Hedgehog信号通路在低氧肺血管重建中的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肺动脉平滑肌细胞(PASMC)的异常增殖与凋亡是低氧肺动脉高压肺血管重建发病的关键环节。在此病理过程中,多种细胞因子、生长因子通过细胞内信号传导途径将细胞外增殖信号传至核内,在核内调节基因表达,启动细胞应激反应。然而在此过程中PASMC的信号转导机制尚未完全阐明。
     Hedgehog(Hh)信号通路是与发育相关的重要信号转导途径。在脊椎动物Hedgehog主要有三个成员,包括Shh(Sonic hedgehog)、Ihh(Indian hedgehog)和Dhh(Desert hedgehog)。Patched (Ptc)和Smoothened (Smo)共同介导Hedgehog信号向胞内的传递,在无Hedgehog情况下,Ptc抑制Smo,当Hedgehog与Ptc结合后,则解除了其抑制作用,继而Smo激活转录因子Gli,从而增强或抑制一系列Hh信号靶基因的转录,产生一系列细胞效应。
     Hh信号通路在胚胎发育中发挥重要作用,对于胚胎细胞的增殖、分化起着极为关键的调节作用,如果此通路发生突变,会导致多种严重的先天发育缺陷。近年来发现,Hh信号通路在成熟机体的多种生理病理过程中也发挥重要调节作用。Shh缺陷的小鼠肺组织血管结构存在障碍,而Shh过度表达会导致血管形成过度。最近报道,生物机械应力可降低大鼠血管平滑肌Hh信号通路主要分子的表达,对动脉血管重建具有显著影响。因此,本研究使用人原代PASMC培养模型,观察Hh信号通路主要分子在正常及低氧时的表达和活性变化,并通过特异性拮抗剂及激活剂调节此通路的活化水平,观察其对PASMC增殖、凋亡及细胞因子分泌等病理变化的影响,以阐明Hh信号通路在低氧肺血管重建中的作用及机制,从而为低氧肺动脉高压的防治提供理论依据和新的治疗靶点。
     方法:
     1.购买并培养HPASMC细胞株,RT-PCR检测正常HPASMC中Shh、Ptc-1和Gli-1基因mRNA表达;Western blot法检测以上蛋白表达,免疫荧光法检测Ptc-1与Gli-1蛋白在静息状态下HPASMC的定位。Shh刺激实验观察Hh信号通路的功能。
     2. Real-time RT-PCR和Western blot检测低氧条件下HPASMC中Shh与Ptc-1 mRNA与蛋白表达变化,免疫荧光法检测Gli-1细胞定位的变化。
     3.不同时相点低氧处理HPASMC, Alamar Blue法和流式细胞仪检测低氧条件下阻断Hh信号通路对HPASMC细胞增殖、凋亡与细胞周期分布的变化。
     4. ELISA法检测cyclopamine阻断Hh信号通路对低氧诱导的HPASMC分泌MCP-1及IL-6活性的影响。
     5. Alamar Blue法检测维生素D3对低氧诱导的HPASMC增殖的影响。Real-time RT-PCR检测维生素D3对低氧诱导的HPASMC中Gli-1基因mRNA的表达影响,免疫荧光法检测Gli-1蛋白细胞定位的变化。
     结果:
     1.RT-PCR显示HPASMC有Shh、Ptc-1与Gli-1 mRNA表达,免疫荧光检测显示Ptc-1表达在HPASMC细胞膜,而Gli-1在静息HPASMC的胞浆而非胞核表达;Western blot法均检测到以上蛋白表达。Shh刺激可明显促进HPASMC增殖,并可被Hh通路特异性抑制剂cyclopamine阻断。
     2.实时定量RT-PCR与Western blot均显示Shh与Ptc-1的mRNA和蛋白表达在低氧4h后升高,8h达到高峰,12h下降。低氧可诱导Gli-1蛋白的胞核聚集,并可被cyclopamine所阻断。
     3.HPASMC经24h静息处理后进行常氧与低氧培养,低氧显著促进细胞增殖,其增殖效应主要发生在低氧4h、8h与12h。cyclopamine可明显抑制此低氧诱导的增殖效应,并可明显增加G0/G1期、减少S期与G2/M期细胞周期分布。Annexin -V染色法流式细胞仪检测显示,与常氧对照比较,低氧刺激后HPASMC凋亡明显减少,而cyclopamine对凋亡具有明显促进作用。
     4.常氧对照HPASMC培养基上清中可检测到IL-6活性,但无MCP-1分泌,低氧8h处理后二者活性均明显增高,cyclopamine处理可明显抑制二者分泌。
     5.维生素D3可明显抑制低氧诱导的HPASMC Gli-1mRNA的表达和蛋白的核内聚集,同时对低氧诱导的HPASMC的增殖具有明显抑制作用。
     结论:
     1.正常HPASMC有Hh信号通路主要分子的表达,并对细胞生长具有调节功能。
     2.低氧可明显活化HPASMC中Hh信号通路的表达,并经由此通路促进HPASMC增殖、抑制凋亡及调节致炎性细胞因子的分泌,提示Hh通路可能是低氧肺血管重建病变进展的重要分子基础,抑制此通路的活化可能是低氧肺动脉高压等疾病治疗新的靶点。
     3.维生素D3可通过抑制Hh信号通路活化对低氧肺血管重建起到治疗作用,具有潜在的临床应用价值。
Abnormal changes of proliferation and apoptosis in pulmonary artery smooth muscle cells (PASMCs) play a key role on vascular remodeling that occurs in chronic hypoxic pulmonary hypertension (HPH). Different growth factors, cytokine and proinflammatory mediators convey extracelluar signal to the nucleus by interacting with receptors on the cell surface, then regulate expression of target genes and contribute to cell stress reaction. However, the cellular signal mechanism of PASMC involved in hypoxic pulmonary vascular remodeling are not fully understood.
     The Hedgehog(Hh) signaling pathway has been well investigated in the studies of development. To date, three members of the hedgehog family have been identified in vertebrates: Sonic hedgehog (Shh), Indian hedgehog (Ihh), and Desert hedgehog (Dhh). The stimuli of secreted hedgehog family peptides are mediated by a receptor system on the cell surface composed with two proteins: Patched (Ptc) and Smoothened (Smo). The hedgehog receptor Ptc represses the 7-transmembrane protein Smo, inhibiting the pathway in the absence of hedgehog ligands. Upon hedgehog ligand binding, Ptc is inactivated, and then Smo is de-repressed from the suppression of Ptc and is able to transduce the intracellular signals to transcriptor Gli. Gli transfers the signals into the nucleus and then activates and represses many target gene transcription in response to Hh signaling.
     The Hedgehog signaling pathway plays a fundamental role in the development of various embryonic tissues development. The pathway has been shown to have effects on cell proliferation, cell survival and cell fate determination in embryonic development. Mutations in the pathway often result in gross defects across species. Its regulatory roles in signal transduction in mature/adult cells and their implications in disease are now well-recognized recent years. Several observations highlight the involvement of Hh in the development of embryonic vascular tissues, including hypervascularization of neuroectoderm following overexpression of Shh ,and poor vascularization of the developing lung in Shh-deficient mice. Recently a study showed that Hh signaling is present in adult vascular smooth muscle cells and can be diminished by biomechanical stimulation in vitro and in vivo and thus may play a fundamental role in arterial remodeling. According to these, we hypothesized that Hh pathway may potentially have regulatory effects on VSMC's response in hypoxic vascular remolding .This study was therefore undertaken to observe the expression of Hh signaling pathway and its role on human PASMCs under hypoxia conditions.
