慢病毒介导的FoxP2 knockdown蝙蝠模型建立与功能研究及长翼蝠小RNA转录组的分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.Forkhead box P2(FoxP2)是转录因子叉头框基因家族的一员,FOXP2基因的突变导致了人类语言疾病。在具有复杂发声能力的鸣禽中FoxP2基因被认为与幼鸟鸣曲学习和成鸟鸣曲稳定性有关。最近有研究表明该基因在翼手目蝙蝠中发生了加速进化并认为FoxP2基因与蝙蝠的回声定位功能相关。为进一步探索FoxP2基因与蝙蝠复杂的高频发声功能之间的相关性,我们利用免疫组化和原位杂交技术在蛋白质水平和mRNA水平对3种回声定位蝙蝠(马铁菊头蝠,大足鼠耳蝠和大蹄蝠)和2种非回声定位蝙蝠(棕果蝠和犬蝠)脑中的FoxP2基因差异表达谱进行了研究。两类蝙蝠中前扣带皮层有不同的FoxP2表达。本文首次利用慢病毒介导的RNAi手段对大蹄蝠脑FoxP2基因进行了功能丧失实验。我们设计了三条可以靶向大蹄蝠FoxP2基因的shRNA干扰序列,其中一条可以在293T细胞系成功抑制FoxP2融合蛋白的表达。为深入研究FoxP2在动物体内的功能,我们将含有FoxP2基因干扰序列的慢病毒立体定位注射到其中一种能够发出高频声波并能进行多普勒频移补偿行为的回声定位蝙蝠大蹄蝠的脑前扣带皮层(ACC)区域并成功建立了FoxP2基因knockdown的蝙蝠模型。我们又对FoxP2基因功能部分丧失后的动物个体进行了发声行为学研究。研究发现,FoxP2基因功能的丧失没有降低蝙蝠的高频发声频率,但增长了静息状态下的脉冲间隔时间。此外,FoxP2功能丧失后蝙蝠的多普勒频移补偿行为受到严重影响。多普勒频移补偿过程中的最大补偿深度和脉冲问隔时间在FoxP2功能丧失的动物个体中分别发生了显著的降低和增加。以上研究结果表明蝙蝠前扣带皮层区域表达的FoxP2基因在蝙蝠精确,快速的听觉-发声行为过程中扮演重要的角色。
     2.miRNA是一类在真核生物中广泛存在的非编码小RNA,参与多种生物学过程。miRNA在产生过程中经过Drosha酶和Dicer酶的两次剪切,最终形成一个长度为22nt左右的miRNA成熟体,这类小RNA可以通过与RNA诱导的沉默复合体(RISC)结合并锚定到靶基因mRNA上根据序列互补配对情况对靶基因进行直接降解或翻译抑制,进而在转录后水平对靶基因的表达进行调控。miRNA能够对生理学过程进行有效微调并可以节省能量。近年来,miRNA的功能被人们高度关注,随着高通量测序方法的应用,越来越多物种的miRNA被测序鉴定出来。然而,哺乳动物翼手目蝙蝠类群的小RNA信息却仍是一片空白。本文成功构建了长翼蝠(Miniopterus fuliginosus)小RNA文库并进行高通量测序。通过将高通量测序结果与miRBase数据库中的己知脊椎动物miRNA比对并在相近蝙蝠物种莹鼠耳蝠(Myotis lucifugus)和马来大狐蝠(Pteropus vampyrus)的基因组中比对后,我们预测到338个保守miRNA (Conserved miRNA)成熟体组成了229个miRNA前体,并发现33个蝙蝠特异的miRNA (novel miRNA)。接下来,我们对长翼蝠保守miRNA序列的特征和变化进行了深入分析。研究发现,14个miRNA的“种子序列”发生了seed shifting。27个长翼蝠miRNA的碱基发生了突变(普通碱基突变,种子序列突变,插入或缺失)。根据miRNA前体在基因组上的位置信息和分布特点,我们发现有90个miRNA在基因组上成簇分布,分属于26个不同的基因簇。我们又对miRNA前体臂的使用做了深入研究,发现有5个miRNA前体发生了arm switching,7个miRNA前体臂发生了“无义反转”(使用与其他脊椎动物不同,但产生的成熟体序列是相同的)。为了研究在长翼蝠脑发育过程中参与的miRNA类群和功能。我们利用基因芯片对长翼蝠胚胎脑和成体脑的miRNA差异表达谱进行研究,发现有51个miRNA成熟体在胚胎脑和成体脑组织中有差异性的表达,说明这些miRNA在长翼蝠脑发育过程中起重要作用。我们的研究为深入了解长翼蝠miRNA的功能提供了基础并为研究蝙蝠脑发育的机制开辟了一条新的途径。
1. Forkhead box P2(FoxP2) is a member of the winged helix/forkhead class of transcription factors. Mutations of the FoxP2gene in human cause severe speech and language disorders. FoxP2is also found to be connected to song learning and adult song stability in songbird. Recently it has been shown that it underwent accelerated evolution in bats and may play a role in the evolution and development of echo location. To figure out the relevance between FoxP2and the complex high frequency vocal behavior of bat, we studied the difference of FoxP2expression in three echolocating bats(Hipposideros armiger, Rhinolophus ferrumequinum, and Myotis ricketti) and two non-echo locating bats (Rousettus leschenaultii and Cynopterus sphinx) at both mRNA and protein level, using in situ hybridization and immunohistochemistry. The results showed that the region of anterior cingulate cortex (ACC) exhibits a different FoxP2expression between the two kinds of bats. Then we report the loss of function study of FoxP2gene in bat brain tissue for the first time, based on RNAi mediated by lentivirus. We designed three shRNAs which can express short hairpin RNA (shRNA) targeting Hipposideros armiger FoxP2, one of the echolocating bats which can produce high frequency sound and perform Doppler-shift compensation (DSC). One of the three shRNAs was demonstrated to knock down FoxP2fusion protein efficiently in293T cell line. Then the pseudovirus particles that contain interference sequence were administered via stereotactic intracerebral microinjection into the anterior cingulate cortex of Hipposideros armiger to construct a FoxP2knockdown bat model. We examined the vocal behavior of FoxP2knockdown animals and found that they can still perform normal high frequency sound but the pulse interval at rest increased. Besides, knockdown of FoxP2expression in the ACC significantly altered DSC by decreasing the max compensation depth and increasing the pulse interval. Overall, the results suggest the expression of FoxP2 in ACC of Hipposideros armiger may play an important role in the precise, rapid audio-vocal integration and coordination.
