基于较大尺度均匀土壤基的桩基动态试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桩基础由于其在竖向承载力、抗拔承载力、抗水平承载力以及抗震能力等方面有着不可替代的优势,在工程中得到了广泛地应用。但还是有很多问题急待解决,如桩侧阻力尤其是负摩阻力、桩基前端及围土的应力场分布、桩基的稳定性问题等等。由于桩-土工况条件的复杂,特别是土的性质差异性很大,给研究工作带来了很大的困难,成为土木研究领域的重点、难点和热点。因此,相关的研究不仅具有十分重要的工程意义,也具有重要的理论意义。
     室内模型试验存在一个重要的问题,就是土壤基的制备。这方面的研究几乎未有报道,然而一个理想的土壤基往往是模型试验成败与否的关键。特别是粘性土,其性质的复杂性尤其突出,某种因素的变化都会对粘性土的性质产生重大影响,用其制备试验用理想的土壤基更为困难。因此,室内重塑土样地制备具有重要的现实意义。
     本研究的目的在于寻求制作相对均质重塑土样的方法,并以此制作模型试验土壤基进行多直径模型桩试验,揭示桩基贯入及拔出过程中桩端及桩侧阻力随桩径及深度的变化情况。首先是制作小尺度的土壤基,探索小尺度土壤基制作过程中影响其结构均匀性的条件,获得制作均匀土样的制样方法与工作参数。在此基础上探索大尺度土壤基的制作技术,结合文献中关于大尺度土壤基的报道,制作尺度为30cm左右尺度的土壤基,使用不同直径的模型桩借助液压动力系统在大尺度土壤基上进行动态贯入与拔出试验研究,并利用测试系统测取桩贯入及拔出过程中的阻力,研究不同尺度的桩在相对均质土壤基中阻力随深度的变化情况,并根据结果验证土壤基的均匀性。
     本论文的主要结论及成果如下:
     1.提出了以土壤孔隙率(比)作为土壤压实质量的控制指标,目前的规范和规定都是采用压实度这一指标来控制填土工程的质量,但是由于孔隙率(比)更加直观地反映了土壤的压实效果,因此可以尝试用现场压实后土的孔隙率(比)与室内标准击实后土的孔隙率(比)进行比较,以此更加精确的定义压实度指标。并介绍了一种测量土壤孔隙率(比)的简易方法,与现有方法相比较,该方法具有简单易行,成本较低,且结果较准确等特点。
     2.通过室内非标准小型击实试验,反映了在非标准击实状态下粘土的一些性质与表现,得出了一些特殊的规律。提出了制样因子的概念,制样因子的合理性仍要做深入探讨,重塑土样的性质直接关系到室内模型试验的结果,因此室内模型试验的重塑土样制备也值得做进一步的研究。
     3.设计制作了移动式液压动力系统,为制作土壤基与模型桩试验提供了动力源。通过室内模型桩贯入与拔出试验,得到桩贯入过程中,桩土间的阻力随位移增长呈线性增大趋势;拔出过程中,桩土间阻力随位移增长也近似呈线性减小趋势。随桩径增大,对应的阻力也明显增大。最大桩端阻力在总阻抗中的比重随桩径及长径比的增大而呈减小趋势,但当长径比达到75时,减小的趋势便放缓,并近似趋于恒定。桩端阻力随桩径增大呈增大趋势,而贯入过程中位移的变化对桩端阻力几乎无显著影响,从侧面验证了土壤基的相对均匀性。
Because of its excellent vertical bearing capacity, pull-out capacity, anti-horizontal bearing capacity and anti-seismic capacity, pile foundation has irreplaceable advantages in engineering and thus has been widely used. However, a number of problems remain unresolved, such as the pile side resistance, of particular the negative friction, stress distribution under the pile tip and the surrounded soil, the stability of foundation problems, etc.Due to the complexity of geotechnical conditions, and particularly the unpredictable behavior of soils, researches in these areas generally faced with a lot of difficulties, and in turn these have turned out to be the focus, difficult and hot spots of the research field of civil engineering. Therefore, the relevant research work was not only significant in engineering practices but also has important theoretical implications.
     One important issue for laboratory model tests is the preparation of remolded soil. Although an ideally remolded soil is generally the key for a successful indoor model test, there was almost no such research work reported. This was true particularly for clay soils. The properties of this type of soils were very much complicated. The change of one or two of its factors can generally lead to the drastic variations of many other properties,making the preparation of ideal test soil unattainable. Therefore the preparation of remolded soil has important practical significance.
