FOXP3在胃癌细胞中的表达及其相关功能的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:FOXP3(Transcription factor forkhead box protein 3)因具有重要的免疫抑制调节功能目前被认为是调节性T细胞(Regulatory T cells;以下简称:Tregs)功能特异性转录因子。最近,人们采用肿瘤组织显微切割等技术研究发现胰腺癌及其它肿瘤细胞本身也存在FOXP3的表达。虽然,经过统计学分析并没有发现FOXP3的表达与肿瘤组织的分化有相关性,但研究人员使用抗体中和TGF-β2后可以抑制胰腺癌细胞中FOXP3的表达,同时,应用干扰的方法抑制FOXP3的表达后可以上调IL-6和IL-8的分泌。以上这些发现提示FOXP3有可能在肿瘤免疫逃逸中占有重要地位。目前尚未见FOXP3在胃癌肿瘤细胞中的表达及其生物学功能研究的相关报道。故本课题通过研究分析胃癌细胞和组织中FOXP3的表达和定位来探讨FOXP3的表达与胃癌肿瘤组织生长和分化之间的关系;建立稳转过表达FOXP3的SGC-7901胃癌细胞系,初步研究FOXP3的高表达对胃癌细胞免疫耐受和免疫逃逸等生物学活性的影响。方法:首先,我们通过以下的实验方法分别对胃癌细胞和组织中FOXP3的表达进行了检测和分析:(1)通过RT-PCR、免疫印迹、流式细胞术和激光共聚焦等实验技术在不同水平上检测FOXP3在胃癌细胞中的表达和定位;(2)采用免疫组化方法研究FOXP3在胃癌组织中的表达和定位;(3)经统计学分析验证FOXP3的表达与胃癌组织分化之间的关系。其次,我们采用稳定转染SGC-7901胃癌细胞系的方法建立过表达FOXP3的肿瘤细胞模型,通过以下实验初步研究胃癌细胞高表达FOXP3后相关生物学功能的变化:(1)扫描电镜(Scanning Electron Microscope,SEM)和透射电镜(Transmission Electron Microscope,TEM)从形态学上观察过表达FOXP3对胃癌细胞的影响;(2)MTT实验检测过表达FOXP3后,胃癌细胞的增殖变化;(3)流式细胞术检测过表达FOXP3后,胃癌细胞的周期变化;(4)RT-PCR方法检测过表达FOXP3后,胃癌细胞中免疫抑制性膜表面分子的转录;(5)ELISA实验检测高表达FOXP3后,胃癌细胞分泌免疫抑制分子TGF-β的变化;(6)通过与外周血混合单核淋巴细胞共培养的方法研究过表达FOXP3后,胃癌细胞对外周血单核淋巴细胞的抑制作用(;7)使用化疗药物杀伤过表达FOXP3的胃癌细胞,检测胃癌细胞耐药性的变化。
     结果:通过以上实验技术和方法我们获得了以下的实验结果:我们通过胃癌细胞系和胃癌组织的研究证实了胃癌细胞和组织内均存在不同水平的FOXP3的表达:(1)在多个胃癌细胞系中发现了Foxp3的mRNA转录及其蛋白的表达;(2)激光共聚焦实验证实,胃癌细胞中FOXP3蛋白的表达主要分布在肿瘤细胞核以及核周的胞浆内;(3)通过免疫组化染色发现胃癌细胞中FOXP3蛋白的表达主要分布在肿瘤细胞核,少数分布在胞浆内;(4)经过统计学分析胃癌组织切片和组织芯片的免疫组化染色结果,我们发现56%以上的胃癌患者肿瘤细胞中存在FOXP3的表达,且胃癌组织的分化与FOXP3蛋白表达的强度呈线性相关,同时,在正常胃组织和癌旁组织细胞内(不包括Tregs)未发现FOXP3的表达。随后,我们通过构建稳定过表达FOXP3的胃癌细胞系对FOXP3在胃癌细胞中的功能进行了初步的研究(:1)通过RT-PCR的方法,我们从外周血单核细胞中获得了Foxp3的cDNA片段,构建了pRc/CMV-Foxp3表达载体,转染SGC-7901细胞,经G418筛选后,成功建立稳定过表达FOXP3的胃癌细胞株;(2)扫描电镜检测发现与对照组细胞相比较,过表达FOXP3的胃癌细胞表面突起回缩,与周围基质之间的连接减少,透射电镜检测发现过表达FOXP3组细胞内出现腺管样结构,30%-40%出现自噬泡,并且,其胆固醇代谢发生障碍;(3)MTT检测发现过表达FOXP3的胃癌细胞增殖速度减慢;(4)细胞周期实验证实过表达FOXP3的胃癌细胞生长与对照相比5%以上阻止在G1期;(5)经RT-PCR鉴定,FOXP3的转录显著升高;(6)半定量PCR实验证实,肿瘤免疫抑制分子B7-H1和TGF-β的转录均明显升高;(7)通过ELISA检测发现过表达FOXP3的胃癌细胞培养上清中TGF-β1和TGF-β2的表达量升高;(8)体外混合外周血单核淋巴细胞共培养实验发现过表达FOXP3的胃癌细胞显著抑制了外周血单核淋巴细胞的增殖;(9)化疗药物5-氟脲嘧啶杀伤实验发现过表达FOXP3的胃癌细胞耐药性显著提高。讨论:(1)胃癌细胞和组织中普遍存在FOXP3的表达;(2)过表达FOXP3的胃癌细胞表面突起回缩,与周围基质之间的连接减少,生长过程中易于脱落,生长速度减慢,少部分细胞阻滞在G1期,FOXP3的过表达可以诱导肿瘤细胞发生自噬和脂类代谢障碍;(3)这种过表达FOXP3的胃癌细胞具有上调肿瘤免疫抑制和肿瘤免疫逃逸相关蛋白分子表达的功能;(4)虽然,过表达FOXP3的胃癌细胞生长速度缓慢,但与对照组相比,其具有更强的抑制淋巴细胞增殖和耐受化疗药物5-氟脲嘧啶的杀伤功能。综上所述,我们发现FOXP3可能在胃癌的免疫逃逸过程中发挥重要功能。本课题初步研究了FOXP3过表达后胃癌细胞SGC-7901的生长、形态以及免疫抑制功能的变化,为以后FOXP3在胃癌细胞中的作用机理研究奠定基础,从而为胃癌的临床治疗提供新的治疗靶位和免疫治疗策略。
Purpose: Transcription factor forkhead box protein 3 (FOXP3) specifically characterizes the naturally occurring regulatory T cells (Tregs). Recently, people found that pancreatic and other cancer cells could express FOXP3 by itself in microdissection. Although they didn’t find the relationship between the expression of FOXP3 and tumor differentiation, they identified that the expression of FOXP3 was induced by transforming growth factor-β2 (TGF-β2). According to these results, some reports implicated that FOXP3 might represent a tumor escape mechanism. But less is known about the role and biology of FOXP3 in gastric cancer. Our aim was to analyze the expression and initial function of FOXP3 in gastric cancer tissues and cell lines to evaluate the clinical character of FOXP3 in human gastric cancers. Experimental Design: Firstly, we detect the expression of FOXP3 in gastric cancer cells and tissues by methods, listing as below: (1) Detection of Foxp3 mRNA was performed using conventional RT-PCR, while protein expression was assessed by western blot, flow cytometry and confocal in gastric cancer cell lines. (2) Sections of resected human gastric cancer specimens were stained with anti human FOXP3 antibody. (3) FOXP3 staining of the gastric cancer was assessed to analyze the relationship between expression of FOXP3 and tumor differentiation. Secondly, we established FOXP3 stable overexpression SGC-7901 cell line to research the biologic character changes initially. (1) Observation of the morphology modification of FOXP3 overexpression gastric cancer cells was performed by scanning electron microscope (SEM)and transmission electron microscope (TEM). (2) MTT assay and flowcytometry was used to evaluate the proliferation. (3) PI staining to identify the cell cycles of FOXP3 overexpression gastric cancer cells. (4) We detected the inhibitory molecules expression