     2. MicroRNAs (miRNAs) are a class of endogenous small noncoding RNAs that widely exist in eukaryotic organism and play a key role in diverse biological processes. Mature miRNAs are generated through two sequential cleavages of the primary transcripts by Drosha and Dicer. This kind of small RNAs can integrate into RNA-induced silence complex (RISC) and regulate the target gene at post-transcriptional level either by inhibiting the mRNA translation or degrading the target gene directly according to the extent of base pairing. miRNA is a kind of fine-tuning RNA molecule that can regulate various functions. Recently, the solexa sequencing technology has become a convincing strategy for identifying miRNA transcriptome, more and more miRNAs were identified in different species. However, the miRNA informations of Chiroptera were still unknown. In this study, we constructed and sequenced a miRNA library from Miniopterus fuliginosus. We identified229miRNA precursors and338mature miRNAs (conserved miRNA) after aligning the sequencing data with known miRNAs registered in miRBase and the genome information of Myotis lucifugus and Pteropus vampyrus, two relatives of Miniopterus fuliginosus. We also discovered33bat specific novel miRNA precursors. Then we deeply analyzed the characteristics and variations of the conserved miRNAs. Among the total conserved miRNAs,14mature miRNAs have undergone seed shifting and27miRNAs have sequence changes (mutation, insert or delete). According to the genome loci of these miRNAs, we found90miRNAs distributed as gene clusters, belonging to26miRNA clusters. The arm usage was investigated and the results showed that5miRNAs occurred arm switching and7miRNAs had different arm usage compared to other vertebrates but failed to have any effect due to the mature miRNA sequences are identical ("nonsense switching").In addition, the expression patterns of miRNAs in embryo and adult brain were also investigated using comprehensive microarray profiling. Finally, we found51miRNAs showed a divergent expression pattern, which implied these miRNAs may play a role in brain development. The identification of miRNA transcriptome of Miniopterus fuliginosus definitely advances our knowledge of miRNA populations of bat and more importantly it would provide a clue for better understanding of their roles in brain development.
引文
1. Carlsson, P., and Mahlapuu, M. (2002). Forkhead transcription factors:key players in development and metabolism. Dev Biol 250,1-23.
    2. Weigel, D., Jurgens, G., KUttner, F., Seifert, E., and Jackle, H. (1989). The homeotic gene fork head encodes a nuclear protein and is expressed in the terminal regions of the Drosophila embryo. Cell 57,645-658.
    3. Weigelt, J., Climent, I., Dahlman-Wright, K., and Wikstrom, M. (2001). Solution structure of the DNA binding domain of the human forkhead transcription factor AFX (FOXO4). Biochemistry 40,5861-5869.
    4. Brunet, A., Datta, S.R., and Greenberg, M.E. (2001). Transcription-dependent and-independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr Opin Neurobiol 11,297-305.
    5. Labbe, E., Silvestri, C., Hoodless, P.A., Wrana, J.L., and Attisano, L. (1998). Smad2 and Smad3 positively and negatively regulate TGF beta-dependent transcription through the forkhead DNA-binding protein FAST2. Mol Cell 2,109-120.
    6. Dou, C., Lee, J., Liu, B., Liu, F., Massague, J., Xuan, S., and Lai, E. (2000). BF-1 interferes with transforming growth factor beta signaling by associating with Smad partners. Mol Cell Biol 20,6201-6211.
    7. Lehmann, O.J., Ebenezer, N.D., Jordan, T., Fox, M., Ocaka, L., Payne, A., Leroy, B.P., Clark, B.J., Hitchings, R.A., Povey, S., et al. (2000). Chromosomal duplication involving the forkhead transcription factor gene FOXC1 causes iris hypoplasia and glaucoma. Am J Hum Genet 67,1129-1135.
    8. Clifton-Bligh, R.J., Wentworth, J.M., Heinz, P., Crisp, M.S., John, R., Lazarus, J.H., Ludgate, M, and Chatterjee, V.K. (1998). Mutation of the gene encoding human TTF-2 associated with thyroid agenesis, cleft palate and choanal atresia. Nat Genet 19, 399-401.
    9. De Felice, M., Ovitt, C., Biffali, E., Rodriguez-Mallon, A., Arra, C., Anastassiadis, K., Macchia, P.E., Mattei, M.G., Mariano, A., Scholer, H., et al. (1998). A mouse model for hereditary thyroid dysgenesis and cleft palate. Nat Genet 19,395-398.
    10. Nehls, M., Kyewski, B., Messerle, M., Waldschutz, R., Schuddekopf, K., Smith, A.J., and Boehm, T. (1996). Two genetically separable steps in the differentiation of thymic epithelium. Science 272,886-889.
    11. Nehls, M., Pfeifer, D., Schorpp, M., Hedrich, H., and Boehm, T. (1994). New member of the winged-helix protein family disrupted in mouse and rat nude mutations. Nature 372,103-107.
    12. Brunkow, M.E., Jeffery, E.W., Hjerrild, K.A., Paeper, B., Clark, L.B., Yasayko, S.A., Wilkinson, J.E., Galas, D., Ziegler, S.F., and Ramsdell, F. (2001). Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 27,68-73.
    13. Frank, J., Pignata, C., Panteleyev, A.A., Prowse, D.M., Baden, H., Weiner, L., Gaetaniello, L., Ahmad, W., Pozzi, N., Cserhalmi-Friedman, P.B., et al. (1999). Exposing the human nude phenotype. Nature 398,473-474.
    14. Bennett, C.L., Christie, J., Ramsdell, F., Brunkow, M.E., Ferguson, P.J., Whitesell, L., Kelly, T.E., Saulsbury, F.T., Chance, P.F., and Ochs, H.D. (2001). The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 27,20.
    15. Wildin, R.S., Ramsdell, F., Peake, J., Faravelli, F., Casanova, J.-L., Buist, N., Levy-Lahad, E., Mazzella, M., Goulet, O., and Perroni, L. (2001). X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet 27,18.
