr3+ concentration, set two parallel sample in this two group, then testing the biomass and bioaccumulation in Chlorella pyrenoidosa which is added by different Se[Ⅳ] concentration and Cr3+ concentration. As the result, it will have inhibition effects when Se[Ⅳ] concentration exceed 1mg/L, when Se[Ⅳ] concentration is up to 12 mg/L, the growth of algae cell nearly stops. Se[Ⅳ] bioaccumulation in Chlorella pyrenoidosa will rise up with the increase of Se[Ⅳ] concentration when the Se[Ⅳ] concentration is 1 mg/L-8 mg/L. Consideration of the economic effects、social effects and therapeutic effects of the Se[Ⅳ] bioaccumulation in Chlorella pyrenoidosa, I think the best Se[Ⅳ] concentration in culture solution is 8 mg/L, in this concentration, the biomass of Chlorella pyrenoidosa is 0.25 mg/L, and the bioaccumulation of Chlorella pyrenoidosa is 83.66 ug/g; It will have inhibition effects when Cr3+ concentration exceed 32 mg/L, when Cr3+ concentration is up to 300 mg/L, the growth of algae cell nearly stops. The culture solution of Cr3+ bioaccumulation create a lot of deposit, the rate of the deposition is 99.74%.Cr3+ bioaccumulation in Chlorella pyrenoidosa will rise up with the increase of Cr3+ concentration when the Cr3+ concentration is 32 mg/L-100 mg/L(actually the Cr3+ concentration is 0.08758 mg/L~0.5719 mg/L). Consideration of the economic effects、social effects and therapeutic effects of the Cr3+ bioaccumulation in Chlorella pyrenoidosa, I think the best Cr3+ concentration in culture solution is 100 mg/L(actually the Cr3+ concentration is 0.5719 mg/L), in this concentration, the biomass of Chlorella pyrenoidosa is 0.26 mg/L, and the bioaccumulation of Chlorella pyrenoidosa is 9974.968 ug/g.
     This study is intent to adopt bioaccumulation technology to develop high add-ons Chlorella pyrenoidosa which have abundant trace element of Cr3+ and Se[IV],to provide theory foundation of cosmically breed aquatics and industrialization produce.
引文
[1]李志勇,郭祀远,李琳,等.藻类富集微量元素的机理研究[J].华南理工大学学报,1998,26(2):33~37.
    [2]李志勇,郭祀远,李琳,等.藻类对微量元素的生物富集及其应用[J].微生物学通报,1997,24(6):368~369.
    [3]Benjamin Greene. Interaction of Gold (I) and Gold (□) complexes with algal biomass environment[J]. Sci. Technol,1986,20:627~632.
    [4]Lang Norma J. The fine structure of blue-green algae[J]. Ann. Res. Microbio,1968, 22:15~70.
    [5]Christ R H. Interaction of metals and protons with algae[J]. Environ. Sci. Technol, 1988,22:755~760.
    [6]Holan Z R. Biosorption of Pb、Ni by biomass of marine algae[J]. Biotechnol. Bioeng, 1994,43:1001-1009.
    [7]Albert A. Quantitative studies of the avidity of naturally occurring substances for trace metals[J]. Biochem.J,1950,47:531~537.
    [8]Gardea Torresdey Jorgel. Effect of chemical modification of algal carboxyl groups on metal ion binding[J]. Environ. Sci. Technol,1990,24:1372~1378.
    [9]Holan Z R. Biosorption of Pb,Ni by biomass of marine algae[J]. Biotechnol,1994,43: 1001~1009.
    [10]Crist R H. Interaction of metals and protons with algae[J]. Environ. Sci. Technol, 1992,26:496-502.
    [11]Kuyucak N. The mechanism of Co biosorption[J]. Biotechnol Bioeng,1989,33: 823~831.
    [12]Phillips D J H, Depledge M H. Metabolic pathways involving arsenic in marine organisms:a unifying hypothesis[J]. Mar. Environ. Res,1985,17:1~12.