     Methods
     1. After HPASMC were purchased and cultured, expressions of Shh, Ptc-1 and Gli-1 mRNA and protein were detected by RT-PCR and Western blot, locations of Ptc-1 and Gli-1 in static HPASMC were detected by immunofluorescence. Shh was used to investigate the role of Hh signal pathway on HPASMC growth.
     2. The quantitative assessment of Shh and Ptc-1 mRNA expression under hypoxia by Real-time RT-PCR and the protein expression by Western blot analysis. Gli-1 nuclear accumulation induced by hypoxia was detected by immunofluorescence.
     3. After various hours hypoxia treatment, HPASMC proliferation was detected by Alamar Blue assay, cell cycle distribution and apoptosis was measured by flow cytometry analysis.
     4. After hypoxia treatment, with or without cyclopamine block, the activities of both cytokine The activities of IL-6 and MCP-1 in HPASMC cell supernatant was detected by ELISA.
     5. HPASMC was cultured in hypoxia with or without Vitamin D3 treatment, the proliferation was measured by Alamar Blue assay,the expression of Gli-1 mRNA was measured by real-time RT-PCR, and the location of Gli-1 protein was detected by immunofluorescence。
     Results
     1.RT-PCR revealed that Shh, Ptc-1, and Gli-1 mRNA are expressed in HPASMC. Immunofluorescence showed that Ptc-1 protein was present on the plasma membranes of HPASMC, and Gli-1 protein was present on the cytoplasm but not nucleus of static HPASMC. Western blot analysis showed that Shh, Ptc-1,and Gli-1 protein were expressed in HPASMC. Shh enhanced proliferation of HPASMC in a dose-dependent manner. The enhancement can be inhibited by cyclopamine(a Hh signaling inhibitor).
     2.The expressions of Shh and Ptc-1 mRNA level in HPASMC measured by real-time RT-PCR were promoted after 4h hypoxic exposure, peaked after 8h and decreased after 12h. And the protein expression level of Shh, Ptc-1 measured by Western blot changed as the same mode, respectively. Gli-1 nuclear accumulation induced by hypoxia and can be blocked by cyclopamine.
     3. HPASMC were serum starved at least 24h and then incubated for various periods in normoxic or hypoxic conditions. Hypoxia significantly promoted HPASMC proliferation at the phase of 4h, 8h, and 12h. Cyclopamine inhibited the proliferation, increased G0/G1 phrase, decreased S and G2/M phrase cell cycles significantly. Effect of Hh signaling pathway on HPASMC apoptosis in 8h hypoxic exposure was assessed by annexin V staining. Compared with normoxia control, the rate of HPASMC apoptosis in hypoxia group was lower, which can be increased by cyclopamine significantly.
     4.The IL-6 activity in normoxia HPASMC cell supernatant was detectable by ELISA, but MCP-1 not. After hypoxia exposure, the activities of IL-6 and MCP-1 both increased significantly, and can be inhibited remarkably by cyclopamine.
     5.After hypoxic treatment, vitamin D3 can inhibit the Gli-1mRNA expression level and nuclear accumulation of HPASMC and decrease the proliferation induced by hypoxia.
     Conclusions
     1. Hh signal pathway main components are expressed in normal adult HPASMC and involve in the growth regulation.
     2. Hh signal pathway can be activated by hypoxia, which involes in the abnormal changes of proliferation, apoptosis, and proinflammation cytokine secretion of HPASMC induced by hypoxia.
     3. Vitamin D3 can inhibit the activation of Hh signal pathway and decrease HPASMC proliferation induced by hypoxia, which indicate its potential value for the treatment of hypoxic pulmonary vascular remodeling.
引文
1 Pepicelli CV, Lewis PM, McMahon AP. Sonic hedgehog regulates branching morphogenesis in the mammalian lung. Curr Biol,1998,8(19) :1083-1086.
    2 Rowitch DH, St-Jacques B, Lee SM, et al. Sonic hedgehog regulates proliferation and inhibits differentiation of CNS precursor cells. J Neurosci, 1999,19(20):8954-8965.
    3 Surace EM, Balaggan KS, Tessitore A, et al. Inhibition of ocular neovascularization by hedgehog blockade. Mol Ther, 2006,13(3):573-9.
    4 Morrow D, Sweeney C, Birney YA, et al. Biomechanical regulation of hedgehog signaling in vascular smooth muscle cells in vitro and in vivo. Am J Physiol Cell Physiol, 2007,292(1):C488-96.
    5 C. Nusslein-Volhard and E. Wieschaus. Mutations affecting segment number and polarity in Drosophila. Nature,1980, 287(5785): 795–801.
    6 D.N. Watkins and C.D. Peacock,Hedgehog signalling in foregut malignancy. Biochem. Pharmacol, 2004,68(6):1055–1060.
    7 J. Taipale, M.K. Cooper, T. Maiti and P.A.Beachy. Patched acts catalytically to suppress the activity of Smoothened. Nature, 2002, 418(6900):892–897.
    8 Frank Kamenetsky M, Zhang XM, Bottega S,et al. Small-molecule modulators of Hedgehog signaling: identification and characterization of Smoothened agonists and antagonists.. J Biol,2002,1(2):10.
    9 Stenmark KR, Fagan KA, Frid MG. Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circ Res, 2006,99(7):675-691.
    10 Jones R, Reid L. Vascular Remodeling in Clinical and Experimental Pulmonary Hypertensions. London: Portland Press; 1995.
    11 Durmowicz AG, Hofmeister S, Kadyraliev TK, et al. Functional and structural adaptation of the yak pulmonary circulation to residence at high altitude. J Appl Physiol, 1993,74(5):2276-2285.
    12 Rhodes J. Comparative physiology of hypoxic pulmonary hypertension: historical clues from brisket disease. J Appl Physiol, 2005,98(3):1092-10100.
    13 Rabinovitch M, Gamble WJ, Miettinen OS, et al. Age and sex influence on pulmonary hypertension of chronic hypoxia and on recovery. Am J Physiol, 1981,240(1):H62-72.
    14 Dempsey EC, Das M, Frid MG, et al. Unique growth properties of neonatal pulmonary vascular cells: importance of time- and site-specific responses, cell-cell interaction, and synergy. J Perinatol, 1996,16(2 Pt 2 Su):S2-11.
    15 Mehlen, P, Mille, F, Thibert, C. Morphogens and cell survival during development. J. Neurobiol,2005, 64(4): 357–366.
    16 P.W. Ingham, A.P. McMahon. Hedgehog signaling in animal development: paradigms and principles. Genes Dev, 2001,15(23):3059-3087.
    17 N. Dahmane and A. Ruiz-i-Altaba. Sonic hedgehog regulates the growth and patterning of the cerebellum. Development, 1999,126(14):3089–3100.
    18 A.E. Munsterberg, J. Kitajewski, D.A. Bumcrot, A.P. McMahon and A.B. Lassar. Combinatorial signaling by Sonic hedgehog and Wnt family members induces myogenic bHLH gene expression in the somite. Gene Dev, 1995,9(23):2911–2922.
    19 Gerber AN, Wilson CW, Li YJ, et al. The hedgehog regulated oncogenes Gli1 and Gli2 block myoblast differentiation by inhibiting MyoD-mediated transcriptional activation. Oncogene, 2007,26(8):1122-36.
    20 G. Bhardwaj, B. Murdoch, D. Wu, D.P. Baker, K.P. Williams, K. Chadwick, L.E. Ling, F.N. Karanu and M. Bhatia. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat Immunol, 2001,2(2):172–180.
    21 Wallis, D. and Muenke. Mutations in holoprosencephaly. Hum. Mutat, 2000,16(4): 99–108.
    22 Hayhurst, M. and McConnell, S.K. Mouse models of holoprosencephaly. Curr. Opin. Neurol, 2003,16(7):135–141.
    23 Ming, J.E, Roessler, E, Muenke, M. Human developmental disorders and the Sonic hedgehog pathway. Mol. Med. Today, 1998,4(12):343–349.