    16. Bell, R., Brice, G., Child, A.H., Murday, V.A., Mansour, S., Sandy, C.J., Collin, J.R., Brady, A.F., Callen, D.F., Burnand, K., et al. (2001). Analysis of lymphoedema-distichiasis families for FOXC2 mutations reveals small insertions and deletions throughout the gene. Hum Genet 108,546-551.
    17. Erickson, R.P. (2001). Lymphedema-distichiasis and FOXC2 gene mutations. Lymphology 34,1.
    18. Fang, J., Dagenais, S.L., Erickson, R.P., Arlt, M.F., Glynn, M.W., Gorski, J.L., Seaver, L.H., and Glover, T.W. (2000). Mutations in FOXC2 (MFH-1), a forkhead family transcription factor, are responsible for the hereditary lymphedema-distichiasis syndrome. Am J Hum Genet 67,1382-1388.
    19. Finegold, D.N., Kimak, M.A., Lawrence, E.C., Levinson, K.L., Cherniske, E.M., Pober, B.R., Dunlap, J.W., and Ferrell, R.E. (2001). Truncating mutations in FOXC2 cause multiple lymphedema syndromes. Hum Mol Genet 10,1185-1189.
    20. Nishimura, D.Y., Searby, C.C., Alward, W.L., Walton, D., Craig, J.E., Mackey, D.A., Kawase, K., Kanis, A.B., Patil, S.R., and Stone, E.M. (2001). A Spectrum of FOXC1 Mutations Suggests Gene Dosage as a Mechanism for Developmental Defects of the Anterior Chamber of the Eye. Am J Hum Genet 68,364-372.
    21. Stroud, J.C., Wu, Y., Bates, D.L., Han, A., Nowick, K., Paabo, S., Tong, H., and Chen, L. (2006). Structure of the forkhead domain of FOXP2 bound to DNA. Structure 14, 159-166.
    22. Enard, W., Przeworski, M., Fisher, S.E., Lai, C.S., Wiebe, V., Kitano, T., Monaco, A.P., and Paabo, S. (2002). Molecular evolution of FOXP2, a gene involved in speech and language. Nature 418,869-872.
    23. Zhang, J., Webb, D.M., and Podlaha, O. (2002). Accelerated protein evolution and origins of human-specific features:Foxp2 as an example. Genetics 162,1825-1835.
    24. Shu, W., Cho, J.Y., Jiang, Y, Zhang, M., Weisz, D., Elder, G.A., Schmeidler, J., De Gasperi, R., Sosa, M.A., Rabidou, D., et al. (2005). Altered ultrasonic vocalization in mice with a disruption in the Foxp2 gene. Proc Natl Acad Sci USA102,9643-9648.
    25. Enard, W., Gehre, S., Hammerschmidt, K., Holter, S.M., Blass, T., Somel, M., Bruckner, M.K., Schreiweis, C., Winter, C., Sohr, R., et al. (2009). A humanized version of Foxp2 affects cortico-basal ganglia circuits in mice. Cell 137,961-971.
    26. Fujita, E., Tanabe, Y., Shiota, A., Ueda, M., Suwa, K., Momoi, M.Y., and Momoi, T. (2008). Ultrasonic vocalization impairment of Foxp2 (R552H) knockin mice related to speech-language disorder and abnormality of Purkinje cells. Proc Natl Acad Sci USA 105,3117-3122.
    27. Groszer, M., Keays, D.A., Deacon, R.M., de Bono, J.P., Prasad-Mulcare, S., Gaub, S., Baum, M.G., French, C.A., Nicod, J., Coventry, J.A., et al. (2008). Impaired synaptic plasticity and motor learning in mice with a point mutation implicated in human speech deficits. Curr Biol 18,354-362.
    28. Haesler, S., Rochefort, C, Georgi, B., Licznerski, P., Osten, P., and Scharff, C. (2007). Incomplete and inaccurate vocal imitation after knockdown of FoxP2 in songbird basal ganglia nucleus Area X. PLoS Biol 5, e321.
    29. Miller, J.E., Spiteri, E., Condro, M.C., Dosumu-Johnson, R.T., Geschwind, D.H., and White, S.A. (2008). Birdsong decreases protein levels of FoxP2, a molecule required for human speech. J Neurophysiol 100,2015-2025.
    30. Li, G., Wang, J., Rossiter, S.J., Jones, G., and Zhang, S. (2007). Accelerated FoxP2 evolution in echolocating bats. PLoS One 2, e900.
    31. Teeling, E.C., Springer, M.S., Madsen, O., Bates, P., O'Brien S, J., and Murphy, W.J. (2005). A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307,580-584.
    32. Napoli, C., Lemieux, C., and Jorgensen, R. (1990). Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2,279-289.
    33. Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., and Mello, C.C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391,806-811.
    34. Elbashir, S.M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. (2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411,494-498.
    35. Tolia, N.H., and Joshua-Tor, L. (2007). Slicer and the argonautes. Nat Chem Biol 3, 36-43.
    36. Hauser, P.V., Pippin, J.W., Kaiser, C., Krofft, R.D., Brinkkoetter, P.T., Hudkins, K.L., Kerjaschki, D., Reiser, J., Alpers, C.E., and Shankland, S.J. (2010). Novel siRNA delivery system to target podocytes in vivo. PLoS One 5, e9463.
    37. Di Benedetto, B., Wefers, B., Wurst, W., and Kuhn, R. (2009). Local knockdown of ERK2 in the adult mouse brain via adeno-associated virus-mediated RNA interference. Mol Biotechnol 41,263-269.
    38. Blomer, U., Naldini, L., Kafri, T., Trono, D., Verma, I.M., and Gage, F.H. (1997). Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J Viro171,6641-6649.
    39. Zala, D., Bensadoun, J.C., Pereira de Almeida, L., Leavitt, B.R., Gutekunst, C.A., Aebischer, P., Hayden, M.R., and Deglon, N. (2004). Long-term lentiviral-mediated expression of ciliary neurotrophic factor in the striatum of Huntington's disease transgenic mice. Exp Neurol 185,26-35.
    40. Watson, D.J., Karolewski, B.A., and Wolfe, J.H. (2004). Stable gene delivery to CNS cells using lentiviral vectors. Methods Mol Biol 246,413-428.