of cancer cells by semi-PCR. (5) ELISA Kits was used to detect the inhibitory molecules of TGF-β. (6) Mixed peripheral blood monocyte and lymphocyte (PBMC) reaction was used to detect the proliferation inhibition effect of cancer cells. (7) Tolerance of FOXP3 overexpression gatric cancer cells to 5- fluorouracil was evaluated by MTT. Results: By previously methods and assays, we got results as below: (1) Foxp3 mRNA and protein was detected in all gastric cancer cell lines. (2) The location of FOXP3 expression was in nuclear and paranuclear of cytoplasm of gastric cancer cell line by confocal. (3) FOXP3 expression was mainly located in nuclear and seldom in cytoplasm in gastric cancer tissues. (4) Immunohistochemistry analysis of gastric cancer sections revealed that >56% of gastric cancer displayed nucleus FOXP3 staining. And it showed a linear relationship between differentiations of gastric cancer tissues and FOXP3 expression intensity. We did not find any FOXP3 staining in normal gastric tissues and para-tumor tissues. After that, we established FOXP3 overexpression gastric cell lines to explore the initial function of FOXP3. (1) After RT-PCR, we acquired the full length of Foxp3 cDNA, and inserted it into pRc/CMV plasmid to establish the vector of pRc/CMV-Foxp3. Screening by G418, we established stable FOXP3 high expression gastric cancer cell lines, SGC-7901. (2) Ecphyma retracted and the connection between cancer cells and ground substance was less than negative control cancer cells. We found glandular tube and autophagic vacuole in FOXP3 overexpression cells. And metabolism of cholesterol is obstructed in these cells. (3) The proliferation was down-regulated in FOXP3 overexpression cancer cells. (4) Few of those cells (5%) were held on G1 stage. (5) RT-PCR identified that Foxp3 was up-regulated in transcription level. (6) Semi-quantity PCR showed that the inhibitory molecules, such as B7-H1 and TGF-β, were up-regulated in FOXP3 overexpression cancer cells. (7) ELISA assay find that TGF-β1 and TGF-β2 were also higher in supernatant of culture medium of FOXP3 overexpression cancer cells. (8) Cocultured with mixed PBMC, the proliferation of lymphocytes was down regulated. (9) The tolerance of FOXP3 overexpression gatric cancer cells to 5- fluorouracil (5-Fu) was stronger than negative control cells. Conclusions: (1) FOXP3 nuclear staining seems to be associated with risk of poor tumor differentiation. The high frequency of FOXP3 localization in gastric cancer tissues indicates that FOXP3 warrants further study to understand its association with gastric cancer differentiation. (2) The results of FOXP3 overexpressed gastric cancer cells implicated that the expression of FOXP3 could inhibit the proliferation of gastric cancer cells. Those cells were easily fall off from ground substance. And few of FOXP3 overexpressed cancer cells were held on G1 stage. Overexpression of FOXP3 could promote autophagy and inhibit metabolism of lipid. (3) Those inhibitory membrane molecule and cytokines were up regulated, so we think that FOXP3 could promote gastric cancer cells to express many inhibitive factors to promote tumor escape. (4) Although the proliferation of FOXP3 overexpression gastric cancer cells was slower, these cells could strongly inhibit the growth of PBMC and tolerate the effect of 5-Fu. So, we could hypothesis that FOXP3 might play an inhibitory role in gastric cancer immune escape. Here is the beginning of FOXP3 function exploring in gastric cancer. It would be a new focus in researching of the mechanisms of FOXP3 in cancers cells. And perhaps these findings could provide many effective strategies to clinical therapeutics.
引文
1. Brunkow, M.E., E.W. Jeffery, K.A. Hjerrild, et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nature Genetics. 2001. 27: 68–73.
    2. Kaestner, K., W. Kn¨ochel & D. Martinez. Unified nomenclature for the winged-helix/forkhead transcription factors. Genes Dev. 2000. 14: 142–146.
    3. Kaufmann, E. & W. Kn¨ochel. Five years on the wings of fork head. Mech. Dev. 1996. 57: 3–20.
    4. Li, C. & P.W. Tucker. DNA-binding properties and secondary structural model of the hepatocyte nuclear factor 3/fork head domain. Proc. Natl. Acad. Sci. USA. 1993. 90: 11583–11587.
