斑马鱼心脏发育相关基因δ-SG和Foxp1的克隆、表达和功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
(一)δ-SG是肌聚糖复合物的成员,它在各种脊椎动物的骨骼肌和心肌中特异表达。肌聚糖复合物基因的突变在人类中与肢带型肌营养不良症(LGMD)和扩张型心肌病(DCM)相关。在本文中,我们克隆了斑马鱼δ-SG基因,并研究了其在胚胎发育时期的表达谱,并通过吗啉修饰的反义寡核苷酸介导的基因抑制深入研究了该基因在斑马鱼胚胎发育过程中的功能。
     斑马鱼δ-SG基因全长cDNA的长度为1938bp,其中的开放阅读框编码了一条含有290个氨基酸残基的多肽。该基因表达产物在氨基酸水平上与人、小鼠、仓鼠、鸡的δ-SG基因产物分别有72%、73%、73%和69%的相似性。δ-SG的基因组序列分析显示该基因由8个外显子和7个内含子组成,覆盖了长将近200kb的基因组区域。原位杂交结果显示δ-SG的表达最初开始于分节期早期。高水平的δ-SG表达出现在骨骼肌和心肌。其它如眼部和下颚肌肉、胸鳍、鳃弓、和鳔也有显著的表达。此外受精三天后,在中脑和视网膜也能观测到δ-SG表达。
     我们采用吗啉修饰的反义RNA进行基因抑制,结果显示绝大多数注射δ-SG-MO的斑马鱼胚胎都显示出严重的异常表型;发育不全的头部,线性心脏,微弱的心跳和短小的躯干,并且大多在5天内死亡。而注射同样剂量的对照MO的胚胎发育与正常胚胎没有明显区别。MO-GFP和拯救实验证据也有效的证实使用的MO能抑制内源δ-SG蛋白的翻译。原位杂交分析显示在受累胚胎中,近轴细胞和肌肉前体细胞减少。δ-SG基因表达的缺失严重阻碍了心脏早期发育过程,并影响了心肌细胞的分化。更有趣的是心脏的左右非对称模式发生了改变。同时免疫印记分析显示SG复合物相关蛋白的表达量在MO注射胚胎中明显下调,甚至基本消失。这些结果显示δ-SG在早期心脏和肌肉的发育中具有很重要的作用,我们推测SG复合物可能作为膜受体参与早期发育的信号传递。
     (二)
     Forkhead转录因子家族一类由许多调控分子组成的大家族,它们共同拥有一个保守的110个氨基酸残基的DNA结合域——forkhead结构域。该家族在包括脑、心血管系统、肺、肠和肾等组织的发育过程中都发挥重要作用。其功能包括参与细胞增殖,分化,染色体重塑,有丝分裂过程和转化过程等。本文中我们克隆了斑马鱼Foxp1基因(Genebank序列号为DQ333303),进行了生物信息学分析,并研究了其表达谱。
     斑马鱼Foxp1全长cDNA的长度为2440bp,其中的开放阅读框编码了一条含有659个氨基酸残基的多肽。该基因表达产物在氨基酸水平上与人、小鼠、仓鼠、鸡、云雀和爪蟾的Foxp1基因产物分别有72%、68%、68%、70%、65%和62%的相似性。其中包含一个锌指结构域,一个亮氨酸拉链和一个Forkhead DNA结合域。通过5'RACE和RT-PCR分析发现了4个Foxp1可变剪接体A型—D型。整胚原位杂交和RT—PCR结果显示在胚胎发育阶段Foxp1的时空表达谱是非常复杂而动态的,尤其是在神经系统的发育过程中。各可变剪接体的时空表达谱有很大区别,其中高量的母源表达主要为D型,B型也主要在胚胎发育中期表达,A型和C型可能为幼鱼及成体后的主要表达类型。该基因在中枢神经系统的许多区域都有表达,特别是中后脑分界线,后脑和脊索。同时Foxp1在视网膜、耳、鳃弓、孵化腺、心脏、原肾管、肠道、原肛、胸鳍和鳔等部位都有广泛的高表达。
     通过对斑马鱼基因功能的研究可以揭示其在斑马鱼发育过程中所起的作用。在本文中我们采用morpholino进行Foxp1基因抑制,结果显示大多数注射Foxp1-MO的斑马鱼胚胎出现一致的表型,主要集中在脑部发育和心脏发育障碍,此外还有躯干弯曲,孵化腺细胞异常等。而注射同样剂量的对照MO的胚胎发育与正常胚胎没有明显区别。这些结果表明斑马鱼Foxp1基因在启动胚胎发育和其后的组织器官发生如神经系统、心脏和其它多个组织中都有重要的作用。
(1)
     δ-SG,one member of the sarcoglycan complex,is a very conservative muscle specific protein exclusively expressed in the skeletal and cardiac muscle of vertebrates.Mutations in sarcoglycans are known to be involved in limb-girdle muscular dystrophy(LGMD)and dilated cardiomyopathy(DCM)in humans.Here we report molecular cloning,characterization and developing expression of a novel zebrafishδ-SG gene.And we adopte the gene-specific morpholino modified antisense oligo to carry out gene knock-down assay and analysis its influence to zebrafish embryogenesis.