    41. Takahashi, K., Liu, F.C., Hirokawa, K., and Takahashi, H. (2008). Expression of Foxp4 in the developing and adult rat forebrain. J Neurosci Res 86,3106-3116.
    42. Campbell, P., Reep, R.L., Stoll, M.L., Ophir, A.G., and Phelps, S.M. (2009). Conservation and diversity of Foxp2 expression in muroid rodents:functional implications. J Comp Neurol 512,84-100.
    43. Ferland, R.J., Cherry, T.J., Preware, P.O., Morrisey, E.E., and Walsh, C.A. (2003). Characterization of Foxp2 and Foxpl mRNA and protein in the developing and mature brain. J Comp Neurol 460,266-279.
    44. Lai, C.S., Gerrelli, D., Monaco, A.P., Fisher, S.E., and Copp, A.J. (2003). FOXP2 expression during brain development coincides with adult sites of pathology in a severe speech and language disorder. Brain 126,2455-2462.
    45. Takahashi, K., Liu, F.C., Hirokawa, K., and Takahashi, H. (2003). Expression of Foxp2, a gene involved in speech and language, in the developing and adult striatum. J Neurosci Res 73,61-72.
    46. Teramitsu, I., Kudo, L.C., London, S.E., Geschwind, D.H., and White, S.A. (2004). Parallel FoxPl and FoxP2 expression in songbird and human brain predicts functional interaction. J Neurosci 24,3152-3163.
    47. Myers, J.W., Chi, J.-T., Gong, D., Schaner, M.E., Brown, P.O., and Ferrell Jr, J.E. (2006). Minimizing off-target effects by using diced siRNAs for RNA interference. J RNAi Gene Silencing 2,181.
    48. Fedorov, Y., Anderson, E.M., Birmingham, A., Reynolds, A., Karpilow, J., Robinson, K., Leake, D., Marshall, W.S., and Khvorova, A. (2006). Off-target effects by siRNA can induce toxic phenotype. RNA 12,1188-1196.
    49. Haesler, S., Wada, K., Nshdejan, A., Morrisey, E.E., Lints, T., Jarvis, E.D., and Scharff, C. (2004). FoxP2 expression in avian vocal learners and non-learners. J Neurosci 24,3164-3175.
    50. Bonkowsky, J.L., and Chien, C.B. (2005). Molecular cloning and developmental expression of foxP2 in zebrafish. Dev Dyn 234,740-746.
    51. Shah, R., Medina-Martinez, O., Chu, L.F., Samaco, R.C., and Jamrich, M. (2006). Expression of FoxP2 during zebrafish development and in the adult brain. Int J Dev Biol 50,435-438.
    52. Takahashi, K., Liu, F.C., Oishi, T., Mori, T., Higo, N., Hayashi, M., Hirokawa, K., and Takahashi, H. (2008). Expression of FOXP2 in the developing monkey forebrain: comparison with the expression of the genes FOXP1, PBX3, and MEIS2. J Comp Neurol 509,180-189.
    53. Morikawa, Y., Hisaoka, T., and Senba, E. (2009). Characterization of Foxp2-expressing cells in the developing spinal cord. Neuroscience 162,1150-1162.
    54. Shu, W., Lu, M.M., Zhang, Y., Tucker, P.W., Zhou, D., and Morrisey, E.E. (2007). Foxp2 and Foxpl cooperatively regulate lung and esophagus development. Development 134,1991-2000.
    55. Allman, J.M., Hakeem, A., Erwin, J.M., Nimchinsky, E., and Hof, P. (2001). The anterior cingulate cortex. The evolution of an interface between emotion and cognition. Ann N Y Acad Sci 935,107-117.
    56. Paus, T. (2001). Primate anterior cingulate cortex:where motor control, drive and cognition interface. Nat Rev Neurosci 2,417-424.
    57. Wei, F., Xia, X.M., Tang, J., Ao, H., Ko, S., Liauw, J., Qiu, C.S., and Zhuo, M. (2003). Calmodulin regulates synaptic plasticity in the anterior cingulate cortex and behavioral responses:a microelectroporation study in adult rodents. J Neurosci 23, 8402-8409.
    58. Olthoff, A., Baudewig, J., Kruse, E., and Dechent, P. (2008). Cortical sensorimotor control in vocalization:a functional magnetic resonance imaging study. Laryngoscope 118,2091-2096.
    59. Kondo, H.M., and Kashino, M. (2007). Neural mechanisms of auditory awareness underlying verbal transformations. Neuroimage 36,123-130.
    60. Rubens, A.B. (1975). Aphasia with infarction in the territory of the anterior cerebral artery. Cortex 11,239-250.
    61. Jurgens, U., and von Cramon, D. (1982). On the role of the anterior cingulate cortex in phonation:a case report. Brain Lang 15,234-248.
    62. Sutton, D., Larson, C., and Lindeman, R.C. (1974). Neocortical and limbic lesion effects on primate phonation. Brain Res 71,61-75.
    63. Devinsky, O., Morrell, M.J., and Vogt, B.A. (1995). Contributions of anterior cingulate cortex to behaviour. Brain 118 (Pt 1),279-306.
    64. Gooler, D.M., and O'Neill, W.E. (1987). Topographic representation of vocal frequency demonstrated by microstimulation of anterior cingulate cortex in the echolocating bat, Pteronotus parnelli parnelli. J Comp Physiol A 161,283-294.
    65. Gaub, S., Groszer, M., Fisher, S.E., and Ehret, G. (2010). The structure of innate vocalizations in Foxp2-deficient mouse pups. Genes Brain Behav 9,390-401.
    66. Vernes, S.C., Oliver, P.L., Spiteri, E., Lockstone, H.E., Puliyadi, R., Taylor, J.M., Ho, J., Mombereau, C., Brewer, A., Lowy, E., et al. (2011). Foxp2 regulates gene networks implicated in neurite outgrowth in the developing brain. PLoS Genet 7, e1002145.
    67. Bartel, D.P. (2004). MicroRNAs:genomics, biogenesis, mechanism, and function. Cell 116,281-297.
    68. Krol, J., Loedige, I., and Filipowicz, W. (2010). The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11,597-610.
    69. Berezikov, E. (2011). Evolution of microRNA diversity and regulation in animals. Nat Rev Genet 12,846-860.
    70. Siomi, M.C., Sato, K., Pezic, D., and Aravin, A.A. (2011). PIWI-interacting small RNAs:the vanguard of genome defence. Nat Rev Mol Cell Biol 12,246-258.