    5. Schubert, L.A., E.W. Jeffery, Y. Zhang, et al. Scurfin (FOXP3) acts as a repressor of transcription and regulates T cell activation. J. Biol. Chem. 2001. 276: 37672–37679.
    6. Khattri, R., D.J. Kasprowicz, T. Cox, et al. The amount of scurfin protein determines peripheral T cell number and responsiveness. J. Immunol. 2001. 167: 6312–6320.
    7. Kasprowicz,D.J., P.S. Smallwood, A.J.Tyznik&S.F. Ziegler. Scurfin (FoxP3) controlsT-dependent immune responses in vivo through regulation of CD4+ T cell effector function. J. Immunol. 2003. 171: 1216–1223.
    8. Gambineri, E., T.R. Torgerson & H.D. Ochs. Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX), a syndrome of systemic autoimmunity caused by mutations of FOXP3, a critical regulator of T cell homeostasis. Curr. Opin. Rheumatol. 2003. 15: 430–435.
    9. Torgerson, T.R. & H.D. Ochs. Immune dysregulation, polyendocrinopathy, enteropathy, Xlinked syndrome: amodel of immune dysregulation. Curr. Opin. Allergy Clin. Immunol. 2002. 2: 481–487.
    10. Lopes, J.E., T.R. Torgerson, L.A. Schubert, et al. Analysis of FOXP3 RevealsMultiple DomainsRequired for Its Function as aTranscriptional Repressor. J. Immunol. 2006. 177: 3133–3142.
    11. Chae, W. -J., O. Henegariu, S. -K. Lee & A.L.M. Bothwell. The mutant leucine-zipper domain impairs both dimerization and suppressive function of Foxp3 in T cells. Proc. Natl. Acad. Sci. USA. 2006. 103: 9631–9636.
    12. Wang, B., D. Lin, C. Li & P.W. Tucker. Multiple domains define the expression and regulatory properties of Foxp1 forkhead transcriptional repressors. J. Biol. Chem. 2003. 278: 24259–24268.
    13. Li, S., J. Weidenfeld & E.E. Morrisey. Transcriptional and DNA binding activity of the Foxp1/2/4 family is modulated by heterotypic and homotypic protein interactions. Mol. Cell Bio. 2004. 24: 809–822.
    14. Jane H., Buckner & Steven F. Ziegler. Functional analysis of FOXP3. Ann. N.Y. Acad. Sci. 2008. 1143: 151-169.
    15. Bettelli, E., M. Dastrange&M.Oukka. Foxp3 interacts with nuclear factor of activated T cells and NF-kappa B to repress cytokine gene expression and effector functions of T helper cells. Proc. Natl. Acad. Sci. USA. 2005. 102: 5138–5143.
    16. Wu,Y., M. Borde,V. Heissmeyer, et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell. 2006. 126: 375–387.
    17. Lee, S. -M., B. Gao & D. Fang. FoxP3 maintains Tregs unreaponsiveness by selectively inhibiting the promoter DNA-binding activity of AP-1. Blood. 2008. 111: 3599–3606.
    18. Ono, M.,H. Yaguchi, N. Ohkura, et al. Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature. 2007. 446: 685–689.
    19. Taniuchi, I. & D.R. Littman. Epigenetic gene silencing byRunx proteins. Oncogene. 2004. 23: 4341–4345.
    20. Anderson, M.K. At the crossroads: diverse roles of early thymocyte transcriptional regulators. Immunol. Rev. 2006. 209: 191–211.
    21. Li, B., A. Samanta, X. Song, et al. FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression.Proc. Natl. Acad. Sci. USA. 2007. 104: 4571–4576.
    22. Du, J., C. Huang, B. Zhou & S.F. Ziegler. Isoform-Specific Inhibition of RORa-Mediated Transcriptional Activation by Human FOXP3. J. Immunol. 2008. 180: 4785–4792.
    23. Henttu, P.M.A., E. Kalkhoven & M.G. Parker. AF-2 activity and recreuitment of steroid receptor coactivator 1 to the estrogen receptor depend on a lysine residue conserved in nuclear receptors. Mol. Cell Bio. 1997. 17: 1832–1839.
    24. Atkins, G.B., X. Hu, M.G. Guenther, et al. Coactivators for the orphan nuclear receptor RORalpha. Mol. Endocrinol. 1999. 13: 1550–1557.
    25. Jetten, A.M., K. Kuribayashi & E. Ueda. The ROR nuclear orphan receptor subfamily: critical regulators of multiple biological processes. Prog. Nucleic Acid Res. Mol. Biol. 2001. 69: 205–247.
    26. Harris, J.M., P. Lau, S.L. Chen & G.E.O. Muscat. Characterization of the retinoid orphan-related receptor-alpha coactivator binding interface: a structural basis for ligand-independent transcription. Mol. Endocrinol. 2002. 16: 998–1012.
    27. Darimont, B.D., R.L. Wagner, J.W. Apriletti, et al. Structure and specificity of nuclear receptorcoactivator interactions. Genes Dev. 1998. 12: 3343– 3356.
    28. Dzhagalov, I., V. Giguere & Y. He. Lymphocyte development and function in the absence of retinoic acid-related orphan receptor. J. Immunol. 2004. 173: 2952–2959.
    29. Delerive, P., D. Monte, G. Dubois, et al. The orphan nuclear receptor ROR is a negative regulator of the inflammatory response. EMBO Rep. 2001. 21: 42–48.
    30. Zheng, Y., S.Z. Josefowicz, A. Kas, et al. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature. 2007. 445: 936–940.
    31. Crabtree, G.R. & N.A. Clipstone. Signal transmission between the plasma membrane and the nucleus of T lymphocytes. Annu. Rev. Biochem. 1994. 63: 1045–1083.
    32. Liu, J.O. The yins of T cell activation. Sci STKE. 2005. 265: 1–8.
    33. Laouar, Y. & I.N. Crispe. Functinal flexibility in T cells: Independentregulation of CD4+ T cell proliferation and effector function in vivo. Immunity. 2000. 13: 291–301.