     The full length of zebrafishδ-SG cDNA is 1938 bp and it encodes a polypeptide of 290 amino acids which shares 72%,73%,73% and 69% overall identity with human,mouse,hamster and chickenδ-SG,respectively.Characterization of zebrafishδ-SG genomic sequence reveals that it spans about 200kb and contains eight exons and seven introns.The expression pattern ofδ-SG in zebrafish embryonic development is studied by whole-mount in situ hybridization.The onset of zygotic transcription is at early segmentation period.Strong expression ofδ-SG was observed in various muscles including those of the segment,heart,eye,jaw,pectoral fin, branchial arches and swim bladder in zebrafish embryo.Expression could also be found in midbrain and retina after 72hpf.
     Furthermore,we carry out gene knock-down by morpholino modified antisense oligonucleotide.The MO-injected embryos showed severe abnormality in both the cardiac and skeletal muscle.However,the embryos injected with the same dose control mopholino oligonucleotide showed no difference from the uninjected wildtype embryos.Tthe evidences provided by MO-GFP and rescue experiment are valid enough to confirm that MO effectively represses the translation ofδ-SG protein.Some severe ones had serious morphological abnormality such as hypoplastic head,linear heart,very weak heartbeats and runtish trunk,all dead within 5 dpf.Whole-mount in situ hybridization analysis showed that inδ-SG knockdown embryos adaxial cells and muscle pioneers were affected.In addition,absence ofδ-SG protein severely delayed the cardiac development and influenced the differentiation of cardiac muscle,and the cardiac left-right asymmetry was dramatically changed in morpholino treated embryos.Immunoblot analysis shows downregulation of the sarcoglycans.These data together suggest thatδ-SG plays an important role in early heart and muscle development.
     (2)
     The winged-helix/forkhead transcription factor gene family is a large group of proteins that share a conserved 110-amino acid DNA-binding domain termed as winged-helix or forkhead domain.Members of this family have been shown to play important roles in the development of various organs,including brain,cardiovascular system,lung,gut and kidney,with their diverse functions including pro-liferation, cellular differentiation,chromatin remodeling,mitotic program,and neoplastic transformation.In this report,we described the isolation,characterization and expression of Foxp1 in zebrafish.
     The full-length zebrafish Foxp1 cDNA was 2440bp encoding a 659-amino-acid protein which shares 72%,68%,68%,70%,65%,and 62% overall identity with human,mouse,rat,chicken,avian,and frog Foxp1,respectively.The product of Foxp1 gene contains a zinc-finger domain,a leueine zipper domain and a forkhead domain.5'RACE and RT-PCR have confirmed that zebrafish Foxp1 transcripts contain at least four different splicing variants named Foxp1A-D.The results of whole-mount in situ hybridization and RT-PCR showed Foxp1 have very complex and dynamic expression pattern during early embryonic development.The spatial and temporal expression patterns of four splice isoforms are different.Remarkable signals of Foxpl were detected in many domains of the developing central nervous system, especially in mid-hind brain boundary,hindbrain,and spinal cord.Strong and broad expression was also observed in retina,ear,branchial arches,hatching gland,heart, pronephric duct,gut,proctodeum,pectoral fin and swim bladder.