     The purpose of this study is to search the method of preparing relatively homogeneous remolded soil, based on which the target remolded soil base be made for multi-diameter model pile tests.So that the relationship between the pile tip and side resistance and the pile diameters and depths can be illustrated for the dynamical pressing and pulling processes.Mini-scale remolded soil bases were firstly prepared to test the influencing factors on the soil base homogeneity, the results of which provided the relevant working parameters that were governing conditions for homogeneous soil state. Next, the technology of large-scale homogeneous remolded soil preparation was explored. By considering the past reports,the large 30 cm diameter remolded soil base was prepared. This allowed the dynamic penetration test on different sized model piles in the soil bases, under the help of hydraulic power system. The pile resistance changes with depth for different scales were measured in relatively homogeneous remolded soil base, which results also validated the homogeneity of the remolded soil based.
     Conclusions and main achievements of this paper were listed below:
     1.Soil porosity (ratio) was proposed as an indicator for quality control on soil compaction. The currently applied regulations and specifications defined the degree of compaction as a controlling indicator. Yet the porosity (ratio) is more intuitive to reflect the degree of soil compaction, and thus it can be used for comparing the porosity of in-situ soil compaction test with that of the standard-laboratory tamping test. This index provide a higher precision quantification on soil compaction.In addition, a simple test method was explained for soil porosity measurement.Comparing with the past methods,this method was benefited with its simplicity, low cost and more accurate.
     2.The non-standard mini-scale indoor tamping test revealed some special characteristics and behaviors of a clay soil.The concept of soil sample preparation factor was proposed, which reasonability still need investigation.As the property of remolded soil is directly related to the result of the indoor model test, it preparation should be further investigated.
     3.A hydraulic power system for the preparation of remolded soil and model pile test was designed and constructed. Through the indoor penetration and pull-out test, the pile-soil resistance is enhancing as a linear trend with the increasing of the depth during the pile penetrate into the soil;in the pull-out process,the resistance is in constrast with above.With increasing of the pile diameter, the corresponding resistance also increases. The proportion of the biggest pile tip resistance in the total impedance decreases with the increase of the pile diameter and aspect ratio,but while the aspect ratio is 75,the decrease will slow down, and approximately tends to a constant. Pile tip resistance increases with the pile diameter, but the pile tip resistance is almost no significant increased trend with the change of displacement, it verifies the relative homogeneous of the base on the other hand.
引文
[1]牛富俊,程国栋,赖远明.青藏铁路通风路堤室内模型试验研究[J].西安工程学院学报,2002,24(3):1-6.
    [2]赵陈鹏.轨道交通9号线宜山路站基坑降水对地面沉降的影响及室内模型试验研究[D].上海:同济大学,2007.
    [3]唐益群,栾长青.上海某地铁车站室内模型试验降水沉降分析[J].重庆建筑大学学报,2008,30(4):68-72.
    [4]王仙芝,郑俊杰.散体材料桩复合地基室内模型试验研究[J].岩土工程界,2007,11(2):74-77.
    [5]郑俊杰,王仙芝,韩超,高学伸.钢管桩与砂桩多元复合地基室内模型试验[J].华中科技大学学报(自然科学版),2008,36(9):121-124.
    [6]刘奋勇,杨晓斌,刘学.混合桩型复合地基试验研究[J].岩土工程学报,2003,25(1):71-75.
    [7]王仙芝,郑俊杰,王龙飞,赵建斌.混凝土桩与石灰桩多元复合地基室内模型试验研究[J].武汉理工大学学报(交通科学与工程版),2008,32(5):838-841.
    [8]朱云升,常英,曹军民,郝健.高路堤下复合地基室内模型试验研究[J].武汉理工大学学报(交通科学与工程版),2007,31(3):404-407.
    [9]陆培毅,严驰,顾晓鲁.砂土基于室内模型试验土压力分布形式的研究[J].土木工程学报,2003,36(10):84-88.
    [10]赵振勇,周春儿,曹喜仁.重塑土简易制样技术及工程应用[J].广东公路交通,2006,1:57-60.
    [11]卞昭庆.原状土取样的规范化[J].工程勘察,1995,1:4-9.
    [12]Nikhilesh R, Parth S.Strain rate behavior of compated silt Journal of the Geotechnical Engineering Division[J].Proceedings of the American Society of Civil Engineerings.1976, 102(GT4):347~360.
    [13]YaoY. Testing and modeling of silty and sulphide-rich soils:Ph.Ddissertation[R].Sweden Lule University of Technology,1993.
    [14]高大钊,赵春风,徐斌.桩基础的设计方法与施工技术[M].机械工业出版社,1999.