    34. Sechi, A.S. & J. Wehland. Interplay between TCR signaling and actin cytoskeleton dynamics. Trends Immunol. 2004. 25: 257–265.
    35. Fuller, C.L., V.L. Braciale & L.E. Samelson. All roads lead to actin: the intimate relationship between TCR signaling and the cytoskeleton. Immunol. Rev. 2003. 191: 220–236.
    36. Shevach, E.M., R.A. DiPaolo, J. Andersson, et al. The lifestyle of naturally occurring CD4+ CD25+ Foxp3+ regulatory T cells. Immunol. Rev. 2006. 212: 60–73.
    37. Baecher-Allan C., J.A. Brown, G.J. Freeman & D.A. Hafler. CD4+CD25high regulatory cells in human peripheral blood. J. Immunol. 2001.167: 1245–1253.
    38. Li, L., W.R. Godfrey, S.B. Porter, et al. CD4+CD25+ regulatory T-cell lines from human cord blood have functional and molecular properties of T-cell anergy. Blood. 2005. 106: 3068–3073.
    39. Itoh, M., T. Takahashi, N. Sakaguchi, et al. Thymus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J. Immunol. 1999. 162: 5317– 5326.
    40. Allan, S.E., L. Passerini, R. Bacchetta, et al. The role of FOXP3, and an isoform lacking exon 2, in the generation of human CD4+ T regulatory cells. J. Clin. Invest. 2005. 115: 3276–3284.
    41. Baecher-Allan C., V. Viglietta & D.A. Hafler. Human CD4+CD25+ regulatory T cells. Sem. Immunology. 2004. 16: 89–98.
    42. Jonuleit, H., E. Schmitt, M. Stassen, et al. Identification and functional characterization of human CD4+CD25+ T cells with regulatory properties isolated from peripheral blood. J. Exp. Med. 2001. 193: 1285–1294.
    43. Thornton, A.M. & E.M. Shevach. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med. 1998. 188: 287– 296.
    44. Gavin, M., S.R. Clarke, E. Negrou, et al. Homeostasis and anergy of CD4(+)CD25(+) suppressor T cells in vivo. Nat. Immunol. 2002. 2: 33–41.
    45. Carson, B.D. & S.F. Ziegler. Impaired T cell receptor signaling in Foxp3+ CD4 T cells. Ann. N.Y. Acad. Sci. 2007. 1103: 167–178.
    46. Hickman, S.P., J. Yang, R.M. Thomas, et al. Defective activation of protein kinase C and Ras- Erk pathways limits IL-2 production and proliferation byCD4+CD25+regulatoryTcells. J. Immunol. 2006. 177: 2186–2194.
    47. Tsang, J.Y.-S., N.O.S. Camara, E. Eren, et al. Altered proximal T cell receptor (TCR) signaling in human CD4+CD25+ regulatory T cells. J. Leuk. Biol. 2006. 80: 145–151.
    48. Fuller, C.L., V.L. Braciale & L.E. Samelson. All roads lead to actin: the intimate relationship between TCR signaling and the cytoskeleton. Immunol. Rev. 2003. 191: 236.
    49. Clements, J.L., N.J. Boerth, J.R. Lee & G.A. Koretzky. Integration of T cell receptor-dependent signaling pathways by adapter proteins. Annu. Rev. Immunol. 1999. 17: 89–108.
    50. Knoechel, B., J. Lohr, S. Zhu, et al. Functional and molecular comparison of anergic and regulatory T lymphocytes. J. Immunol. 2006. 176: 6473– 6483.
    51. Walker, M.R., D.J. Kasprowicz, V.H. Gersuk, et al. Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25- T cells. J. Clin. Invest. 2003. 112: 1437–1443.
    52. Wang, J., A. Ioan-Facsinay, E.I.H. Van Der Voort, et al. Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur. J. Immunol. 2006. 37: 129–138.
    53. Morgan, M.E., J.H. van Bilsen, A.M. Bakker, et al. Expression of FOXP3 mRNA is not confined to CD4+CD25+ T regulatory cells in humans. Hum. Immunol. 2005. 66: 13–20.
    54. Gavin, M.A., T.R. Torgerson, E. Houston, et al. Single-cell analysis of normal and FOXP3- mutant human T cells: FOXP3 expression without regulatory T cell development. Proc. Natl. Acad. Sci. USA. 2006. 103:6659–6664.
    55. Ziegler, S.F. FOXP3: of mice and men. Annu. Rev. Immunol. 2006. 24: 209–226.
    56. Ziegler, S.F. FOXP3: Not just for regulatory T cells any more. Eur. J. Immunol. 2007. 37: 21–23.
    57. Burchill, M.A., J. Yang, C. Vogtenhuber, et al. IL-2 Receptor beta-Dependent STAT5 Activation Is Required for the Development of Foxp3+Regulatory T Cells. J. Immunol. 2007. 178: 280–290.
    58. Murawski, M.R., S.A. Llitherland, M.J. Clare- Salzler & A. Davoodi-Semiromi. Upregulation of Foxp3 expression in mouse and human Treg is IL-2/STAT5 dependent: implications for the NOD STAT5B mutation in diabetes pathogenesis. Ann. N.Y. Acad. Sci. 2006. 1079: 198–204.
    59. Zorn, E., E.A. Nelson, M. Mohseni, et al. IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT dependent mechanism and induces the expansion of these cells in vivo. Blood. 2006. 108: 1571–1579.
    60. Annacker O, Pimenta-Araujo R, Burien-Defranouxo, et al. On theontogeny and physiology of regulatory T cells. Immunol Rev. 2001. 182: 5-17.
    61. Khattri R, Cox T, Yasayko SA, et al. An essential role for scurfin in CD4+CD25+ T regulatory cells. Nat. Immunol. 2003. 4: 337-342.
    62. Sakaguchi S. Naturally arising Foxp3-expressing CD25+CD4+regulatory T cells in immunological tolerance to self and non-self. Nat. Immunol. 2005. 6: 345-352.