    24 Lee Y, Miller HL, Russell HR, et al. Patched2 modulates tumorigenesis in patched1 heterozygous mice. Cancer Res, 2006,66(14):6964-71.
    25 Adolphe C, Hetherington R, Ellis T, et al. Patched1 functions as a gatekeeper by promoting cell cycle progression. Cancer Res, 2006,66(4):2081-8.
    26 G.R. van den Brink, J.C. Hardwick, G.N. Tytgat, M.A. Brink, F.J. ten Kate, S.J. van Deventer and M.P. Peppelenbosch. Sonic hedgehog regulates gastric gland morphogenesis in man and mouse. Gastroenterology, 2001,121(43):317–328.
    27 Osawa H, Ohnishi H, Takano K, et al. Sonic hedgehog stimulates the proliferation of rat gastric mucosal cells through ERK activation by elevating intracellular calcium concentration. Biochem Biophys Res Commun, 2006,344(2):680-7.
    28 Wolf I, Bose S, Desmond JC, et al. Unmasking of epigenetically silenced genes reveals DNA promoter methylation and reduced expression of PTCH in breast cancer. Breast Cancer Res Treat, 2007, 105(2):139-55.
    29 Lavine KJ, Kovacs A, Ornitz DM. Hedgehog signaling is critical for maintenance of the adult coronary vasculature in mice. J Clin Invest, 2008,118(7):2404-2414.
    30 Suzuki YJ, Day RM, Tan CC, et al. Activation of GATA-4 by serotonin in pulmonary artery smooth muscle cells. J Biol Chem, 2003,278(19):17525-17531.
    31 Zhang WM, Yip KP, Lin MJ, et al. ET-1 activates Ca2+ sparks in PASMC: local Ca2+ signaling between inositol trisphosphate and ryanodine receptors. Am J Physiol Lung Cell Mol Physiol, 2003,285(3):L680-90.
    32 Barman SA, Zhu S, Han G, et al. cAMP activates BKCa channels in pulmonary arterial smooth muscle via cGMP-dependent protein kinase. Am J Physiol Lung Cell Mol Physiol, 2003,284(6):L1004-11.
    33 Li P, Oparil S, Sun JZ, et al. Fibroblast growth factor mediates hypoxia-induced endothelin-- a receptor expression in lung artery smooth muscle cells. J Appl Physiol, 2003,95(2):643-51.
    34 Lemjabbar-Alaoui H, Dasari V, Sidhu SS, et al. Wnt and hedgehog are critical mediators of cigarette smoke-induced lung cancer. PLoS ONE, 2006,1:e93.
    35 Coon DR, Roberts DJ, Loscertales M, et al. Differential epithelial expression of SHH and FOXF1 in usual and nonspecific interstitial pneumonia. Exp Mol Pathol, 2006,80(2):119-23.
    36 Emans PJ, Spaapen F, Surtel DA, et al. A novel in vivo model to study endochondral bone formation; HIF-1alpha activation and BMP expression. Bone,2007, 40(2): 409-418.
    37 Waypa GB, Chandel NS, Schumacker PT. Model for hypoxic pulmonary vasoconstriction involving mitochondrial oxygen sensing. Circ Res, 2001, 88(12): 1259 - 1266.
    38 Archer S , Michelakis E. The mechanisms of hypoxic pulmonary vasoconstriction :potassium channels,redox O2 sensors,and controversies. News Physiol Sci, 2002, 17(4):131 - 137.
    39 Lando D , Gorman JJ , Whitelaw ML,et al. Oxygen - dependent regulation of hypoxia - inducible factors by prolyl and as paraginyl hydroxylation. Eur J Biochem, 2003,270(5):781 - 790.
    40 Bilton RL , Booker GW. The subtle side to hypoxia inducible factor (HIF - alpha) regulation. Eur J Biochem, 2003,270(5):791 - 798.
    41 Bijlsma MF, Groot AP, Oduro JP, et al. Hypoxia induces a hedgehog response mediated by HIF-1alpha. J Cell Mol Med, 2008, [Epub ahead of print].
    42 Hwang JM, Weng YJ, Lin JA, et al. Hypoxia-induced compensatory effect as related to Shh and HIF-1alpha in ischemia embryo rat heart. Mol Cell Biochem, 2008,311(1-2):179-187.
    43 Riobo NA, Haines GM, Emerson CP Jr. Protein kinase C-delta and mitogen-activated protein/extracellular signal-regulated kinase-1 control GLI activation in hedgehog signaling. Cancer Res, 2006,66(2):839-845.
    44 Riobo NA, Lu K, Ai X, et al. Phosphoinositide 3-kinase and Akt are essential for Sonic Hedgehog signaling. Proc Natl Acad Sci U S A, 2006,103(12):4505-4510.
    45 Fu JR, Liu WL, Zhou JF, et al. Sonic hedgehog protein promotes bone marrow-derived endothelial progenitor cell proliferation, migration and VEGF production via PI 3-kinase/Akt signaling pathways. Acta Pharmacol Sin, 2006,27(6):685-693.
    46 Michiels C. Physiological and pathological responses to hypoxia. Am J Pathol, 2004,164(6):1875-1882.
    47 Lanner MC, Raper M, Pratt WM, et al. Heterotrimeric G proteins and the platelet-derived growth factor receptor-beta contribute to hypoxic proliferation of smooth muscle cells. Am J Respir Cell Mol Biol, 2005,33(4):412-419.
    48 Dempsey EC, McMurtry IF, O'Brien RF. Protein kinase C activation allows pulmonary artery smooth muscle cells to proliferate to hypoxia. Am J Physiol, 1991,260(2 Pt 1):L136-45.
    49 Gardner LB, Li Q, Park MS, et al. Hypoxia inhibits G1/S transition through regulation of p27 expression. J Biol Chem, 2001,276(11):7919-7926.
    50 Goda N, Dozier SJ, Johnson RS. HIF-1 in cell cycle regulation, apoptosis, and tumorprogression. Antioxid Redox Signal, 2003,5(4):467-473.
    51 Green SL, Freiberg RA, Giaccia AJ. p21(Cip1) and p27(Kip1) regulate cell cycle reentry after hypoxic stress but are not necessary for hypoxia-induced arrest. Mol Cell Biol, 2001,21(4):1196-1206.
    52 Eddahibi S, Fabre V, Boni C, et al. Induction of serotonin transporter by hypoxia in pulmonary vascular smooth muscle cells. Relationship with the mitogenic action of serotonin. Circ Res, 1999,84(3):329-336.
    53 Stiebellehner L, Frid MG, Reeves JT, et al. Bovine distal pulmonary arterial media is composed of a uniform population of well-differentiated smooth muscle cells with low proliferative capabilities. Am J Physiol Lung Cell Mol Physiol, 2003,285(4):L819-28.
    54 Tamm M, Bihl M, Eickelberg O, et al. Hypoxia-induced interleukin-6 and interleukin-8 production is mediated by platelet-activating factor and platelet-derived growth factor in primary human lung cells. Am J Respir Cell Mol Biol, 1998,19(4):653-661.
    55 Frid MG, Aldashev AA, Dempsey EC, et al. Smooth muscle cells isolated from discrete compartments of the mature vascular media exhibit unique phenotypes and distinct growth capabilities. Circ Res, 1997,81(6):940-952.
    56 Ambalavanan N, Mariani G, Bulger A, et al. Role of nitric oxide in regulating neonatal porcine pulmonary artery smooth muscle cell proliferation. Biol Neonate, 1999,76(5):291-300.