    [13]Depledge M H, Weeks J M, Bjerregard P. Heavy metals. In Handbook of Ecotoxicology (P. Calow, Ed) [J]. Blackwell Science. Oxford,1995,2:79~ 105.
    [14]Phillips D J H. Bioaccumulation. In Handbook of Ecotoxicology(P. Calow, Ed) [J]. Blackwell Science. Oxford,1995,1:378~396.
    [15]Shubert L E. Algae as ecological indicators[J]. Academic Press, London,1984.
    [16]Leusch A, Holan Z R, Volesky B. Biosorption of heavy metals(Cd, Cu, Ni, Pb, Zn)by chemically reinforced biomass of marine algae[J]. Journal of Chemical Technology and Biotechnology,1995,62(3):279~288.
    [17]Arthur L. Metal removal by laboratory scale immobilized microalgal
    reactor[J]. J. Environ. Sci,1998,10(4):474~478.
    [18]郑建仙.功能性食品[M].北京:中国轻工业出版社,1995.
    [19]徐晶,陈婉华,谢应生,等.亚硒酸钠浓度对螺旋藻生长及富硒量的影响[J].土壤肥料,1996,(6):38~40.
    [20]彭赞,郭宝江.钝顶螺旋藻的硒化培养研究[J].广州食品工业科技,2000,16(3):7~9.
    [21]陈填烽,崔小峰,杨芳,等.分次加硒法培养高富硒量螺旋藻及其对藻体光合色素和蛋白质含量影响的研究[J].食品与发酵工业,2005,31(8):48~51.
    [22]黄峙,郑文杰,郭宝江.钝顶螺旋藻富硒培养条件的优化[J].生物工程学报,2002,18(3):373~376.
    [23]李志勇,郭祀远,李琳,等.富硒螺旋藻培养技术研究[J].水生生物学报,2001,25(4):386~391.
    [24]周志刚,钟罡,刘志礼.硒对极大螺旋藻生长及含硒量的影响[J].海洋科学,1997,(5):42~45.
    [25]陈必链,林小建,施巧琴,等.绿色巴夫藻富集锌和硒的研究[J].药物生物技术,1998,5(1):25~29.
    [26]王大志,高亚辉,程兆第.硒对两种盐藻生长的影响及其在纽胞中的累积和分布[J].海洋学报,1997,19(5):110~115.
    [27]张学颖,李爱芬,刘振乾,等.Cr3+对盐藻(Dunaliella salina)生长及营养品质的影响[J].生态科学,2003,22(2):138~141.
    [28]曾文辉,何艳宇,万云鹏,等.钝顶螺旋藻生物富集铬及藻体中铬的存在形态研究[J].广东化工,2006,33(7):37~39.
    [29]李志勇,郭祀远,李琳.功能性高铬(口)螺旋藻的研制[J].中国海洋药物,1999,(4):14~18.
    [30]李志勇,李元广,郭祀远,等.钝顶螺旋藻生物富集Cr(0)影响因素的研究[J].生物工程学报,2000,16(1):108~112.
    [31]陈小霞,梁世中,吴振强,等.热致死小球藻生物富集Cr3+的研究[J].海洋科学,2003,27(4):54~57.
    [32]陈小霞,梁世中,吴振强,等.异养小球藻生物富集Cr3+的研究[J].食品与发酵工业,2001,27(11):33~36.
    [33]陈必链,庄惠如,余望,等.钝顶螺旋藻对锌和硒生物富集作用的研究[J].食品与发酵工业,1998,24(6):27~29.
    [34]林凡,赵连华,刘艳,等.小球藻生物富集锌、镉特征的研究[J].大连大学学报,2001,22(6):23~25.
    [35]李英敏,杨海波,吕福荣,等.叉鞭金藻对微量锌、镉的吸附效应研究[J].环境污染与防治,2004,26(5):396~398.
    [36]张铁明,杜桂森,杨忠山,等.锌对2种淡水浮游藻类增殖的影响[J].西北植物学报,2006,26(8):1722~1726.