     Knock-down had been used in studying the gene function in zebrafish development.Almost all the Foxp1-MO-injected show highly consistant phynotype including hypoplastic head,small eyes,pericardial edema and weak heartbeats.The embryos injected with the same dose control mopholino oligonucleotide showed no difference from the uninjeeted wildtype embryos.These results provide evidence that Foxp1 might be very important in the development of the central nervous system, heart and many other organs.
引文
Aidas N,Stephen CE,Effective targeted gene 'knockdown' in zebrafish,Nat.Genet.2000,26;216-220.
    Araishi K,Sasaoka T,Imamura M,Noguchi S,Hama H,Wakabayashi E,et al.Loss of the sarcoglycan complex and sarcospan leads to muscular dystrophy in beta-sarcoglycan deficient mice.Hum Mol Genet 1999,8;1589-1598.
    Betto R,Senter L,Ceoldo S,Tarricone E,Biral D,Salviati G.Ecto-ATPase activity of α-sarcoglycan(adhalin).J Biol Chem.1999,274;7904-7912.
    Campbell KP,Kahl SD,Association of dystrophin and an integral membrane glycoprotein.Nature.1989,338(6212);259-262.
    Campbell KP,Three muscular dystrophies;loss of cytoskeleton-extracellular matrix linkage.Cell.1995,80(5);675-679.
    Chambers SP,Anderson LV,Maguire GM,Dodd A,Love DR,Sarcoglycans of the zebrafish;orthology and localization to the sarcolemma and myosepta of muscle,Biochem.Biophys.Res.Commun.2003,303;488-495.
    Chan YM,Bonnemann CG,Lidov HG,Kunkel LM,Molecular organization of sarcoglycan complex in mouse myotubes in culture.J Cell Biol.1998,143(7);2033-2044.
    Chen JN,van Eeden FJ,Warren KS,Chin A,Nusslein-Volhard C,Haffter P,Fishman MC,Left-right pattern of cardiac BMP4 may drive asymmetry of the heart in zebrafish.Development 1997,124;4373-4382.
    Claudepierre T,Dalloz C,Mornet D,Matsumura K,Sahel J,Rendon A,Characterization of the intermolecular associations of the dystrophin-associated glycoprotein complex in retinal Muller glial cells.J Cell Sci.2000,113;3409-3417.
    Coral-Vazquez R,Cohn RD,Moore SA,Hill JA,Weiss RM,Davisson RL,et al.Disruption of the sarcoglycan-sarcospan complex in vascular smooth muscle;a novel mechanism for cardiomyopathy and muscular dystrophy.Cell.1999,98;465-474.
    Dekkers LC,van der Plas MC,van Loenen PB,den Dunnen JT,van Ommen G J,Fradkin LG,Noordermeer JN.Embryonic expression patterns of the Drosophila dystrophin-associated glycoprotein complex orthologs,Gene Expression Patterns 2004,4(2);153-159
    Dincer P,Bonnemann CG.Erdir Aker O,Akcoren Z,Nigro V,Kunkel LM,Topalolu H.A homozygous nonsense mutation in delta-sarcoglycan exon 3 in a case of LGMD2F.Neuromuscul Disord.2000,10(4-5);247-250.
    Dominguez I,Itoh K,Sokol SY,Role of glycogen synthase kinase 3 beta as a negative regulator of dorsoventral axis formation in Xenopus embryos.Proc.Natl.Acad.Sci.U.S.A.1995,92;8498-8502.
    Duclos F,Straub V,Moore SA,Venzke DP,Hrstka RF,Crosbie RH,et al.Progressive muscular dystrophy in alpha-sarcoglycan deficient mice.J Cell Biol 1998,142;1461-1471.
    Durbeej M,Campbell KP,Muscular dystrophies involving the dystrophin-glycoprotein complex;an overview of current mouse models.Curt Opin Genet Dev.2002,12(3);349-361.
    Durbeej M,Cohn RD,Hrstka RF,Moore SA,Allamand V,Davidson BL,et al.Disruption of the beta-sarcoglycan gene reveals pathogenetic complexity of limb-girdle muscular dystrophy type 2E.Mol Cell 2000,5;141-151.