    57 Stotz WH, Li D, Johns RA. Exogenous nitric oxide upregulates p21(waf1/cip1) in pulmonary microvascular smooth muscle cells. J Vasc Res, 2004,41(3):211-219.
    58 Preston IR, Hill NS, Warburton RR, et al. Role of 12-lipoxygenase in hypoxia-induced rat pulmonary artery smooth muscle cell proliferation. Am J Physiol Lung Cell Mol Physiol, 2006,290(2):L367-374.
    59 Benitz WE, Coulson JD, Lessler DS, et al. Hypoxia inhibits proliferation of fetal pulmonary arterial smooth muscle cells in vitro. Pediatr Res, 1986,20(10):966-972.
    60 Cogo A, Napolitano G, Michoud MC, et al. Effects of hypoxia on rat airway smooth muscle cell proliferation. J Appl Physiol, 2003,94(4):1403-1409.
    61 Schultz K, Fanburg BL, Beasley D. Hypoxia and hypoxia-inducible factor-1alpha promote growth factor-induced proliferation of human vascular smooth muscle cells.Am J Physiol Heart Circ Physiol, 2006,290(6):H2528-2534.
    62 Growcott EJ, Banner KH, Wharton J. Hypoxia amplifies the proliferative capacity of distal human pulmonary artery smooth-muscle cells. Chest, 2005,128(6 Suppl): 600S-601S.
    63 Ray JB, Arab S, Deng Y, et al. Oxygen regulation of arterial smooth muscle cell proliferation and survival. Am J Physiol Heart Circ Physiol, 2008,294(2):H839-852.
    64 Vanitha JD, Paramasivan CN. Evaluation of microplate Alamar blue assay for drug susceptibility testing of Mycobacterium avium complex isolates. Diagn Microbiol Infect Dis, 2004,49(3):179-182.
    65 Byth HA, Mchunu BI, Dubery IA, et al. Assessment of a simple, non-toxic Alamar blue cell survival assay to monitor tomato cell viability. Phytochem Anal, 2001,12(5):340-346.
    66 Gloeckner H, Jonuleit T, Lemke HD. Monitoring of cell viability and cell growth in a hollow-fiber bioreactor by use of the dye Alamar Blue. J Immunol Methods, 2001,252(1-2):131-138.
    67 Mikus J, Steverding D. A simple colorimetric method to screen drug cytotoxicity against Leishmania using the dye Alamar Blue. Parasitol Int, 2000,48(3):265-269.
    68 Ahmed SA, Gogal RM Jr, Walsh JE. A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: an alternative to [3H]thymidine incorporation assay. J Immunol Methods, 1994,170(2):211-224.
    69 Nociari MM, Shalev A, Benias P, et al. A novel one-step, highly sensitive fluorometric assay to evaluate cell-mediated cytotoxicity. J Immunol Methods, 1998,213(2):157-67.
    70 Repp KK, Menor SA, Pettit RK. Microplate Alamar blue assay for susceptibility testing of Candida albicans biofilms. Med Mycol, 2007,45(7):603-607.
    71 Chauca JA, Palomino JC, Guerra H. Evaluation of the accuracy of the microplate Alamar Blue assay for rapid detection of MDR-TB in Peru. Int J Tuberc Lung Dis, 2007,11(7):820-822.
    72 Al-Nasiry S, Geusens N, Hanssens M, et al. The use of Alamar Blue assay for quantitative analysis of viability, migration and invasion of choriocarcinoma cells. Hum Reprod, 2007,22(5):1304-1309.
    73 Hamid R, Rotshteyn Y, Rabadi L, et al. Comparison of alamar blue and MTT assaysfor high through-put screening. Toxicol In Vitro, 2004,18(5):703-710.
    74 Reis RS, Neves I Jr, Lourenco SL, et al. Comparison of flow cytometric and Alamar Blue tests with the proportional method for testing susceptibility of Mycobacterium tuberculosis to rifampin and isoniazid. J Clin Microbiol, 2004,42(5):2247-2248.
    75 R. Nusse. Wnts and hedgehogs: lipid-modified proteins and similarities in signaling mechanisms at the cell surface. Development, 2003,130:5297–5305.
    76 P.A. Beachy, S.S. Karhadkar and D.M. Berman. Tissue repair and stem cell renewal in carcinogenesis. Nature, 2004,432 (7015): 324–331.
    77 Lawson ND, Vogel AM, Weinstein BM. Sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev Cell,2002,3(1): 127-136.
    78 Byrd N, Maye P, Becker S, et al. Hedgehog is required for murine yolk sac angiogenesis. Development, 2002,129(2):361-372.
    79 Pola R, Ling LE, Silver M, et al. The morphogen Sonic hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors. Nat Med, 2001,7(6):706-711.
    80 Pola R, Ling LE, Aprahamian TR, et al. Postnatal recapitulation of embryonic hedgehog pathway in response to skeletal muscle ischemia. Circulation, 2003,108(4):479-485.
    81 Kanda S, Mochizuki Y, Suematsu T, et al. Sonic hedgehog induces capillary morphogenesis by endothelial cells through phosphoinositide 3-kinase. J Biol Chem, 2003,278(10):8244-8249.
    82 Taipale J, Chen JK, Cooper MK, et al. Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature, 2000,406(6799):1005-1009.
    83 Intengan HD, Schiffrin EL. Vascular remodeling in hypertension: roles of apoptosis, inflammation, and fibrosis. Hypertension, 2001,38(3 Pt 2):581-587.
    84 Bjorkerud S, Bjorkerud B, Joelsson M. Structural organization of reconstituted human arterial smooth muscle tissue. Arterioscler Thromb, 1994,14(4):644-651.
    85陶清国,张珍祥,徐永健.慢性缺氧对大鼠肺内细胞增殖、凋亡及相关基因表达的影响.中国病理生理杂志,1999. 459-461.
    86 Cowan KN, Heilbut A, Humpl T, et al. Complete reversal of fatal pulmonaryhypertension in rats by a serine elastase inhibitor. Nat Med, 2000,6(6):698-702.
    87 Cowan KN, Jones PL, Rabinovitch M. Regression of hypertrophied rat pulmonary arteries in organ culture is associated with suppression of proteolytic activity, inhibition of tenascin-C, and smooth muscle cell apoptosis. Circ Res, 1999,84(10): 1223-33.
    88 Weir EK, Archer SL. The mechanism of acute hypoxic pulmonary vasoconstriction: the tale of two channels. FASEB J, 1995,9(2):183-189.
    89胡瑞成,戴爱国,谭双香.缺氧性肺动脉高压发病中肺动脉平滑肌细胞增殖与凋亡变化.南华大学学报, 2001,29(5):445-448.
    90 Sumou IK, Du JB, Wei B, et al. Effect of L-arginine on pulmonary artery smooth muscle cell apoptosis in rats with hypoxic pulmonary vascular structural remodeling. Acta Biochim Biophys Sin, 2006,38(1):15-21.
    91 Alvarez-Tejado M, Naranjo-Suarez S, Jimenez C, et al. Hypoxia induces the activation of the phosphatidylinositol 3-kinase/Akt cell survival pathway in PC12 cells: protective role in apoptosis. J Biol Chem, 2001,276(25):22368-22374.
    92 Dong Z, Venkatachalam MA, Wang J, et al. Up-regulation of apoptosis inhibitory protein IAP-2 by hypoxia. Hif-1-independent mechanisms. J Biol Chem, 2001,276(22):18702-18709.
    93 Li B, Desai SA, MacCorkle-Chosnek RA, et al. A novel conditional Akt 'survival switch' reversibly protects cells from apoptosis. Gene Ther, 2002,9(4):233-244.