    [37]陈小霞,吴振强,梁世中.藻类对微量元素的生物富集及其机理探讨[J].食品与发酵工业,1999,25(4):56~60.
    [38]李玉山,崔征,殷军.七种马尾藻属海藻碘及微量元素的含量测定[J].中国海洋药物,1996,(1):47~52.
    [39]李英敏,杨海波,吕福荣,等.叉鞭金藻生物吸附Cu2+影响因素的研究[J].水产科学,2003,22(4):21~23.
    [40]吴之丽,张伟,阎海,等.单细胞绿藻对铜的吸附研究[J].中国给水排水,2001,17(12):18~20.
    [41]曹吉祥,胡泽斌.强化螺旋藻钙含量的初步研究[J].水产学报,1996,20(1):65~67.
    [42]陈慈美,蔡阿根,陈雷.铁对海洋硅藻的生物活性形式及其对藻类生长的影响[J].海洋通报,1993,12(3):49~55.
    [43]孙飚,范晓.海藻中砷的含量分布特征[J].海洋科学,1996,(5):24~26.
    [44]张首临,刘明星.4种重金属离子对海洋三角褐指藻生长的影响的研究[J].海洋与湖沼,1995,(6):582~585.
    [45]郑建仙.功能食品[M].北京:中国轻工业出版社,406~481.
    [46]Cases.J, M.Puig, B.Caporiccio, et al. Glutathione-related enzymic activities in ratsreceiving high cholesterol or standard diets supplemented with two forms of selenium[J]. Food Chemistry,1999,2(65):207~211.
    [47]Teresa W-M Fan, Swee J, David E. Hinton, et al. Selenium biotransfor-mations into proteinaceous forms by foodweb organisms of selenium-laden drainage waters in California[J]. Aquatic Toxicology,2002,57:65~84.
    [48]M.Navarro-Alarcon, M.C.Lopez-Martinez. Essentiality of selenium in the human body:relationship with different diseases[J]. The science of the Total Environment, 2000,347~371.
    [49]Schwarz K, C. M. Foltz. Selenium as an intergral part of factor 3 against dietary necrotic liver degeneration[J]. J. Am. Chem. Soc,1957,79:32~92.
    [50]刘铮.中国土壤微量元素[M].江苏:江苏科学技术出版社,1996:340~362.
    [51]刘秋燕.启东肝癌高发区不同发病人群血硒水平分析[J].中华肿瘤杂志,1982,(1):31.
    [52]齐国礼.微量元素硒的临床应用和研究[J].广东微量元素科学,1997,4(9):7~9.
    [53]李梅,李志娟,潘兆随.山东医药.1997,37(9):39~40.
    [54]Hubert N, Walczak R, Carbon P, et al. A protein binds the selenocysteine insertion element in the 3'-UTR of mammalian selenoprotein mRNAs [J]. Nucleic Acids Research,1996,24(3):464~469.
    [55]黄峙,向军俭,郭宝江.硒蛋白的分子生物学研究进展[J].生物化学与生物物理进展,2001,28(5):642~645.
    [56]Margaretprayman. The importance of selenium to human health (review) [J]. The Lancet.2000,356:233~241.
    [57]Burkrf, Hillke. Orphan selenoproteins[J]. Bioassays,1999,21(3):231~237.
    [58]Holbendh, Smtham. The diverse role of selenium within selenoproteins:a review[J]. Am Diet Assoc,1999,99(7):836~843.
    [59]黄峙,郑文杰,郭宝江.含硒生物大分子化合物研究进展[J].海南大学学报(自然科学版),2001,19(2):169~175.
    [60]庞启深,郭宝江,阮继红.螺旋藻抗辐射多糖的提取及分析[J].生物化学与生物物理学报,1989,21(5):445~449.
    [61]周志刚,李鹏富,刘志礼等.三种螺旋藻及其蛋白质、多糖和脂类结合硒的研究[J].海洋与湖沼,1997,28(4):363~369.