    [15]林天健,熊厚金,王利群.桩基础设计指南[M].中国建筑工业出版社,1999.1..J IJ12rweLF..L:
    [16]李富强,王钊.桩侧阻力研究的概述[J].低温建筑技术,2005,3:70-72.
    [17]胡育佳.桩基非线性静动力学特性研究[D].上海:上海大学,2008.
    [18]林亚超,王邦楣.砂性土中单桩和桩基的模型试验[J].桥梁建设,1997,2:58-70.
    [19]王晶颖,梁仁旺.砂性土中桩基模型试验研究[J].山西建筑,2006,32(7):105-106.
    [20]宋修广,徐建胜,韩军.粉喷桩复合地基附加应立场的分析[J].山东大学学报(工学版),2003,4:454-456.
    [21]曾庆国,何杰,张春顺.膨胀土中桩侧阻力的静载试验研究[J].湖南工业大学学报, 2007,1:97-100.
    [22]段迪,张道明.粘性土桩侧阻力传力模型分析及试验研究[J].低温建筑技术,2006(4):98-100
    [23]Hird, C. C.,Johnson, P.&Sills, G. C.Performance of miniature piezocones in thinly layered soils[J].Geotechnigue,53(10):885-900
    [24]Huang, A.-B.&Hsu, H.-H. Cone penetration tests under simulated field conditions[J]. Geotechnigue,55(5):345-354
    [25]Lee, C Bolton, M. D.&Al-Tabbaa, A. Numerical modelling of group effects on the distribution of dragloads in pile foundations[J].Geotechnigue,52(5):325-335
    [26]徐光明,章为民.离心模型中的粒径效应和边界效应研究[J].岩土工程学报,1996(3):80-86
    [27]姚燕明,周顺华,李尧臣.离心模型试验边界效应分析[J].力学季刊,2004(2):291-296
    [28]张晓健.桩基负摩阻力研究现状[J].地下空间与工程学报,2006(2):315-324
    [29]杨进,彭苏萍.群桩作用下桩土相互作用实验研究[J].岩土力学,2004(2):312-315
    [30]Chung, S.G,Kwag, J. M., Giao,P. H.,Baek, S.H.&Prasad, K. N. A study of soil disturbance of Pusan clays with reference to drilling, sampling and extruding[J].Geotechnigue,54(1):61-65
    [31]Lee, F. H.,Juneja, A.&Tan T. S.Stress and pore pressure changes due to sand compaction pile installation in soft clav[J].Geotechnigue,54(1):1-16
    [32]樊良本,朱国元.桩周土应力状态的圆柱孔扩张理论试验研究[J].浙江大学学报(自然科学版),1998(2):228-235
    [33]李小军,廖振鹏.土应力应变关系的粘-弹-塑模型[J].地震工程与工程振动,1989(3):65-72
    [34]韦珊珊.土中应力分布传递规律的试验及测试技术研究[D]:[学位论文].广西:广西大学,2003
    [35]戴民,周云东,张霆.桩土相互作用研究综述[J].河海大学学报(自然科学版),2006(5):568-571
    [36]Wesley, L. D.Interpretation of calibration chamber tests involving cone penetrometers in sands[J].Geotechnigue,52(4):289-293
    [37]曹宇春,周键,黄茂松.桩基动力检测技术新世纪展望[J].岩土工程技术,2002(4):241-244
    [38]刘世安,叶明亮.桩基动测技术研究现状及发展动向[J].资源环境与工程,2005(1):61-64
    [39]白韶红.基桩动态测试规范初探[J].岩土工程界,第四卷第12期:4849
    [40]徐顺玲.现场干密度推算最大干密度方法的研究[D].湖南:湖南大学,2002.
    [41]杨世基.残积粘性土路基的最佳压实.北京:交通部公路科学研究所,1986.
    [42]卢廷浩,刘祖德等编著.高等土力学[M].北京:机械工业出版社,2006:264
    [43]南京工学院道路教研组.公路路基[M].北京:中国铁道出版社,1980.
    [44]黄昌勇.土壤学[M].北京:中国农业出版社,2005.
    [45]Brown RM, Ransom B.Porosity corrections for smectite-rich sediments-impact on studies of compaction, fluid generation[J].Geology,1996,24:843-846.
    [46]钱树安.测定固体多孔物结构的新方法—水银压入法[J].化学通报,1995.11:33-39.
    [47]齐志强,马德江.用JH型孔率计测定多孔物质的孔径分布[J].辽宁化工,1984.1:50-64.
    [48]王锤琦,孙广忠,刘双光等.岩土工程测试技术[M].北京:中国建筑工业出版社,1986.