    94 Evan GI, Wyllie AH, Gilbert CS, et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell, 1992,69(1):119-128.
    95王玉,孙黎光,夏春辉. Caspase介导的Fas凋亡途径.世界华人消化杂志,2006. 3439-3442.
    96 Bennett MR, Evan GI, Schwartz SM. Apoptosis of rat vascular smooth muscle cells is regulated by p53-dependent and -independent pathways. Circ Res, 1995,77(2):266-73.
    97 D. Qualtrough, A. Buda, W. Gaffield, A.C. Williams and C. Paraskeva. Hedgehog signalling in colorectal tumour cells: induction of apoptosis with cyclopamine treatment. Int. J. Cancer, 2004,110(6):831–837.
    98 S.P. Thayer, M. Pasca di Magliano, P.W. Heiser, C.M. Nielsen, D.J. Roberts and G.Y. Lauwers. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis.Nature, 2003,425(6960):851–856.
    99 D.N. Watkins, D.M. Berman, S.G. Burkholder, B. Wang, P.A. Beachy and S.B. Baylin. Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature, 2003,422 (6929): 313–317.
    100 M. Kubo, M. Nakamura, A. Tasaki, N. Yamanaka,H. Nakashima and M. Nomura et al. Hedgehog signalling pathway is a new therapeutic target for patients with breast cancer. Cancer Res, 2004,64 (17): 6071–6074.
    101 Zhang S, Fantozzi I, Tigno DD, et al. Bone morphogenetic proteins induce apoptosis in human pulmonary vascular smooth muscle cells. Am J Physiol Lung Cell Mol Physiol, 2003,285(3):L740-54.
    102 Tuder RM, Cool CD, Yeager M, et al. The pathobiology of pulmonary hypertension. Endothelium. Clin Chest Med, 2001,22(3):405-18.
    103 Rabinovitch M. Elastase and the pathobiology of unexplained pulmonary hypertension. Chest, 1998,114(3 Suppl):213S-224S.
    104 Abe K, Shimokawa H, Morikawa K, et al. Long-term treatment with a Rho-kinase inhibitor improves monocrotaline-induced fatal pulmonary hypertension in rats. Circ Res, 2004,94(3):385-93.
    105 Merklinger SL, Jones PL, Martinez EC, et al. Epidermal growth factor receptor blockade mediates smooth muscle cell apoptosis and improves survival in rats with pulmonary hypertension. Circulation, 2005,112(3):423-31.
    106 Dorfmuller, P, Perros, F, Balabanian, K, et al. Inflammation in pulmonary arterial hypertension. Eur Respir J,2003,22(2): 358–363.
    107 Kishimoto T. Interleukin-6: discovery of a pleiotropic cytokine. Arthritis Res Ther, 2006,8 Suppl 2:S2.
    108 Am J Respir Crit Care Med. Lesprit P, Godeau B, Authier FJ et al. Pulmonary hypertension in POEMS syndrome. A new feature mediated by cytokines. 1998, 157(3 Pt 1): 907-911.
    109 Humbert M, Monti G, Brenot F, et al. Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension. Am J Respir Crit Care Med, 1995,151(5):1628-1631.
    110 Eddahibi, S, Chaouat, A, Tu, L, et al. Interleukin-6 gene polymorphism conferssusceptibility to pulmonary hypertension in chronic obstructive pulmonary disease. Proc Am Thorac Soc, 2006,3(6):475–476.
    111王关嵩钱桂生毛宝龄蔡文琴陈维中陈琰.缺氧肺动脉高压大鼠肺组织中白细胞介素6和Janus激酶表达的变化.中华结核和呼吸杂志,2003. 664-667.
    112 Savale L, Tu L, Rideau D, et al. Impact of interleukin-6 on hypoxia-induced pulmonary hypertension and lung inflammation in mice. Respir Res, 2009,10:6.
    113 Golembeski, SM, West, J, Tada, Y, et al. Interleukin-6 causes mild pulmonary hypertension and augments hypoxia-induced pulmonary hypertension in mice. Chest, 2005,128(6 Suppl):572S–573S.
    114 Steiner MK, Syrkina OL, Kolliputi N, et al. Interleukin-6 overexpression induces pulmonary hypertension. Circ Res, 2009,104(2):236-244.
    115 Tamm,-M, Bihl,-M, Eickelberg,-O, et al. Hypoxia-induced interleukin-6 and interleukin-8 production is mediated by platelet-activating factor and platelet-derived growth factor in primary human lung cells. Am J Respir Cell Mol Biol, 1998,19(4):653-661.
    116 Cooper,-A-L, Beasley,-D. Hypoxia stimulates proliferation and interleukin-1alpha production in human vascular smooth muscle cells. Am J Physiol, 1999,277(4 Pt 2):H1326-37.
    117金伯泉.细胞和分子免疫学.第二版版.北京:科学出版社,2001.
    118 Romano M, Sironi M, Toniatti C, et al. Role of IL-6 and its soluble receptor in induction of chemokines and leukocyte recruitment. Immunity, 1997,6(3):315-25.
    119 Yan SF, Tritto I, Pinsky D, et al. Induction of interleukin 6 (IL-6) by hypoxia in vascular cells. Central role of the binding site for nuclear factor-IL-6. J Biol Chem, 1995,270(19):11463-11471.
    120 Yan SF, Ogawa S, Stern DM, et al. Hypoxia-induced modulation of endothelial cell properties: regulation of barrier function and expression of interleukin-6. Kidney Int, 1997,51(2):419-425.
    121 Ulich TR, Yin S, Guo K, et al. Intratracheal injection of endotoxin and cytokines. II. Interleukin-6 and transforming growth factor beta inhibit acute inflammation. Am J Pathol, 1991,138(5):1097-1101.
    122 Aderka D, Le JM, Vilcek J. IL-6 inhibits lipopolysaccharide-induced tumor necrosisfactor production in cultured human monocytes, U937 cells, and in mice. J Immunol, 1989,143(11):3517-3523.
    123 Madjdpour C, Jewell UR, Kneller S, et al. Decreased alveolar oxygen induces lung inflammation. Am J Physiol Lung Cell Mol Physiol, 2003,284(2):L360-367.
    124 Zampetaki A, Minamino T, Mitsialis SA, et al. Effect of heme oxygenase-1 overexpression in two models of lung inflammation. Exp Biol Med (Maywood), 2003,228(5):442-446.
    125 Madjdpour C, Jewell UR, Kneller S et al. Decreased alveolar oxygen induces lung inflammation. Am J Physiol Lung Cell Mol Physiol, 2003,284(2):L360–L367.
    126 Itoh T, Nagaya N, Ishibashi-Ueda H, et al. Increased plasma monocyte chemoattractant protein-1 level in idiopathic pulmonary arterial hypertension. Respirology, 2006,11(2):158-163.
    127 Frid MG, Brunetti JA, Burke DL, et al. Hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage. Am J Pathol, 2006,168(2):659-69.
    128 Gan WQ, Man SF, Senthilselvan A, et al. Association between chronic obstructive pulmonary disease and systemic inflammation: a systematic review and a meta-analysis. Thorax, 2004,59(7):574-580.
    129 Schoene RB, Swenson ER, Pizzo CJ et al. The lung at high altitude: bronchoalveolar lavage in acute mountain sickness and pulmonary edema. J Appl Physiol, 1988,64(6): 2605–2613.
    130 Jeffery TK, Bryan-Lluka LJ, Wanstall JC. Specific uptake of 5-hydroxytryptamine is reduced in lungs from hypoxic pulmonary hypertensive rats. Eur J Pharmacol, 2000,396(23):137–140.