    [62]陈春英,高秋华,徐欢,等.箬叶硒多糖提取物生物活性的初步探讨[J].微量元素与健康研究,1994(硒专刊):33.
    [63]刘曼西,于秀芝,孙宪洁,等.硒酵母成分的研究[J].华中工学院学报,1985,13(3):115~118.
    [64]胡文军,傅庭治,曹幼琴.硒在金针菇体内的生物转化田.中国食用菌,1997,16(3):30~33.
    [65]周志刚,李朋富,刘志礼等.三种螺旋藻及其蛋白质、多糖和脂类结合硒的研究[J].海洋与湖沼,1997,28(4):363~369.
    [66]Lauchli.A. Bot. Acta.1993,106(6):435~468.
    [67]Lewis B, Johnson C M, Broyen Tc. Volatile Selenium in Higher Plants[J]. Plant Soil, 1974,40:107~118.
    [68]Koyama. H, Omura.K, Ejima, et al. Separation of selenium-containing proteins in human and mouse plasma using tandem high-performance liquid chromatography columns coupled with inductively coupled plasma-mass spectrometry. Anal-Biochem, 1999,267(1):84~91.
    [69]Mertz W. Effects and metabolism of glucose tolerance factor. In present knowledge nutrition[J]. The Nutrition Foundation. Inc. Washington D C,1976:365~372.
    [70]Garcia E M, Cabrera C, Sonchez J, et al. Chromium levels in potable water、fruit juices and soft drinks:influence on dietary intake[J]. The Science of the Total Environment, 1999,241:143~150.
    [71]Mertz W. Chromium in human nutrition[J]. A review J. Nutr,1992,123:626~ 633.
    [72]李平,梁世中.微量元素铬作为功能食品因子的研究进展[J].食品与发酵工程业,2001,1(27):74~77.
    [73]郑建仙.铬在食品中的存在及其生理功能[J].食品饲料添加剂信息.1992,5:1~3.
    [74]朱良印,郑林英.微量元素铬的吸收代谢与生化功能[J].中国畜牧兽医,2006,33(4):14.
    [75]Oh-Hama T, Miyachi S. Chlorella In:Borowitzka M A, Borowizika L J(eds) [J]. Microalgal Biotechnology. Cambridge University Press,1992,18~19.
    [76]张志良,主编.植物生理学实验指导[M].北京:高等教育出版社,1990.
    [77]Hiashiyama T, Noutoshi Y, Akiba M, et al. Telomere and LINE like Elen\Ment at the Termini of the Chlorella Chromosome I[J]. Nucleic Acide Symp Set,1995,34: 71-72.
    [78]Noutoshi Y, Arai R, Fujie M, et al. Desiging of Plant Artificial Chromsome(PAC)by Using the Chlorella Smallest Chromosone as A Model System[J]. Nucleic Acids Symp Ser,1997,37:143~144.
    [79]Jarivs E E, Brown L M. Tranient Expression of Firefly Luciferade in Protoplast of the Green Alga Chlorella Ellipsoidea[J]. Curr Genet,1991,19:317~321.
    [80]Maruyama M Horakova I, Honda Hiroyuki. Introduction of Foreign DNA into Chlorella Saccharophila by Electroporation[J]. Biotech Tech,1994,8:821~826.
    [81]Dawson H N, Burlingame R, Cannons A C. Stable Transform ation of Chlorella: Rescue of Nitrate Reductase. Deficient Mutants with the Nitrate Reductase Gene[J]. Curr Microbiol,1997,35(6):356~362.
    [82]Hawkins R L, Nakamura M. Expression of Human Growth Horm one by the Eukaryotic Alga, Chlorella[J]. Curr Microbiol.1999,38(6):335~342.
    [83]Higashiyama T, Maki S, Yamade T. Molecular Organization of Chlorella Vulgaris Chromosome [J]. Mol Gen Genet,1995,246(1):29~36.
    [84]胡开辉,周山勇.小球澡细胞活性物质的提取及对啤酒酵母的生理效应[J].应用生态学报,2005,16(8).