    [49]刘艳华,张和生,马娟娟.利用遥感图像处理软件(ERDAS IMAGINE)对土壤孔隙率进行测定分析[J].太原理工大学学报,2006.36(1):55-58.
    [50]南京水利科学研究院土工研究所.土工试验技术手册[M].北京:人民交通出版社,2003.
    [51]沙庆林.公路压实与压实标准[M].北京:人民交通出版社,1999.5.
    [52]胡海英,王钊.含水量对压实粘土的变形及强度性能的影响[J].公路,2007,2:1-6.
    [53]周勤,赵发章,张洪亮.压实度和含水量对于压实黄土力学特性的影响[J].公路,2006,1:67-70.
    [54]李治平,王绍兵.击实功对黄土强度影响的试验研究[J].交通科技,2001.189(6):19-20.
    [55]Frost, J.D., and Park, J.Y., (2003),A Critical Assessment of the Moist-Tamping Technique, ASTM. Geotechnical Testing Journal[J],Vol.26, No.1, pp.57-70.
    [56]王志坚,叶阳升,王仲锦.击实试验标准不同对试验结果的影响[J].中国铁道科学,2003,24(2):53-57.
    [57]张志权,王志勇.最大干密度和最优含水率的准确性探讨[J].长安大学学报(建筑与环境科学版),2004,21(2):7-10.
    [58]Braja M Das. Principles of Geotechnical Engineering [M].Pacific Grove, CA:Brooks Cole/Thompson Learning,2002.
    [59]刘恩龙,沈珠江.人工制备结构性土力学特性试验研究[J].岩土力学,2007,28(4):679-683.
    [60]王伟,冯小平,邹昀等.粘性土力学强度与微结构动态环境能场内在关联分析[J].岩土力学,2006,27(12):2219-2224.
    [61]万玉珍,林德明.重塑黄土的应力—应变关系[J].岩土工程学报,1996,18(6):106-110.
    [62]叶晓明,苏磊,明成云.大型击实试验研究初探[J].地下空间,2001,21(2):138-142.
    [63]陆长兵,黄晓明.大型马歇尔试验击实次数[J].长安大学学报(自然科学版),2004,24(1):21-24.
    [64]王旭东.大型马歇尔击实试验研究[J].公路交通科技,2002,19(1):16-30.
    [65]成大先.机械设计手册单行本--液压传动[M].北京:化学工业出版社,2004.
    [66]成大先.机械设计手册单行本—机械振动与机架设计[M].北京:化学工业出版社,2004.
    [67]成大先.机械设计手册单行本—常用工程材料[M].北京:化学工业出版社,2004.
    [68]成大先.机械设计手册单行本—联接与紧固[M].北京:化学工业出版社,2004.
    [69]成大先.机械设计手册单行本北常用设计资料[M].北京:化学工业出版社,2004.
    [70]中国标准出版社.汽车国家标准汇编—挂车卷[M].北京:中国标准出版社,2003.
    [71]中国国家标准GB/T 20338-2006/ISO 20019:2001《农业车辆被牵引车辆的机械连接装置挂接》[M].北京:中国标准出版社,2006.
    [72]龚微寒.《汽车现代设计制造》[M].北京:人民交通出版社,1995.8(1):215-226.
    [73]周明衡.《联轴器选用手册》[M].北京:化学工业出版社,2001.1(1):245-250.
    [74]日本农业机械学会.《农业机械手册》[M].北京:机械工业出版社,1991.9.
    [75]大金工业株式会社.《大金液压元件及系统》[M].上海:大金(上海)有限公司,2005(1).
    [76]贾书刚,王淑平.土壤钻取采样器类型的研究[J].吉林农业大学学报,1996,18(1):51-55.
    [77]LaForce. MJ, Hansel. CM, Fendorf. S.Constructing simple wetland sampling devices[J].SOIL SCIENCE SOCIETY OF AMERICA JOURNAL,2000(2):809-811.
    [78]Seaby, DA.Portable, Two-stage sampler for "difficult" soils[J].SOIL SCIENCE SOCIETY OF AMERICA JOURNAL,2000(4):1327-1329.
    [79]储王应,王能民.静力压桩沉桩阻力分析与估算[J].岩土工程技术,2000,1:25-28,46.
    [80]龚晓南.复合地基[M].浙江大学出版社,1992
    [81]王浩,周健,邓志辉.砂土中桩端阻力随位移发挥的内在机理研究[J].岩土工程学报,2006,28(5):587-593.
    [82]张忠苗.桩基工程[M].北京:中国建筑工业出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700