    63. Fontenot J D, RudenskyA Y. A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nat. Immunol. 2005. 6: 331-337.
    64. Fontenot J D, GavinM A, RudenskyA Y et al. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 2003. 4: 330-336.
    65. Hori S, Nomura T, Sakaguchi S et al. Control of regulatory T celldevelopment by the transcrip tion factor FoxP3. Science. 2003. 299: 1057-1061.
    66. Liu, H.,M.Komai-Koma,D. Xu & F.Y. Liew. Toll-like receptor 2 signaling modulates the functions of CD4+CD25+regulatory T cells. Proc. Natl. Acad. Sci. USA. 2006.103: 7048–7053.
    67. Roncador, G., P.J. Brown, L. Maestre, et al. Analysis of FOXP3 protein expression in human CD4+CD25+ regulatory T cells at the single-cell level. Eur. J. Immunol. 2005. 18: 1681–1691.
    68. Walker, M.R., B.D. Carson, G.T. Nepom, et al. De novo generation of antigen-specific CD4+CD25+ regulatory T cells from human CD4+. Proc. Natl. Acad. Sci. USA. 2005.102: 4103–4108.
    69. Vukmanovic-Stejic, M., Y. Zhang, J.E. Cook, et al. Human CD4 +CD25hi Foxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo. J. Clin. Invest. 2006. 116: 2423–2433.
    70. Tran, D.Q., H. Ramsey & E.M. Shevach. Induction of FOXP3 expression in naive human CD4+FOXP3 Tcells byT-cell receptor stimulation is transforming growth factor-beta dependent but does not confer a regulatory phenotype. Blood. 2007. 110: 2983–2990.
    71. Pillai, V., S.B. Ortega, C.K. Wang & N.J. Karandikar. Transient regulatory T-cells: a state attained by all activated human T-cells. Clin. Immunol. 2007. 123: 18–29.
    72. Verhasselt, V., O. Vosters, C. Beuneu, et al. Induction ofFOXP3-expressing regulatory CD4pos T cells by human mature autologous dendritic cells. Eur. J. Immunol. 2004. 34: 762–772.
    73. Fantini, M.C., C. Becker, G. Monteleone, et al. Cutting edge: TGF-beta induces a regulatory phenotype in CD4+CD25- T cells through FoxP3 induction and down-regulation of Smad7. J. Immunol. 2004. 172: 5149–5153.
    74. Moseman, E.A., X. Liang, A.J. Dawson, et al. Human plasmacytoid dendritic cells activated by CpG oligodeoxynucleotides induce the generation of CD4+CD25+ regulatory T cells. J. Immunol. 2004. 173: 4433–4442.
    75. Passerini, L., S.E. Allan, M. Battaglia, et al. STAT5-signaling cytokinesregulate the expression of FOXP3 in CD4+CD25+ regulatory T cells and CD4+. Int. Immunol. 2008. 20: 421–431.
    76. Yates, J., F. Rovis, P.Mitchell, et al. The maintenance of human CD4+ CD25+ regulatory T cell function: IL-2, IL-4, IL-7 and IL-15 preserve optimal suppressive potency in vitro. Int. Immunol. 2007. 19: 785–799.
    77. Long, S.A. & J.H. Buckner. Combination of rapamycin and IL-2 increases de novo induction of human CD4(+)CD25(+)FOXP3(+) T cells. J. Autoimmun. 2008. 30: 293–302.
    78. Mantel, P.Y., N. Ouaked, B. Ruckert, et al. Molecular mechanisms underlying FOXP3 induction in human T cells. J. Immunol. 2006. 176: 3593– 3602.
    79. Haxhinasto, S., D. Mathis & C. Benoist. The AKT-mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells. J. Exp. Med. 2008. 205: 565–574.
    80. Valmori, D., V. Tosello, N.E. Souleimanian, et al. Rapamycin-mediated enrichment of T cells with regulatory activity in stimulated CD4+ T cell cultures is not due to the selective expansion of naturally occurring regulatory T cells but the induction of regulatory functions in conventional CD4+ T cells. J. Immunol. 2006. 177: 944–949.
    81. Luo, X.,Q. Zhang,V. Liu, et al. Cutting Edge: TGF-{beta}-Induced Expression of Foxp3 inTcells Is Mediated through Inactivation of ERK. J. Immunol. 2008. 180: 2757–2761.
    82. Kretschmer, K., I. Apostolou, D. Hawiger, et al. Inducing and expanding regulatory T cell populations by foreign antigen. Nat. Immunol. 2005. 6: 1219–1227.
    83. Allan, S.E., S.Q. Crome, N. Crellin, et al. Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. Int. Immunol. 2007. 19: 345–354.
    84. Seddiki, N., B. Santner-Nanan, J. Martinson, et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J. Exp. Med. 2006. 203: 1693–1700.
    85. Liu,W., A. L. Putnam, Z. Xu-Yu, et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ Treg cells. J. Exp. Med. 2006. 203: 1701–1711.
    86. Pillai, V. & N.J. Karandikar. Human regulatory T cells: a unique, stable thymic subset or a reversible peripheral state of differentiation? Immunol. Lett. 2007. 114: 9–15.
    87. Belkaid, Y. The role of CD4(+)CD25(+) regulatory T cells in Leishmania infection. Expert. Opin. Biol. Ther. 2003. 3: 875–885.
    88. Shevach. E. M. CD4+CD25+ suppressor T cells: more questions than answers. Nat. Rev. Immunol. 2002. 6: 389–400.
    89. Paust S., Lu L., McCarty N., & Cantor H. Engagement of B7 on e?ector T cells by regulatory T cells prevents autoimmune disease. Proc. Natl Acad. Sci. U. S. A. 2004. 101: 10398–10403.
    90. Fallarino F., Grohmann U., Hwang K. W., et al. Modulation of tryptophan catabolism by regulatory T cells. Nat. Immunol. 2003. 4: 1206–1212.
    91. Munn D. H., Sharma M. D., Lee J. R., et al. Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science. 2002. 297: 1867–1870.
    92. Mellor A. L. & Munn D. H. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat. Rev. Immunol. 2004. 4: 762–774.
    93. Tang Q., Boden E. K., Henriksen K. J., et al. Distinct roles of CTLA-4 and TGF-βin CD4+CD25+ regulatory T cell function. Euro. J. Immunol. 2004. 34: 2996–3005.