    71. Matera, A.G., Terns, R.M., and Terns, M.P. (2007). Non-coding RNAs:lessons from the small nuclear and small nucleolar RNAs. Nat Rev Mol Cell Biol 8,209-220.
    72. Castel, S.E., and Martienssen, R.A. (2013). RNA interference in the nucleus:roles for small RNAs in transcription, epigenetics and beyond. Nat Rev Genet 14,100-112.
    73. Pasquinelli, A.E. (2012). MicroRNAs and their targets:recognition, regulation and an emerging reciprocal relationship. Nature Rev Genet 13,271-282.
    74. Hermeking, H. (2012). MicroRNAs in the p53 network:micromanagement of tumour suppression. Nat Rev Cancer 12,613-626.
    75. Calin, G.A., and Croce, C.M. (2006). MicroRNAs and chromosomal abnormalities in cancer cells. Oncogene 25,6202-6210.
    76. Calin, G.A., Sevignani, C., Dumitru, C.D., Hyslop, T., Noch, E., Yendamuri, S., Shimizu, M., Rattan, S., Bullrich, F., and Negrini, M. (2004). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101,2999-3004.
    77. Lee, R.C., Feinbaum, R.L., and Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to Iin-14. Cell 75, 843-854.
    78. Reinhart, B.J., Slack, F.J., Basson, M., Pasquinelli, A.E., Bettinger, J.C., Rougvie, A.E., Horvitz, H.R., and Ruvkun, G. (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403,901-906.
    79. Pasquinelli, A.E., Reinhart, B.J., Slack, F., Martindale, M.Q., Kuroda, M.I., Maller, B., Hayward, D.C., Ball, E.E., Degnan, B., Muller, P., et al. (2000). Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 86-89.
    80. Campo-Paysaa, F., Semon, M., Cameron, R.A., Peterson, K.J., and Schubert, M. (2011). microRNA complements in deuterostomes:origin and evolution of microRNAs. Evol Dev 13,15-27.
    81. Cai, X., Hagedorn, C.H., and Cullen, B.R. (2004). Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10, 1957-1966.
    82. Lee, Y., Kim, M., Han, J., Yeom, K.H., Lee, S., Baek, S.H., and Kim, V.N. (2004). MicroRNA genes are transcribed by RNA polymerase Ⅱ. EMBO J 23,4051-4060.
    83. Gregory, R.I., Yan, K.P., Amuthan, G., Chendrimada, T., Doratotaj, B., Cooch, N., and Shiekhattar, R. (2004). The Microprocessor complex mediates the genesis of microRNAs. Nature 432,235-240.
    84. Han, J., Lee, Y, Yeom, K.H., Nam, J.W., Heo, I., Rhee, J.K., Sohn, S.Y., Cho, Y., Zhang, B.T., and Kim, V.N. (2006). Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125,887-901.
    85. Berezikov, E., Chung, W.J., Willis, J., Cuppen, E., and Lai, E.C. (2007). Mammalian mirtron genes. Mol Cell 28,328-336.
    86. Filipowicz, W., Bhattacharyya, S.N., and Sonenberg, N. (2008). Mechanisms of post-transcriptional regulation by microRNAs:are the answers in sight? Nat Rev Genet 9,102-114.
    87. Bao, N., Lye, K.W., and Barton, M.K. (2004). MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome. Dev Cell 7,653-662.
    88. Wu, L., Fan, J., and Belasco, J.G. (2006). MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci USA 103,4034-4039.
    89. Vasudevan, S., Tong, Y., and Steitz, J.A. (2008). Cell-cycle control of microRNA-mediated translation regulation. Cell Cycle 7,1545-1549.
    90.(?)rom, U.A., Nielsen, F.C., and Lund, A.H. (2008). MicroRNA-lOa binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. Mol cell 30,460-471.
    91. Place, R.F., Li, L.C., Pookot, D., Noonan, E.J., and Dahiya, R. (2008). MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci USA105,1608-1613.
    92. Sandberg, R., Neilson, J.R., Sarma, A., Sharp, P.A., and Burge, C.B. (2008). Proliferating cells express mRNAs with shortened 3'untranslated regions and fewer microRNA target sites. Sci Signal 320,1643.
    93. Tsang, J., Zhu, J., and van Oudenaarden, A. (2007). MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol Cell 26, 753-767.
    94. O'Donnell, K.A., Wentzel, E.A., Zeller, K.I., Dang, C.V., and Mendell, J.T. (2005). c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435,839-843.
    95. Clark, M.B., Amaral, P.P., Schlesinger, F.J., Dinger, M.E., Taft, R.J., Rinn, J.L. Ponting, C.P., Stadler, P.F., Morris, K.V., Morillon, A., et al. (2011). The reality of pervasive transcription. PLoS Biol 9, e1000625; discussione1001102.
    96. Jalali, S., Bhartiya, D., Lalwani, M.K., Sivasubbu, S., and Scaria, V. (2013). Systematic Transcriptome Wide Analysis of IncRNA-miRNA Interactions. PLoS One 8, e53823.
    97. Yang, B., Lin, H., Xiao, J., Lu, Y., Luo, X., Li, B., Zhang, Y, Xu, C., Bai, Y., Wang, H., et al. (2007). The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med 13,486-491.
    98. Zhao, Y, Samal, E., and Srivastava, D. (2005). Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436, 214-220.
    99. Lagos-Quintana, M., Rauhut, R., Yalcin, A., Meyer, J., Lendeckel, W., and Tuschl, T. (2002). Identification of tissue-specific microRNAs from mouse. Curr Biol 12, 735-739.
    100. Sempere, L.F., Freemantle, S., Pitha-Rowe, I., Moss, E., Dmitrovsky, E., and Ambros, V. (2004). Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 5, R13.
    101. Krichevsky, A.M., King, K.S., Donahue, C.P., Khrapko, K., and Kosik, K.S. (2003). A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 9,1274-1281.
    102. Kosik, K.S., and Krichevsky, A.M. (2005). The Elegance of the MicroRNAs:A Neuronal Perspective. Neuron 47,779-782.
    103. Smirnova, L., Grafe, A., Seiler, A., Schumacher, S., Nitsch, R., and Wulczyn, F.G. (2005). Regulation of miRNA expression during neural cell specification. Eur J Neurosci 21,1469-1477.