    131 MacLean MR, Herve P, Eddahibi S, Adnot S. 5-hydroxytryptamine and the pulmonary circulation: receptors, transporters and relevance to pulmonary arterial hypertension. Br J Pharmacol, 2000,131(2):161–168.
    132 MacLean MR, Deuchar GA, Hicks MN et al. Overexpression of the
    5-hydroxytryptamine transporter gene: effect on pulmonary hemodynamics and hypoxia-induced pulmonary hypertension. Circulation, 2004,109(17):2150–2155.
    133 Parenti A, Bellik L, Brogelli L, et al. Endogenous VEGF-A is responsible formitogenic effects of MCP-1 on vascular smooth muscle cells. Am J Physiol Heart Circ Physiol, 2004,286(5):H1978-1984.
    134 Denger S, Jahn L, Wende P, et al. Expression of monocyte chemoattractant protein-1 cDNA in vascular smooth muscle cells: induction of the synthetic phenotype: a possible clue to SMC differentiation in the process of atherogenesis. Atherosclerosis, 1999,144(1):15-23.
    135 Proost P, Wuyts A, Van Damme J. Human monocyte chemotactic proteins-2 and -3: structural and functional comparison with MCP-1. J Leukoc Biol, 1996,59(1):67-74.
    136 Stewart GA, Lowrey JA, Wakelin SJ, et al. Sonic hedgehog signaling modulates activation of and cytokine production by human peripheral CD4+ T cells. J Immunol, 2002,169(10):5451-5457.
    137 Lowrey JA, Stewart GA, Lindey S, et al. Sonic hedgehog promotes cell cycle progression in activated peripheral CD4(+) T lymphocytes. J Immunol, 2002,169(4):1869-1875.
    138 Stewart GA, Hoyne GF, Ahmad SA, et al. Expression of the developmental Sonic hedgehog (Shh) signalling pathway is up-regulated in chronic lung fibrosis and the Shh receptor patched 1 is present in circulating T lymphocytes. J Pathol, 2003,199(4):488-495.
    139 Wakelin SJ, Forsythe JL, Garden OJ, et al. Commercially available recombinant sonic hedgehog up-regulates Ptc and modulates the cytokine and chemokine expression of human macrophages: an effect mediated by endotoxin contamination?. Immunobiology, 2008,213(1):25-38.
    140周扬,刘海燕,刘玉峰,李承新. Hedgehog信号通路特异性抑制剂Cyclopamine对HaCaT细胞白介素8分泌的影响.临床皮肤科杂志,2008. 157-159.
    141 Bijlsma MF, Spek CA, Zivkovic D, et al. Repression of smoothened by patched-dependent (pro-)vitamin D3 secretion. PLoS Biol, 2006,4(8):e232.
    142 Holick MF. Vitamin D: A millenium perspective. J Cell Biochem, 2003,88(2):296-307.
    143 Cantorna MT, Zhu Y, Froicu M, et al. Vitamin D status, 1,25-dihydroxyvitamin D3, and the immune system. Am J Clin Nutr, 2004,80(6 Suppl):1717S-20S.
    144杨晓萍,陈桂香,徐钢,刘晓城. 1,25-二羟基维生素D3对肾小球系膜细胞生长的作用.中国现代医学杂志,2008. 2784-2787.
    145 Verlinden L, Verstuyf A, Van Camp M, et al. Two novel 14-Epi-analogues of 1,25-dihydroxyvitamin D3 inhibit the growth of human breast cancer cells in vitro and in vivo. Cancer Res, 2000,60(10):2673-2679.
    146蔡萍,吴展元,李金荣. 1,25二羟维生素D3对人喉鳞状细胞癌细胞系增殖及凋亡的影响. Clin Otorhinolaryngol(China), 2006,20(12):538-544.
    147 Nemere I, Schwartz Z, Pedrozo H, et al. Identification of a membrane receptor for 1,25-dihydroxyvitamin D3 which mediates rapid activation of protein kinase C. J Bone Miner Res, 1998,13(9):1353-1359.
    148 Haussler MR, Whitfield GK, Haussler CA, et al. The nuclear vitamin D receptor: biological and molecular regulatory properties revealed. J Bone Miner Res, 1998,13(3):325-349.
    149 Cardus A, Gallego C, Muray S, et al. [Differential effect of vitamin D analogues on the proliferation of vascular smooth muscle cells]. Nefrologia, 2003,23(Suppl 2):117-21.
    150 Reinhart GA. Vitamin D analogs: novel therapeutic agents for cardiovascular disease?. Curr Opin Investig Drugs, 2004,5(9):947-951.
    151 Schwartz Z, Bonewald LF, Caulfield K, et al. Direct effects of transforming growth factor-beta on chondrocytes are modulated by vitamin D metabolites in a cell maturation-specific manner. Endocrinology, 1993,132(4):1544-1552.
    152 Gruber HE, Hoelscher G, Ingram JA, et al. 1,25(OH)2-vitamin D3 inhibits proliferation and decreases production of monocyte chemoattractant protein-1, thrombopoietin, VEGF, and angiogenin by human annulus cells in vitro. Spine, 2008,33(7):755-765.
    1 C. Nusslein-Volhard and E. Wieschaus. Mutations affecting segment number and polarity in Drosophila. Nature,1980, 287(5785): 795–801.
    2 Koide T, Hayata T, Cho KW. Negative regulation of Hedgehog signaling by the cholesterogenic enzyme 7-dehydrocholesterol reductase. Development, 2006,133(12):2395-405.
    3 Nakashima H, Nakamura M, Yamaguchi H, et al. Nuclear factor-kappaB contributes to hedgehog signaling pathway activation through sonic hedgehog induction in pancreatic cancer. Cancer Res, 2006,66(14):7041-9.
    4 Eggenschwiler JT, Bulgakov OV, Qin J, et al. Mouse Rab23 regulates hedgehog signaling from smoothened to Gli proteins. Dev Biol, 2006,290(1):1-12.
    5 Mehlen, P, Mille, F, Thibert, C. Morphogens and cell survival during development. J. Neurobiol,2005. 357–366.
    6 Wichterle, H, Lieberam, I, Porter, J.A, Jessell, T.M. Directed differentiation of embryonic stem cells into motor neurons. Cell, 2002,110:385–397.
    7 Shin, S, Dalton, S, Stice, S.L. Human motor neuron differentiation from human embryonic stem cells. 2005,14:266–269.
    8 P.W. Ingham, A.P. McMahon. Hedgehog signaling in animal development: paradigms and principles. Genes Dev, 2001,15:3059-3087.
    9 N. Dahmane and A. Ruiz-i-Altaba. Sonic hedgehog regulates the growth and patterning of the cerebellum. Development, 1999,126:3089–3100.
    10 A.E. Munsterberg, J. Kitajewski, D.A. Bumcrot, A.P. McMahon and A.B. Lassar. Combinatorial signaling by Sonic hedgehog and Wnt family members induces myogenic bHLH gene expression in the somite. Gene Dev, 1995,9:2911–2922.
    11 Gerber AN, Wilson CW, Li YJ, et al. The hedgehog regulated oncogenes Gli1 and Gli2 block myoblast differentiation by inhibiting MyoD-mediated transcriptional activation. Oncogene, 2007,26(8):1122-36.
    12 G. Bhardwaj, B. Murdoch, D. Wu, D.P. Baker, K.P. Williams, K. Chadwick, L.E. Ling, F.N. Karanu and M. Bhatia. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat Immunol, 2001,2:172–180.
    13 Wallis, D. and Muenke. Mutations in holoprosencephaly. Hum. Mutat, 2000,16:99–108.
    14 Hayhurst, M. and McConnell, S.K. Mouse models of holoprosencephaly. Curr. Opin. Neurol, 2003,16:135–141.
    15 Ming, J.E, Roessler, E, Muenke, M. Human developmental disorders and the Sonic hedgehog pathway. Mol. Med. Today, 1998,4:343–349.