    Eli Berdougo,Hope Coleman,et al.Mutation of weak atrium/atrial myosin heavy chaindisrupts atrial function and influences ventricular morphogenesis in zebrafish.Development 2003,130;6121-6129
    Ervasti JM,Ohlendieck K,Kahl SD,Gaver MG,Campbell KP,Deficiency of a glycoprotein component of the dystrophin complex in dystrophic muscle.Nature.1990,345(6273);315-319.
    Guyon JR,Mosley AN,Jun S J,Montanaro F,Steffen LS,Zhou Y,Nigro V,Zon LI,Kunkel LM,Delta-sarcoglycan is required for early zebrafish muscle organization.Exp Cell Res.2005,304(1);105-115.
    Guyon JR,Mosley AN,Zhou Y,Davidson A J,Sheng X,Chiang K,O'Brien KF,Volinski JM,Zon LI,Kunkel LM,The dystrophin associated protein complex in zebrafish,Hum.Mol.Genet.2003,12;601-615.
    Hack AA,Cordier L,Shoturma DI,Lam MY,Sweeney HL,McNally EM.Muscle degeneration without mechanical injury in sarcoglycan deficiency.Proc Natl Acad Sci U S A.1999,96(19);10723-10728
    Hack AA,Groh ME,McNally EM,Sarcoglycans in muscular dystrophy,Microsc.Res.Tech.2000,48;167-180.
    Hack AA,Ly CT,Jiang F,Clendenin C J,Sigrist KS,Wollmann RL,et al.Gamma-sarcoglycan deficiency leads to muscle membrane defects and apoptosis independent of dystrophin.J Cell Biol 1998,142;1279-1287.
    Jessen JR,Willett CE,Lin S,Artificial chromosome transgenesis reveals long-distance negative regulation of ragl in zebrafish.Nat.Genet.1999,23;15-16.
    Jung D,Duclos F,Apostol B,Straub V,Lee JC,et al.Characterization of d-Sarcoglycan,a Novel Component of the Oligomeric Sarcoglycan Complex Involved in Limb-Girdle Muscular Dystrophy,J Biol Chem.1996,271(50);32321-32329
    Karkkainen S,Miettinen R,Tuomainen P,Karkkainen P,Helio T,Reissell E,Kaartinen M,Toivonen L,Nieminen MS,Kuusisto J,Laakso M,Peuhkurinen K.A novel mutation,Arg71Thr,in the delta-sarcoglycan gene is associated with dilated cardiomyopathy.J Mol Med.2003,81(12);795-800.
    Kimmel CB,Ballard WW,Kimmel SR,Ullmann B,Schilling TF,Stages of embryonic development of the zebrafish,Dev.Dyn.1995,203;253-310.
    Liu LA,Engvall E,Sarcoglycan isoforms in skeletal muscle.J Biol Chem 1999,274;38171-38176.
    M.Westerfield,The Zebrafish Book,Eugene Press,Eugene,Oregon,1995.
    Moreira ES,Vainzof M,Marie SK,Nigro V,Zatz M,Passos-Bueno MR.A first missense mutation in the delta sarcoglycan gene associated with a severe phenotype and frequency of limb-girdle muscular dystrophy type 2F(LGMD2F)in Brazilian sarcoglycanopathies.J Med Genet.1998,35(11);951-953.
    Nigro V,de Sa Moreira E,Piluso G,Vainzof M,Belsito A,Politano L,Puca AA,Passos-Bueno
    MR,Zatz M.Autosomal recessive limb-girdle muscular dystrophy,LGMD2F,is caused by a mutation in the delta-sarcoglycan gene.Nat Genet.1996,14(2);195-198.
    Nigro V,Okazaki Y,Belsito A,Piluso G,Matsuda Y,Politano L,et al.Identification of the Syrian hamster cardiomyopathy gene.Hum.Mol.Genet.1997,6;601-607.
    Parsons MJ,Campos I,Hirst EM,Stemple DL,Removal of dystroglycan causes severe muscular dystrophy in zebrafish embryos,Development.2002,129;3505-3512.