    104. Conaco, C., Otto, S., Han, J.J., and Mandel, G. (2006). Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci USA 103,2422-2427.
    105. Visvanathan, J., Lee, S., Lee, B., Lee, J.W., and Lee, S.K. (2007). The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev 21,744-749.
    106. Wu, J., and Xie, X. (2006). Comparative sequence analysis reveals an intricate network among REST, CREB and miRNA in mediating neuronal gene expression. Genome Biol 7, R85.
    107. Poy, M.N., Eliasson, L., Krutzfeldt, J., Kuwajima, S., Ma, X., Macdonald, P.E., Pfeffer, S., Tuschl, T., Rajewsky, N., Rorsman, P., et al. (2004). A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432,226-230.
    108. Poy, M.N., Hausser, J., Trajkovski, M., Braun, M., Collins, S., Rorsman, P., Zavolan, M., and Stoffel, M. (2009). miR-375 maintains normal pancreatic alpha-and beta-cell mass. Proc Natl Acad Sci USA 106,5813-5818.
    109. Schratt, G.M., Tuebing, F., Nigh, E.A., Kane, C.G., Sabatini, M.E., Kiebler, M, and Greenberg, M.E. (2006). A brain-specific microRNA regulates dendritic spine development. Nature 439,283-289.
    110. Gao, J., Wang, W.Y., Mao, Y.W., Graff, J., Guan, J.S., Pan, L., Mak, G., Kim, D., Su, S.C., and Tsai, L.H. (2010). A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 466,1105-1109.
    111. Yanaihara, N., Caplen, N., Bowman, E., Seike, M., Kumamoto, K., Yi, M., Stephens, R.M., Okamoto, A., Yokota, J., Tanaka, T., et al. (2006). Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9,189-198.
    112. Chen, X., Guo, X., Zhang, H., Xiang, Y., Chen, J., Yin, Y., Cai, X., Wang, K., Wang, G., Ba, Y., et al. (2009). Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene 28,1385-1392.
    113. Iorio, M.V., Ferracin, M/, Liu, C.G., Veronese, A., Spizzo, R., Sabbioni, S., Magri, E., Pedriali, M., Fabbri, M., Campiglio, M., et al. (2005). MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65,7065-7070.
    114. Porkka, K.P., Pfeiffer, M.J., Waltering, K.K., Vessella, R.L., Tammela, T.L., and Visakorpi, T. (2007). MicroRNA expression profiling in prostate cancer. Cancer Res 67,6130-6135.
    115. Lee, J.W., Choi, C.H., Choi, J.J., Park, Y.A., Kim, S J., Hwang, S.Y., Kim, W.Y., Kim, T.J., Lee, J.H., Kim, B.G., et al. (2008). Altered MicroRNA expression in cervical carcinomas. Clin Cancer Res 14,2535-2542.
    116. Akao, Y., Nakagawa, Y., Kitade, Y, Kinoshita, T., and Naoe, T. (2007). Downregulation of microRNAs- 143 and- 145 in B- cell malignancies. Cancer Sci 98,1914-1920.
    117. Kosaka, N., Iguchi, H., and Ochiya, T. (2010). Circulating microRNA in body fluid:a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci 101, 2087-2092.
    118. Kriltzfeldt, J., Rajewsky, N., Braich, R., Rajeev, K.G., Tuschl, T., Manoharan, M., and Stoffel, M. (2005). Silencing of microRNAs in vivo with 'antagomirs'. Nature 438, 685-689.
    119. Thum, T., Gross, C., Fiedler, J., Fischer, T., Kissler, S., Bussen, M., Galuppo, P., Just, S., Rottbauer, W., and Frantz, S. (2008). MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456,980-984.
    120. Chan, J.A., Krichevsky, A.M., and Kosik, K.S. (2005). MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65,6029-6033.
    121. Gabriely, G., Wurdinger, T., Kesari, S., Esau, C.C., Burchard, J., Linsley, P.S., and Krichevsky, A.M. (2008). MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol 28,5369-5380.
    122. Godlewski, J., Nowicki, M.O., Bronisz, A., Williams, S., Otsuki, A., Nuovo, G., Raychaudhury, A., Newton, H.B., Chiocca, E.A., and Lawler, S. (2008). Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res 68,9125-9130.
    123. Kefas, B., Godlewski, J., Comeau, L., Li, Y., Abounader, R., Hawkinson, M., Lee, J., Fine, H., Chiocca, E.A., and Lawler, S. (2008). microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res 68,3566-3572.
    124. Silber, J., Lim, D.A., Petritsch, C., Persson, A.I., Maunakea, A.K., Yu, M., Vandenberg, S.R., Ginzinger, D.G., James, C.D., Costello, J.F., et al. (2008). miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med 6,14.
    125. Pritchard, C.C., Cheng, H.H., and Tewari, M. (2012). MicroRNA profiling: approaches and considerations. Nat Rev Genet 13,358-369.
    126. Burroughs, A.M., Ando, Y., de Hoon, M.L., Tomaru, Y., Suzuki, H., Hayashizaki, Y., and Daub, C.O. (2011). Deep-sequencing of human Argonaute-associated small RNAs provides insight into miRNA sorting and reveals Argonaute association with RNA fragments of diverse origin. RNA Biol 8,158-177.
    127. Sinzelle, L., Izsvak, Z., and Ivics, Z. (2009). Molecular domestication of transposable elements:from detrimental parasites to useful host genes. Cell Mol Life Sci 66, 1073-1093.
    128. Mathelier, A., and Carbone, A. (2010). MIReNA:finding microRNAs with high accuracy and no learning at genome scale and from deep sequencing data. Bio informatics 26,2226-2234.
    129. Hackenberg, M., Sturm, M., Langenberger, D., Falcon-Perez, J.M., and Aransay, A.M. (2009). miRanalyzer:a microRNA detection and analysis tool for next-generation sequencing experiments. Nucleic Acids Res 37, W68-76.
    130. Friedlander, M.R., Chen, W., Adamidi, C., Maaskola, J., Einspanier, R., Knespel, S., and Rajewsky, N. (2008). Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol 26,407-415.