    16 Morton JP, Mongeau ME, Klimstra DS, et al. Sonic hedgehog acts at multiple stages during pancreatic tumorigenesis. Proc Natl Acad Sci U S A, 2007,104(12):5103-8.
    17 Lee Y, Miller HL, Russell HR, et al. Patched2 modulates tumorigenesis in patched1 heterozygous mice. Cancer Res, 2006,66(14):6964-71.
    18 Adolphe C, Hetherington R, Ellis T, et al. Patched1 functions as a gatekeeper by promoting cell cycle progression. Cancer Res, 2006,66(4):2081-8.
    19 Wolf I, Bose S, Desmond JC, et al. Unmasking of epigenetically silenced genes reveals DNA promoter methylation and reduced expression of Ptc in breast cancer. Breast Cancer Res Treat, 2007.
    20 Yuan Z, Goetz JA, Singh S, et al. Frequent requirement of hedgehog signaling in non-small cell lung carcinoma. Oncogene, 2007,26(7):1046-55.
    21 Sims-Mourtada J, Izzo JG, Ajani J, et al. Sonic Hedgehog promotes multiple drug resistance by regulation of drug transport. Oncogene, 2007.
    22 Chan VS, Chau SY, Tian L, et al. Sonic hedgehog promotes CD4+ T lymphocyte proliferation and modulates the expression of a subset of CD28-targeted genes. Int Immunol, 2006,18(12):1627-36.
    23 Sacedon R, Diez B, Nunez V, et al. Sonic hedgehog is produced by follicular dendritic cells and protects germinal center B cells from apoptosis. J Immunol, 2005,174(3):1456-61.
    24 Lawson ND, Vogel AM, Weinstein BM. Sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev Cell,2002. 127-136.
    25 Pepicelli CV, Lewis PM, McMahon AP. Sonic hedgehog regulates branching morphogenesis in the mammalian lung. Curr Biol,1998. 1083-1086.
    26 Rowitch DH, St-Jacques B, Lee SM, et al. Sonic hedgehog regulates proliferation andinhibits differentiation of CNS precursor cells. J Neurosci, 1999,19:8954-8965.
    27 Lee SW, Moskowitz MA, Sims JR. Sonic hedgehog inversely regulates the expression of angiopoietin-1 and angiopoietin-2 in fibroblasts. Int J Mol Med, 2007,19(3):445-51.
    28 Byrd N, Maye P, Becker S, et al. Hedgehog is required for murine yolk sac angiogenesis. Development, 2002,129:361-372.
    29 Pola R, Ling LE, Silver M, et al. The morphogen Sonic hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors. Nat Med, 2001,7:706-711.
    30 Pola R, Ling LE, Aprahamian TR, et al. Postnatal recapitulation of embryonic hedgehog pathway in response to skeletal muscle ischemia. Circulation, 2003,108:479-485.
    31 Kanda S, Mochizuki Y, Suematsu T, et al. Sonic hedgehog induces capillary morphogenesis by endothelial cells through phosphoinositide 3-kinase. J Biol Chem, 2003,278:8244-8249.
    32 Surace EM, Balaggan KS, Tessitore A, et al. Inhibition of ocular neovascularization by hedgehog blockade. Mol Ther, 2006,13(3):573-9.
    33 Morrow D, Sweeney C, Birney YA, et al. Biomechanical regulation of hedgehog signaling in vascular smooth muscle cells in vitro and in vivo. Am J Physiol Cell Physiol, 2007,292(1):C488-96.
    34 D.N. Watkins, D.M. Berman, S.G. Burkholder, B. Wang, P.A. Beachy and S.B. Baylin. Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature,2003. 313–317.
    35 G.R. van den Brink, J.C.H. Hardwick, C. Nielsen, C. Xu, F.J. Ten Kate and J. Glickman et al. Sonic hedgehog expression correlates with fundic gland differentiation in the adult gastrointestinal tract. Gut, 2002,51:628–633.
    36 Lemjabbar-Alaoui H, Dasari V, Sidhu SS, et al. Wnt and hedgehog are critical mediators of cigarette smoke-induced lung cancer. PLoS ONE, 2006,1:e93.
    37 Stewart GA, Hoyne GF, Ahmad SA, et al. Expression of the developmental Sonic hedgehog (Shh) signalling pathway is up-regulated in chronic lung fibrosis and the Shh receptor patched 1 is present in circulating T lymphocytes. J Pathol, 2003,199(4):488-95.
    38 Osawa H, Ohnishi H, Takano K, et al. Sonic hedgehog stimulates the proliferation of rat gastric mucosal cells through ERK activation by elevating intracellular calcium concentration. Biochem Biophys Res Commun, 2006,344(2):680-7.
    39 Riobo NA, Haines GM, Emerson CP Jr. Protein kinase C-delta and mitogen-activated protein/extracellular signal-regulated kinase-1 control GLI activation in hedgehog signaling. Cancer Res, 2006,66(2):839-45.
    40 Riobo NA, Lu K, Ai X, et al. Phosphoinositide 3-kinase and Akt are essential for Sonic Hedgehog signaling. Proc Natl Acad Sci U S A, 2006,103(12):4505-10.
    41 Fu JR, Liu WL, Zhou JF, et al. Sonic hedgehog protein promotes bone marrow-derived endothelial progenitor cell proliferation, migration and VEGF production via PI 3-kinase/Akt signaling pathways. Acta Pharmacol Sin, 2006,27(6):685-93.
    1. Taipale J, Cooper MK, Maiti T, Beachy PA. Patched acts catalytically to suppress the activity of Smoothened. Nature. 2002; 418: 892–7.
    2. Watkins DN, Peacock CD. Hedgehog signalling in foregut malignancy. Biochem Pharmacol. 2004; 68: 1055–60.
    3. Ingham PW, McMahon AP. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 2001; 15: 3059-87.
    4. Bhardwaj G, Murdoch B, Wu D, Baker DP, Williams KP, Chadwick K, Ling LE, Karanu FN, Bhatia M. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat Immunol. 2001; 2: 172-80.
    5. Chiang C, Litingtung Y, Lee E, Young KE, Corden JL, Westphal H, Beachy PA. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature. 1996; 383: 407-13.
    6. Nybakken K, Perrimon N. Hedgehog signal transduction: recent findings. Curr. Opin. Genet. Dev. 2002; 503–11.
    7. Wichterle H, Lieberam I, Porter JA, Jessell TM. Directed differentiation of embryonic stem cells into motor neurons. Cell. 2002; 110: 385–97.
    8. Shin S, Dalton S, Stice SL. Human motor neuron differentiation from human embryonic stem cells. Stem Cells Dev. 2005; 14: 266–9.
    9. Ming JE, Roessler E, Muenke M. Human developmental disorders and the Sonic hedgehog pathway. Mol. Med. Today. 1998; 4: 343–9.
    10. Chiang C, Litingtung Y, Lee E, Young KE, Corden JL, Westphal H, Beachy PA. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature. 1996; 383: 407–13.
    11. Nusse R. Wnts and hedgehogs: lipid-modified proteins and similarities in signalingmechanisms at the cell surface. Development.2003; 130: 5297–305.
    12. Beachy PA, Karhadkar SS, Berman DM. Tissue repair and stem cell renewal in carcinogenesis. Nature. 2004; 432: 324–31.
    13. Rowitch DH, Jacques SB, Lee SM, Flax JD, Snyder EY, McMahon AP. Sonic hedgehog regulates proliferation and inhibits differentiation of CNS precursor cells. J Neurosci. 1999; 8954-65.