    94. Takahashi T., Tagami T., Yamazaki S., et al. Immunologic self-tolerance maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med. 2000. 192: 303–310.
    95. Nakamura K., Kitani A., Strober W. Cell contactdependent immunosuppression by CD4+CD25+ regulatory T cells is mediated by cell surface-bound transforming growth factorβ. J. Exp. Med. 2001. 194: 629–644.
    96. Sundstedt A., O’Neill E. J., Nicolson K. S., et al. Role for IL-10 insuppression mediated by peptide-induced regulatory T cells in vivo. J. Immunol. 2003. 170: 1240–1248.
    97. Vieira P. L., Christensen J. R., Minaee S., et al. IL-10-secreting regulatory T cells do not express Foxp3 but have comparable regulatory function to naturally occurring CD4+CD25+ regulatory T cells. J. Immunol. 2004. 172: 5986–5993.
    98. Taylor A., Verhagen J., Blaser K., et al. Mechanisms of immune suppression by interleukin-10 and transforming growth factor-β: the role of T regulatory cells. Immunol. 2006. 117: 443–442.
    99. Levings M. K., Bacchetta R., Schulz U., et al. The role of IL-10 and TGF-βin the di?erentiation and e?ector function of T regulatory cells. Int. Arch. Aller. Immunol. 2002. 129: 263–276.
    100. Grossman W. J., Verbsky J. W., Barchet W., et al. Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity. 2004. 21: 589–601.
    101. Grossman W. J., Verbsky J. W., Tollefsen B. L., et al. Di?erential expression of granzymes A and B in human cytotoxic lymphocyte subsets and T regulatory cells. Blood. 2004. 104: 2840–2848.
    102. Moore K. W., O’Garra A., Waal de M. R., et al. Interleukin-10. Annu. Rev. Immunol. 1993. 11: 165–190.
    103. Geissmann F., Revy P., Regnault A., et al. TGF-β1 prevents the noncognate maturation of human dendritic Langerhans cells. J. Immunol. 1999. 162: 4567–4575.
    104. Strobl H. & Knapp W. TGF-β1 regulation of dendritic cells. Micro. Inf. 1999. 1: 1283–1290,
    105. Chang C. C., Ciubotariu R., Manavalan J. S., et al. Tolerization of dendritic cells by Ts cells: the crucial role of inhibitory receptors ILT3 and ILT4. Nat. Immunol. 2002. 3: 215–217.
    106. Cella M., Nakajima H., Facchetti F., et al. ILT receptors at the interface between lymphoid and myeloid cells. Cur. Top. Micro. Immunol. 2000. 251: 161–166.
    107. Cella M., Dohring C., Samaridis J., et al. A novel inhibitory receptor (ILT3) expressed on monocytes, macrophages, and dendritic cells involved in antigen processing,”J. Exp. Med. 1997. 185: 1743–1751.
    108. Ravetch J. V. & Lanier L. L. Immune inhibitory receptors. Science. 2000. 290: 84–89.
    109. Manavalan J. S., Rossi P. C., Vlad G., et al. High expression of ILT3 and ILT4 is a general feature of tolerogenic dendritic cells. Trans. Immunol. 2003. 11: 3-4.
    110. Viglietta V., Baecher-Allan C., Weiner H. L., et al. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J. Exp. Med. 2004. 199: 971–979.
    111. Kriegel M. A., Lohmann T., Gabler C., et al. Defective suppressor function of human CD4+CD25+ regulatory T cells in autoimmune polyglandular syndrome type II. J. Exp. Med. 2004. 199: 1285–1291.
    112. Sugiyama H., Gyulai R., Toichi E., et al. Dysfunctional blood and target tissue CD25+CD+ 4 high regulatory T cells in psoriasis:Mechanism underlying unrestrained pathogenic e?ector T cell proliferation. J. Immunol. 2005. 174: 164–173.
    113. Balandina A., Lecart S., Dartevelle P., et al. Functional defect of regulatory CD4+CD25+ T cells in the thymus of patients with autoimmune myasthenia gravis. Blood. 2005. 105: 735–741.
    114. Boyer O., Saadoun D., Abriol J., et al. CD4+CD25+ regulatory T-cell deficiency in patients with hepatitis C-mixed cryoglobulinemia vasculitis. Blood. 2004. 103: 3428–3430.
    115. Longhi M. S., Hussain M. J., Mitry R. R., et al. Functional study of CD4+CD25+ regulatory T cells in health and autoimmune hepatitis. J. Immunol. 2006. 176: 4484–4491.
    116. Mottonen M., Heikkinen J., Mustonen L., et al. CD4+CD25+ T cells with the phenotypic and functional characteristics of regulatory T cells are enriched in the synovial fluid of patients with rheumatoid arthritis. Clin. Exp. Immunol. 2005.140: 360–367.
    117. Ling E. M., Smith T., Nguyen X. D., et al. Relation of CD4+CD25+ regulatory T-cell suppression of allergen-driven T-cell activation to atopic status and expression of allergic disease. Lancet. 2004. 363: 608–615.
    118. Grindebacke H., Wing K., Andersson A. C., et al. Defective suppression of Th2 cytokines by CD4+CD25+ regulatory T cells in birch allergics during birch pollen season. Clin. Exp. Aller. 2004. 34: 1364–1372.
    119. Akdis M., Verhagen J., Taylor A., et al. Immune responses in healthy and allergic individuals are characterized by a fine balance between allergen-specific T regulatory 1 and T helper 2 cells. J. Exp. Med. 2004. 199: 1567–1575.
    120. Hawrylowicz C. M. & O’Garra A. Potential role of interleukin-10-secreting regulatory T cells in allergy and asthma. Nat. Rev. Immunol. 2005. 5: 271–283.
    121. Xystrakis E., Kusumakar S., Boswell S., et al. Reversing the defective induction of IL-10-secreting regulatory T cells in glucocorticoid-resistant asthma patients. J. Clin. Inv. 2006. 116: 146–155.