    131. Friedlander, M.R., Mackowiak, S.D., Li, N., Chen, W., and Rajewsky, N. (2012). miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res 40,37-52.
    132. Fu, Y., Shi, Z., Wu, M., Zhang, J., Jia, L., and Chen, X. (2011). Identification and differential expression of microRNAs during metamorphosis of the Japanese flounder (Paralichthys olivaceus). PLoS One 6, e22957.
    133. Li, S.C., Chan, W.C., Ho, M.R., Tsai, K.W., Hu, L.Y., Lai, C.H., Hsu, C.N., Hwang, P.P., and Lin, W.C. (2010). Discovery and characterization of medaka miRNA genes by next generation sequencing platform. BMC Genomics11Suppl 4, S8.
    134. Chen, C., Deng, B., Qiao, M., Zheng, R., Chai, J., Ding, Y., Peng, J., and Jiang, S. (2012). Solexa sequencing identification of conserved and novel microRNAs in backfat of Large White and Chinese Meishan pigs. PLoS One 7, e31426.
    135. Szittya, G., Moxon, S., Santos, D.M., Jing, R., Fevereiro, M.P., Moulton, V., and Dalmay, T. (2008). High-throughput sequencing of Medicago truncatula short RNAs identifies eight new miRNA families. BMC Genomics 9,593.
    136. Chen, X., Li, Q., Wang, J., Guo, X., Jiang, X., Ren, Z., Weng, C., Sun, G., Wang, X., and Liu, Y. (2009). Identification and characterization of novel amphioxus microRNAs by Solexa sequencing. Genome Biol 10, R78.
    137. Wei, Y., Chen, S., Yang, P., Ma, Z., and Kang, L. (2009). Characterization and comparative profiling of the small RNA transcriptomes in two phases of locust. Genome Biol 10, R6.
    138. Zhang, Y., Zhou, X., Ge, X., Jiang, J., Li, M., Jia, S., Yang, X., Kan, Y., Miao, X., Zhao, G., et al. (2009). Insect-Specific microRNA Involved in the Development of the Silkworm Bombyx mori. PLoS One 4, e4677.
    139. Liang, C., Zhang, X., Zou, J., Xu, D., Su, F., and Ye, N. (2010). Identification of miRNA from Porphyra yezoensis by high-throughput sequencing and bioinformatics analysis. PLoS One 5, e10698.
    140. Xie, S.S., Li, X.Y., Liu, T., Cao, J.H., Zhong, Q., and Zhao, S.H. (2011). Discovery of porcine microRNAs in multiple tissues by a Solexa deep sequencing approach. PLoS One 6, e16235.
    141. Chen, X., Li, Q., Wang, J., Guo, X., Jiang, X., Ren, Z., Weng, C., Sun, G., Wang, X., Liu, Y., et al. (2009). Identification and characterization of novel amphioxus microRNAs by Solexa sequencing. Genome Biol 10, R78.
    142. Thomson, J.M., Parker, J., Perou, C.M., and Hammond, S.M. (2004). A custom microarray platform for analysis of microRNA gene expression. Nat Methods 1, 47-53.
    143. Lagos-Quintana, M., Rauhut, R., Yalcin, A., Meyer, J., Lendeckel, W., and Tuschl, T. (2002). Identification of tissue-specific microRNAs from mouse. Curr Biol 12, 735-739.
    144. Chang, J., Nicolas, E., Marks, D., Sander, C., Lerro, A., Buendia, M.A., Xu, C., Mason, W.S., Moloshok, T., and Bort, R. (2004). miR-122, a Mammalian Liver-Specific microRNA, is Processed from her mRNA and May Downregulate the High Affinity Cationic Amino Acid Transporter CAT-1. RNA Biol 1,106-113.
    145. Godlewski, J., Newton, H.B., Chiocca, E.A., and Lawler, S.E. (2010). MicroRNAs and glioblastoma; the stem cell connection. Cell Death Differ 17,221-228.
    146. Evangelisti, C., Florian, M.C., Massimi, I., Dominici, C., Giannini, G., Galardi, S., Bue, M.C., Massalini, S., McDowell, H.P., Messi, E., et al. (2009). MiR-128 up-regulation inhibits Reelin and DCX expression and reduces neuroblastoma cell motiity and invasiveness. FASEB J 23,4276-4287.
    147. Packer, A.N., Xing, Y., Harper, S.Q., Jones, L., and Davidson, B.L. (2008). The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington's disease. J Neurosci 28,14341-14346.
    148. Smrt, R.D., Szulwach, K.E., Pfeiffer, R.L., Li, X., Guo, W., Pathania, M., Teng, Z.Q., Luo, Y., Peng, J., Bordey, A., et al. (2010). MicroRNA miR-137 regulates neuronal maturation by targeting ubiquitin ligase mind bomb-1. Stem Cells 28,1060-1070.
    149. Ruby, J.G., Stark, A., Johnston, W.K., Kellis, M., Bartel, D.P., and Lai, E.C. (2007). Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. Genome Res 17,1850-1864.
    150. Berezikov, E., Robine, N., Samsonova, A., Westholm, J.O., Naqvi, A., Hung, J.-H., Okamura, K., Dai, Q., Bortolamiol-Becet, D., and Martin, R. (2011). Deep annotation of Drosophila melanogaster microRNAs yields insights into their processing, modification, and emergence. Genome Res 21,203-215.
    151. Chiang, H.R., Schoenfeld, L.W., Ruby, J.G., Auyeung, V.C., Spies, N., Baek, D., Johnston, W.K., Russ, C., Luo, S., Babiarz, J.E., et al. (2010). Mammalian microRNAs:experimental evaluation of novel and previously annotated genes. Genes Dev 24,992-1009.
    152. Seitz, H., Ghildiyal, M., and Zamore, P.D. (2008). Argonaute Loading Improves the 5' Precision of Both MicroRNAs and Their miRNA Strands in Flies. Curr Biol 18, 147-151.
    153. Azuma-Mukai, A., Oguri, H., Mituyama, T., Qian, Z.R., Asai, K., Siomi, H., and Siomi, M.C. (2008). Characterization of endogenous human Argonautes and their miRNA partners in RNA silencing. Proc Natl Acad Sci USA 105,7964-7969.