    14. Brown LA, Rodaway AR, Schilling TF, Jowett T, Ingham PW, Patient RK, Sharrocks AD. Insights in to early vasculogenesis revealed by expression of the ETS-domain transcription factor Fli-1 in type and mutant zebrafish embryos. Mech Dev. 2000; 90: 237-52.
    15. Pepicelli CV, Lewis PM, McMahon AP. Sonic hedgehog regulates branching morphogenesis in the mammalian lung. Curr Biol. 1998; 8: 1083-88.
    16. Morrow D, Sweeney C, Birney YA,Guha S, Collins N, Cummins PM, Murphy R, Walls D,Redmond EM,Cahill PA. Biomechanical regulation of hedgehog signaling in vascular smooth muscle cells in vitro and in vivo. Am J Physiol Cell Physiol. 2007; 292: C488-96.
    17. Ingham PW, McMahon AP. Hedgehog signaling in animal development: paradigms and principles. Genes. Dev. 2001; 3059–87.
    18. Kasper M, Regl G, Frischauf AM, Aberger F. GLI transcription factors: mediators of oncogenic Hedgehog signalling. Eur J Cancer. 2006; 42: 437-45.
    19. Ingham PW, McMahon AP. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 2001; 15: 3059-87.
    20. Byrd N, Becker S, Maye P,Narasimhaiah R, St-Jacques B, Zhang X, McMahon J, McMahon A, Grabel L. Hedgehog is required for murine yolk sac angiogenesis. Development. 2002; 129: 361-72.
    21. Dyer MA, Farrington SM, Mohn D, Munday JR, Baron MH. Indian hedgehog activates hematopoiesis and vasculogenesis and can respecify prospective neurectodermal cell fate in the mouse embryo. Development. 2001; 128: 1717-30.
    22. Brown LA, Rodaway AR, Schilling TF, Jowett T, Ingham PW, Patient RK,Sharrocks AD. Insights into early vasculogenesis revealed by expression of the ETS-domain transcription factor Fli-1 in wild-type and mutant zebrafish embryos. Mech Dev. 2000; 90: 237-52.
    23. Byrd N, Grabel L. Hedgehog signaling in murine vasculogenesis and angiogenesis. Trends Cardiovasc Med. 2004; 14: 308-13.
    24. Rowitch DH, SJacques B, Lee SM, Flax JD, Snyder EY, McMahon AP. Sonic hedgehog regulates proliferation and inhibits differentiation of CNS precursor cells. J Neurosci. 1999; 19: 8954-65.
    25. Pepicelli CV, Lewis PM, McMahon AP. Sonic hedgehog regulates branching morphogenesis in the mammalian lung. Curr Biol. 1998; 8: 1083-6.
    26. Pola R, Ling LE, Aprahamian TR, Barban E, Bosch-Marce M, Curry C, Corbley M, Kearney M, Isner JM, Losordo DW. Postnatal recapitulation of embryonic hedgehog pathway in response to skeletal muscle ischemia. Circulation. 2003; 108: 479-85.
    27. Surace EM, Balaggan KS, Tessitore A, Tessitore A, Mussolino C, Cotugno G, Bonetti C, Vitale A, Ali RR, Auricchio A. Inhibition of ocular neovascularization by hedgehogblockade. Mol Ther. 2006; 13: 573-9.
    28. Bijlsma MF, Groot AP, Oduro JP, Franken RJ, Schoenmakers SH, Peppelenbosch MP, Spek CA. Hypoxia induces a hedgehog response mediated by HIF-1alpha. J Cell Mol Med. 10.1111/j.1582-4934.2008.00491.x
    29. Hwang JM, Weng YJ, Lin JA, Bau DT, Ko FY, Tsai FJ, Tsai CH, Wu CH, Lin PC, Huang CY, Kuo WW. Hypoxia-induced compensatory effect as related to Shh and HIF-1alpha in ischemia embryo rat heart. Mol Cell Biochem. 2008; 311: 179-87.
    30. Wichterle H, Lieberam I, Porter JA, Jessell TM. Directed differentiation of embryonic stem cells into motor neurons. Cell. 2002; 110: 385-97.
    31. Shin S, Dalton S, Stice SL. Human motor neuron differentiation from human embryonic stem cells. Stem Cells Dev. 2005; 14: 266-9.
    32. Bhardwaj G, Murdoch B, Wu D, Baker DP, Williams KP, Chadwick K, Ling LE, Karanu FN, Bhatia M. Sonic hedgehog induces the proliferation of primitive humanhematopoietic cells via BMP regulation. Nat Immunol. 2001; 2: 172-80.
    33. Elia D, Madhala D, Ardon E, Reshef R, Halevy O. Sonic hedgehog promotes proliferation and differentiation of adult muscle cells: Involvement of MAPK/ERK and PI3K/Akt pathways. Biochim Biophys Acta. 2007; 1773: 1438-46.
    34. Osawa H, Ohnishi H, Takano K, Noguti T, Mashima H, Hoshino H, Kita H, Sato K, Matsui H, Sugano K. Sonic hedgehog stimulates the proliferation of rat gastric mucosal cells through ERK activation by elevating intracellular calcium concentration. Biochem Biophys Res Commun. 2006; 344: 680-7.
    35. Mehlen P, Mille F, Thibert C. Morphogens and cell survival during development. J. Neurobiol. 2005; 64: 357–66.
    36. Vervoort M. Hedgehog and wing development in Drosophila: a morphogen at work?. Bioessays. 2000; 22: 460–8.
    37. Lavine KJ, White AC, Park C, Smith CS, Choi K, Long F, Hui CC, Ornitz DM. Fibroblast growth factor signals regulate a wave of Hedgehog activation that is essential for coronary vascular development. Genes Dev. 2006; 20: 1651-66.
    38. Fu JR, Liu WL, Zhou JF, et al. Sonic hedgehog protein promotes bone marrow-derived endothelial progenitor cell proliferation, migration and VEGF production via PI 3-kinase/Akt signaling pathways. Acta Pharmacol Sin. 2006; 27: 685-93.
    39. Kenney AM, Rowitch DH. Sonic hedgehog promotes G(1) cyclin expression and sustained cell cycle progression in mammalian neuronal precursors. Mol Cell Biol. 2000; 20: 9055-67.
    40. Hooper JE, Scott MP. Communicating with Hedgehogs. Nat Rev Mol Cell Biol. 2005; 6: 306-17.
    41. Pasca di Magliano M, Hebrok M. Hedgehog signalling in cancer formation and maintenance. Nat Rev Cancer. 2003; 3: 903-11.
    42. Lum L, Beachy PA. The Hedgehog response network: sensors, switches, and routers. Science. 2004; 304: 1755-9.
    43. Qualtrough D, Buda A, Gaffield W, Williams AC, Paraskeva C. Hedgehogsignalling in colorectal tumour cells: induction of apoptosis with cyclopamine treatment. Int. J. Cancer. 2004; 110: 831–7.
    44. Thayer SP, Pasca di Magliano M, Heiser PW, Nielsen CM, Roberts DJ, Lauwers GY. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature. 2003; 425: 851–6.
    45. Watkins DN, Berman DM, Burkholder SG, Wang B, Beachy PA, Baylin SB. Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature. 2003; 422: 313–7.
    46. Kubo M, Nakamura M, Tasaki A, Yamanaka N, Nakashima H, Nomura M, Kuroki S, Katano M. Hedgehog signalling pathway is a new therapeutic target for patients with breast cancer. Cancer Res. 2004; 64: 6071–4.
    47. Lavine KJ, Kovacs A, Ornitz DM. Hedgehog signaling is critical for maintenance of the adultcoronary vasculature in mice. J Clin Invest. 2008; 118: 2404-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700