    122. Robinson D. S., Larche M., Durham S. R. Tregs and allergic disease. J. Clin. Inv. 2004. 114: 1389–1397.
    123. Rouse B. T., Sarangi P. P., Suvas S. Regulatory T cells in virus infectionsal. Immunol. Rev. 2006. 212: 272–286.
    124. Suvas S., Azkur A. K., Kim B. S., et al. CD4+CD25+ regulatory T cells control the severity of viral immunoinflammatory lesions. J. Immunol. 2004. 172: 4123–4132.
    125. Suvas S., Kumaraguru U., Pack C. D., et al. CD4+CD25+ T cells regulate virus-specific primary and memory CD8+ T cell responses. J. Exp. Med. 2003. 198: 889–901.
    126. Toka F. N., Suvas S., Rouse B. T. CD4+CD25+ T cells regulate vaccine-generated primary and memory CD8+ Tcell responses against herpes simplex virus type 1. J. Virol. 2004. 78: 13082–13089.
    127. Cabrera R., Tu Z., Xu Y., et al. An immunomodulatory role for CD4+CD25+ regulatory T lymphocytes in hepatitis C virus infection. Hepatology.2004. 40: 1062–1071.
    128. Stoop J. N., Molen van der R. G., Baan C. C. Regulatory T cells contribute to the impaired immune response in patients with chronic hepatitis B virus infection. Hepatology. 2005. 41: 771–778.
    129. Boettler T., Spangenberg H. C., Neumann-Haefelin C., et al. T cells with a CD4+CD25+ regulatory phenotype suppress in vitro proliferation of virus-specific CD8+ T cells during chronic hepatitis C virus infection. J. Virol. 2005. 79: 7860–7867.
    130. Rushbrook S. M., Ward S. M., Unitt E., et al. Regulatory T cells suppress in vitro proliferation of virus-specific CD8+ T cells during persistent hepatitis C virus infection. J. Virol. 2005. 79: 7852–7859.
    131. MacDonald A. J., Du?y M., Brady M. T., et al. CD4 T helper type 1 and regulatory T cells induced against the same epitopes on the core protein in hepatitis C virus-infected persons. J. Inf. Dis. 2002. 185: 720–727.
    132. Aandahl E. M., Michaelsson J., Moretto W. J., et al. Human CD4+CD25+ regulatory T cells control T-cell responses to human immunodeficiency virus and cytomegalovirus antigens. J. Virol. 2004. 78: 2454–2459.
    133. Weiss L., Donkova-Petrini V., Caccavelli L., et al. Human immunodeficiency virusdriven expansion of CD4+CD25+ regulatory T cells, which suppress HIV-specific CD4 T-cell responses in HIV-infected patients. Blood. 2004. 104: 3249–3256.
    134. Estes J. D., Li Q., Reynolds M. R., et al. Premature induction of an immunosuppressive regulatory T cell response during acute simian immunodeficiency virus infection. J. Inf. Dis. 2006. 193: 703–712.
    135. Nilsson J., Boasso A., Velilla P. A., et al. HIV-1-driven regulatory T-cell accumulation in lymphoid tissues is associated with disease progression in HIV/AIDS. Blood. 2006. 108: 3808–3817.
    136. Oswald-Richter K., Grill S. M., Shariat N., et al. HIV infection of naturally occurring and genetically reprogrammed human regulatory T-cells. PLoS Bio. 2004. 2: e198.
    137. Eggena M. P., Barugahare B., Jones N., et al. Depletion of regulatory T cells in HIV infection is associated with immune activation. J. Immunol. 2005. 174: 4407–4414.
    138. Curiel TJ. Regulatory T-cell development: is Foxp3 the decider? Nat. Med. 2007. 13: 250–253.
    139. Zou W. Regulatory T cells, tumour immunity and immunotherapy. Nat. Rev. Immunol. 2006. 6:295–307.
    140. Larmonier N, Marron M, Zeng Y, et al. Tumor-derived CD4(+)CD25(+) regulatory T cell suppression of dendritic cell function involves TGF-beta and IL-10. Cancer Immunol. Immunother. 2007. 56: 48–59.
    141. Strauss L, Bergmann C, Szczepanski M, et al. A unique subset of CD4+CD25highFoxp3+ T cells secreting interleukin-10 and transforming growth factorbeta1 mediates suppression in the tumor microenvironment. Clin. Cancer Res. 2007. 13:4345–4354.
    142. Zhou G, Levitsky HI. Natural regulatory T cells and de novoinduced regulatory T cells contribute independently to tumorspecific tolerance. J. Immunol. 2007. 178:2155–2162.
    143. Battaglia A, Buzzonetti A, Monego G, et al. Neuropilin-1 expression identifies a subset of regulatory T cells in human lymph nodes that is modulated by preoperative chemoradiation therapy in cervical cancer. Immunology. 2008. 123:129–138.
    144. Yokokawa J, Cereda V, Remondo C, et al. Enhanced functionality of CD4+CD25highFoxP3+ regulatory T cells in the peripheral blood of patients with prostate cancer. Clin. Cancer Res. 2008. 14:1032–1040.
    145. BergmannC, Strauss L, Zeidler R, et al. Expansion of human T regulatory type 1 cells in the microenvironment of cyclooxygenase 2 overexpressing head and neck squamous cell carcinoma. Cancer Res. 2007. 67:8865–8873.
    146. Yang ZZ, Novak AJ, Ziesmer SC, et al. CD70+ non-Hodgkin lymphoma B cells induce Foxp3 expression and regulatory function in intratumoral CD4+CD25 T cells. Blood. 2007. 110:2537–2544.
    147. Juszczynski P, Ouyang J, Monti S, et al. The AP1-dependent secretion of galectin-1 by Reed Sternberg cells fosters immune privilege in classical Hodgkin lymphoma. Proc. Natl. Acad. Sci. U. S. A. 2007. 104:13134–13139.
    148. Liu VC, Wong LY, Jang T, et al. Tumor evasion of the immune system by converting CD4+CD25S T cells into CD4+CD25+ T regulatory cells: role of tumor-derived TGF-beta. J. Immunol. 2007. 178:2883–2892.