    [85]Higashiyama T, Noutoshi Y, Fujie M, et al. A LINE. like Retrotranspo son Accumulated in the Chlorella Telomeric Region[J]. EMBOJ,1997,16(12):3715~ 3723.
    [86]Wakasugi T, Nagai T, Kapoor M, et al. Complete Nucleotide Sequence of the Chloroplast Genome from the Green Alga Chlorella Vulgaris: the Existence of Genes Possibly Involved in Chloroplast Division[J]. Proc Natl Acad Sci,1997,94(11): 5967~5972.
    [87]nonjoh K, Yoshimoto M, Joh T, et al. Isolation and Characterization of Hardening-Induced Proteins in ChloreUa Vulgaris C.27:Identification of Late Embryogenesis Abundant Proteins[J]. Plant Cell Physiol,1995,36(8):1421~1430.
    [88]Opekarova M Caspari T, Tanner W. The HUP1 guen Product of Chlorella Kessleri: H+/Glucose Symport Studied in Vitro[J]. Biochim Biophys Acta,1994,1194(1): 149~154.
    [89]Hortensteiner S, Chinner J, Matile P, et al. Chlorophyll Breakdown in Chlorela Protothecoides:Characterization of Degreening and Cloning of Degreening-Related genes[J]. Plant Mol Biol,2000,42(3):439~450.
    [90]Miller P W, Dunn W I, Schmidt R R. Alternative Splicing of A Precursor-mRNA Encoded by the Chlorella Sorokiniana NADP. Specific Glutamate Dehydro genase Gene Yields mRNAs for Precursor Proteins of Isozyme Subunits with Different Ammonium Affinities [J]. Plant Mol Biol,1998,37(2):243~263.
    [91]李师翁,李虎乾.植物单细胞蛋白资源——小球藻开发利用研究的现状[J].生物技术,1997,7(3):45~48.
    [92]李志勇,郭祀远,李琳,等.微藻保健食品的开发与利用[J].食品研究与开发,1997,18(2):38~40.
    [93]Pinnan Soong. Production and Development of Chlorella an d Spirulina in Taiwan. Shelef and Soeder CJ. Algae Biomass Production an d Use [J]. Amserdam, 1997,103:23~26.
    [94]Liang Shizhong, Hang Weiping, Liu Xueming. Production of Edible Microalgae by Suspension Culture in Bioreactors. Sino. Japan Symposium on Algae[J]. Genetic Engineering an d Bioreactors 1997,23:37~38.
    [95]胡月薇,邱承光.小球藻处理废水研究进展[J].环境科学与技术,2003,26(4):48~49.
    [96]李师翁,李虎乾,张建军.小球藻大规模培养研究的进展[J].植物学通报,1998,4:14~18.
    [97]WANG Yi-Qin, CHEN Ying, BAI Qin-Hua, et al. Study on Defensin Production Using Chlorella as Bioreactors[J]. High Technology Letters 2001,11(9):1~5.
    [98]Yamaguchi K. Recent Advances in Microalgal. Bioscience in Japan [J]. Journal of Apphed Phycolgy,1997,8:487~502.
    [99]Ying Chen, Yiqin Wang, Yongru Sun, et al. Highly Efficient Expression of Rabbit Neutrophil Peptide-1 Gene in Chlorella Ellipsoidea ceHs[J]. Curr Genet,2001,39: 365~370.
    [100]Guillard R R L Pyther J H, Studies of marine plandtonic diatom. Ⅰ. Iyclotella nana Hustedt and Detonula confervacea(cleve)Gran[J]. Can. J. Microbiol,1962,8: 229-239.
    [101]Guillard RRL. In Stein J R, Handbook of Phycological Method[J]. Cambridge University Press, Bridge,1973,289~311.
    [102]Becker E W. Measurement of algal growth. In:Becker E W(ed). Microalgae Biotechnology and Microbiology[J]. Cambridge:Cambridge University Press,1994: 56~62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700