    154. Landgraf, P., Rusu, M., Sheridan, R., Sewer, A., Iovino, N., Aravin, A., Pfeffer, S., Rice, A., Kamphorst, A.O., Landthaler, M., et al. (2007). A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129,1401-1414.
    155. Wu, H., Neilson, J.R., Kumar, P., Manocha, M., Shankar, P., Sharp, P.A., and Manjunath, N. (2007). miRNA profiling of naive, effector and memory CD8 T cells. PLoS One 2,e1020.
    156. Morin, R.D., O'Connor, M.D., Griffith, M, Kuchenbauer, F., Delaney, A., Prabhu, A.L., Zhao, Y., McDonald, H., Zeng, T., Hirst, M., et al. (2008). Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res 18,610-621.
    157. Ruby, J.G., Jan, C., Player, C., Axtell, M.J., Lee, W., Nusbaum, C., Ge, H., and Bartel, D.P. (2006). Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 127,1193-1207.
    158. Burroughs, A.M., Ando, Y., de Hoon, M.J., Tomaru, Y., Nishibu, T., Ukekawa, R., Funakoshi, T., Kurokawa, T., Suzuki, H., and Hayashizaki, Y. (2010). A comprehensive survey of 3'animal miRNA modification events and a possible role for 3'adenylation in modulating miRNA targeting effectiveness. Genome Res 20, 1398-1410.
    159. Fernandez-Valverde, S.L., Taft, R.J., and Mattick, J.S. (2010). Dynamic isomiR regulation in Drosophila development. RNA 16,1881-1888.
    160. Lim, L.P., Lau, N.C., Weinstein, E.G., Abdelhakim, A., Yekta, S., Rhoades, M.W., Burge, C.B., and Bartel, D.P. (2003). The microRNAs of Caenorhabditis elegans. Genes Dev 17,991-1008.
    161. Wheeler, B.M., Heimberg, A.M., Moy, V.N., Sperling, E.A., Holstein, T.W., Heber, S., and Peterson, K.J. (2009). The deep evolution of metazoan microRNAs. Evol Dev 11, 50-68.
    162. Bartel, D.P. (2009). MicroRNAs:target recognition and regulatory functions. Cell 136, 215-233.
    163. Lewis, B.P., Burge, C.B., and Bartel, D.P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRN A targets. Cell 120,15-20.
    164. Khvorova, A., Reynolds, A., and Jayasena, S.D. (2003). Functional siRNAs and miRNAs exhibit strand bias. Cell 115,209-216.
    165. Schwarz, D.S., Hutvagner, G., Du, T., Xu, Z., Aronin, N., and Zamore, P.D. (2003). Asymmetry in the assembly of the RNAi enzyme complex. Cell 115,199-208.
    166. Okamura, K., Phillips, M.D., Tyler, D.M., Duan, H., Chou, Y.-t., and Lai, E.C. (2008). The regulatory activity of microRNA* species has substantial influence on microRNA and 3'UTR evolution. Nat Struct Mol Biol 15,354-363.
    167. Marco, A., Hui, J.H., Ronshaugen, M., and Griffiths-Jones, S. (2010). Functional shifts in insect microRNA evolution. Genome Biol Evol 2,686-696.
    168. Grimson, A., Srivastava, M., Fahey, B., Woodcroft, B.J., Chiang, H.R., King, N., Degnan, B.M., Rokhsar, D.S., and Bartel, D.P. (2008). Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature 455,1193-1197.
    169. Fu, G., Ye, G., Nadeem, L., Ji, L., Manchanda, T., Wang, Y., Zhao, Y, Qiao, J., Wang, Y.L., Lye, S., et al. (2013). MicroRNA-376c Impairs Transforming Growth Factor-beta and Nodal Signaling to Promote Trophoblast Cell Proliferation and Invasion. Hypertension 61,864-872.
    170. Mellios, N., Huang, H.S., Grigorenko, A., Rogaev, E., and Akbarian, S. (2008). A set of differentially expressed miRNAs, including miR-30a-5p, act as post-transcriptional inhibitors of BDNF in prefrontal cortex. Hum Mol Genet 17,3030-3042.
    171. Lena, A.M., Mancini, M., Rivetti di Val Cervo, P., Saintigny, G., Mahe, C., Melino, G., and Candi, E. (2012). MicroRNA-191 triggers keratinocytes senescence by SATB1 and CDK.6 downregulation. Biochem Biophys Res Commun 423,509-514.
    172. Na, Y.J., Sung, J.H., Lee, S.C., Lee, Y.J., Choi, Y.J., Park, W.Y., Shin, H.S., and Kim, J.H. (2009). Comprehensive analysis of microRNA-mRNA co-expression in circadian rhythm. Exp Mol Med 41,638-647.
    173. Kuchenbauer, F., Mah, S.M., Heuser, M., McPherson, A., Rtischmann, J., Rouhi, A., Berg, T., Bullinger, L., Argiropoulos, B., and Morin, R.D. (2011). Comprehensive analysis of mammalian miRNA* species and their role in myeloid cells. Blood 118, 3350-3358.
    174. Ruby, J.G., Stark, A., Johnston, W.K., Kellis, M., Bartel, D.P., and Lai, E.C. (2007). Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. Genome Res 17,1850-1864.
    175. de Wit, E., Linsen, S.E., Cuppen, E., and Berezikov, E. (2009). Repertoire and evolution of miRNA genes in four divergent nematode species. Genome Res 19, 2064-2074.
    176. Griffiths-Jones, S., Hui, J.H., Marco, A., and Ronshaugen, M. (2011). MicroRNA evolution by arm switching. EMBO Rep 12,172-177.
    177. Ro, S., Park, C., Young, D., Sanders, K.M., and Yan, W. (2007). Tissue-dependent paired expression of miRNAs. Nucleic Acids Res 35,5944-5953.
    178. Deo, M., Yu, J.Y., Chung, K.H., Tippens, M., and Turner, D.L. (2006). Detection of mammalian microRNA expression by in situ hybridization with RNA oligonucleotides. Dev Dyn 235,2538-2548.
    179. Miska, E.A., Alvarez-Saavedra, E., Townsend, M., Yoshii, A., Sestan, N., Rakic, P., Constantine-Paton, M., and Horvitz, H.R. (2004). Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol 5, R68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700