    149. Li X, Ye F, Chen H, et al. Human ovarian carcinoma cells generate CD4(+)CD25(+) regulatory T cells from peripheral CD4(+)CD25(-) T cells through secreting TGF-beta. Cancer Lett. 2007. 253:144–153.
    150. Curti A, Pandolfi S, Valzasina B, et al. Modulation of tryptophan catabolism by human leukemic cells results in the conversion of CD25S into CD25+ T regulatory cells. Blood. 2007. 109: 2871–2877.
    151. Sharma MD, Baban B, Chandler P, et al. Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3- dioxygenase. J. Clin. Invest. 2007. 117: 2570–2582.
    152. Kryczek I, Zou L, Rodriguez P, et al. B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J. Exp. Med. 2006. 203: 871–881.
    153. Ruter J, Barnett BG, Kryczek I, et al. Manipulating T Regulatory Cells in Cancer Immunotherapy. Exp. Rev. Derm. 2006. 1: 589–597.
    154. Bignone PA, Banham AH. FOXP3+ regulatory T cells as biomarkers in human malignancies. Expert. Opin. Biol. Ther. 2008. 8: 1897–1920.
    155. Joshua DE, Brown RD, Ho PJ, Gibson J. Regulatory T cells and multiple myeloma. Clin. Lymphoma. Myeloma. 2008. 8:283–286.
    156. Ke X, Wang J, Li L, et al. Roles of CD4+CD25(high) FOXP3+ Tregs in lymphomas and tumors are complex. Front Biosci. 2008. 13: 3986–4001.
    157. Kakinuma T, Nadiminti H, Lonsdorf AS, et al. Small numbers of residual tumor cells at the site of primary inoculation are critical for anti-tumor immunity following challenge at a secondary location. Cancer Immunol. Immunother. 2007. 56: 1119–1131.
    158. Zhou Z, Song X, Li B, Greene MI. FOXP3 and its partners: structural andbiochemical insights into the regulation of FOXP3 activity. Immunol. Res. 2008. 42: 19–28.
    159. Mizukami Y, Kono K, Kawaguchi Y, et al. Localisation pattern of Foxp3(+) regulatory T cells is associated with clinical behaviour in gastric cancer. Br. J. Cancer. 2008. 98: 148–153.
    160. Kelley TW, Pohlman B, Elson P, et al. The ratio of FOXP3+ regulatory T cells to granzyme B+ cytotoxic T/NK cells predicts prognosis in classical Hodgkin lymphoma and is independent of bcl-2 and MAL expression. Am. J. Clin. Pathol. 2007. 128: 958–965.
    161. Poutahidis T, Haigis KM, Rao VP, et al. Rapid reversal of interleukin-6-dependent epithelial invasion in a mouse model of microbially induced colon carcinoma. Carcinogenesis. 2007. 28: 2614–2623.
    162. Betts G, Twohig J, Van den Broek M, et al. The impact of regulatory T cells on carcinogeninduced sarcogenesis. Br. J. Cancer. 2007. 96: 1849–1854.
    163. Beissert S, Loser K, et al. Molecular and cellular mechanisms of photocarcinogenesis. Photochem. Photobiol. 2008. 84: 29–34.
    164. Molling JW, de Gruijl TD, Glim J, et al. CD4(+)CD25hi regulatory T-cell frequency correlates with persistence of human papillomavirus type 16 and T helper cell responses in patients with cervical intraepithelial neoplasia. Int. J. Cancer. 2007. 121: 1749–1755.
    165. Mizukami Y, Kono K, Kawaguchi Y, et al. CCL17 and CCL22 chemokines within tumor microenvironment are related to accumulation of Foxp3+ regulatory T cells in gastric cancer. Int. J. Cancer. 2008. 122: 2286–2293.
    166. Shen LS, Wang J, Shen DF, et al. CD4(+)CD25(+)CD127(low/-) regulatory T cells express Foxp3 and suppress effector T cell proliferation and contribute to gastric cancers progression. Clin. Immunol. 2009. Jan 17. [Epub ahead of print] Links
    167. Kono K, Kawaida H, Takahashi A, et al. CD4(+)CD25high regulatory T cells increase with tumor stage in patients with gastric and esophageal cancers. Cancer Immunol. Immunother. 2006. 55:1064–1071.
    168. Enarsson K, Lundgren A, Kindlund B, et al. Function and recruitment of mucosal regulatory T cells in human chronic Helicobacter pylori infection andgastric adenocarcinoma. Clin. Immunol. 2006. 121:358–368.
    169. "Cancer". World Health Organization. February 2006. http://www.who.int /mediacentre/factsheets/fs297/en/. Retrieved on 2007-05-24.
    170. Hinz S, Pagerols-Raluy L, Oberg HH, et al. Foxp3 expression in pancreatic carcinoma cells as a novel mechanism of immune evasion in cancer. Cancer Res. 2007. 67: 8344–8350.
    171. Ebert LM, Tan BS, Browning J, et al. The regulatory T cell–associated transcription factor FOXP3 is expressed by tumor cells. Cancer Res. 2008. 68: 3001–3009.
    172. Karanikas V, Speletas M, Zamanakou M, et al. Foxp3 expression in human cancer cells. J. Trans. Med. 2008. 6:19.
    173. Zuo T, Wang L, Morrison C, et al. FOXP3 is an X-linked breast cancer suppressor gene and an important repressor of the HER-2/ErbB2 oncogene. Cell. 2007.129: 1275–1286.
    174. Zuo T, Liu R, Zhang H, et al. FOXP3 is a novel transcriptional repressor for the breast cancer oncogene SKP2. J. Clin. Invest. 2007. 117:3765–3773.
    175. Kuma A, Hatano M, Matsui M, et al. The role of autophagy during the early neonatal starvation period. Nature. 2004. 23(7020):1032–1036.
    176. Hara T, Nakamura K, Matsui M, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 2006. 15(7095):885–889.
    177. Lum JJ, Bauer DE, Kong M, et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell. 2005. 28(2):237–248.
    178. Paglin S, Hollister T, Delohery T, et al. A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res. 2001. 15(2):439–444.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700