    Sakamoto A,Abe M,Masaki T.Delineation of genomic deletion in cardiomyopathic hamster.FEBS Lett.1999,447;124-128.
    Sakamoto A,Ono K,Abe M,Jasmin G,Eki T,Murakami Y,et al.Both hypertrophic and dilated cardiomyopathies are caused by mutation of the same gene,delta-sarcoglycan,in hamster;an animal model of disrupted dystrophin-associated glycoprotein complex.Proc Natl Acad Sci USA 1997,94;13873-13878.
    Sakamoto A,Ono K,Abe M,Jasmin G,Eki T,Murakami Y,Masaki T,Toyo-oka T,Hanaoka F,Both hypertrophic and dilated cardiomyopathies are caused by mutation of the same gene,deltasarcoglycan,in hamster;an animal model of disrupted dystrophinassociated glycoprotein complex,Proc.Natl.Acad.Sci.U.S.A.1997,94;13873-13878.
    Sasaoka T,Imamura M,Araishi K,Noguchi S,Mizuno Y,Takagoshi N,et al.Pathological analysis of muscle hypertrophy and degeneration in muscular dystrophy in Gamma-sarcoglycan deficient mice.Neuromuscul Disord 2003,13;193-206.
    Serbedzija GN,Chen JN,Fishman MC.Regulation in the heart field of zebrafish.Development.1998,125(6);1095-1101
    Shi W,Chen Z,Schottenfeld J,Stahl RC,Kunkel LM,Chan YM.Specific assembly pathway of sarcoglycans is dependent on beta-and delta-sarcoglycan.Muscle Nerve.2004,29(3);409-419.
    Shinya M,Naohiro S,Keiko W,Keiichi I,Seiichi T,Hiroshi S,Kunimi K,Defect of δ-SG gene is responsible for development of dilated cardiomyopathy of a novel hamster strain,J2N-k;calcineurin/PP2B activity in the heart of J2N-k hamster,J.Biochem.(Tokyo)2003,134;269-276
    Scholpp S,Brand M,Morpholino-induced knockdown of zebrafish engrailed genes eng2 and eng3 reveals redundant and unique functions in midbrain-hindbrain boundary development.Genesis 2001,30;129-133.
    Song HD,Liu TX,Wu XY,Shun X J,Zhang QH,Chen S J,Zhou Y,Chen Z,Look TA,Zon LI,Gene expression profiling in kidney of zebrafish's hematopoietic tissue.Blood.2001,98;4137 part2
    Straub V,Ettinger AJ,Durbeej M,Venzke DP,Cutshall S,Sanes JR,Campbell KP;ε-sarcoglycan replaces α-sarcoglycan in smooth muscle to form a unique dystrophin-glycoprotein complex.J Biol Chem.1999,274(39);27989-27996.
    Summerton J,Morpholino antisense oligomers;the case for an RNase H-independent structural type.Biochim.Biophys.Acta.1999,1489;141-158.
    Tsubata S,Bowles KR,Vatta M,Zintz C,Titus J,Muhonen L,Bowles NE,Towbin JA.Mutations in the human d-sarcoglycangene in familial and sporadic dilated cardiomyopathy.J Clin lnvest.2000,106(5);655-662.
    Walsh E,Stainier D,UDP-glucose dehydrogenase required for cardiac valve formation in zebrafish.Science 2001,293;1670-1673.
    Weinberg ES,Allende ML,Kelly CS,Abdelhamid A,Murakami T,Andermann P,Doerre OG,Grunwald DJ,Riggleman B,Developmental regulation of zebrafish MyoD in wild-type,no tail and spadetail embryos.Development 1996,122;271-280.
    Wheeler MT,Zarnegar S,McNaily EM,Zeta-sarcoglycan,a novel component of the sarcoglycan complex,is reduced in muscular dystrophy.Hum Mol Genet.2002,11(18);2147-2154.
    Yoshida M,Ozawa E,Glycoprotein complex anchoring dystrophin to sarcolemma.J Biochem(Tokyo).1990,108(5);748-752.
    Banham AH,Beasley N,Campo E,Femandez PL,Fidler C,Gatter K,Jones M,Mason DY,Prime JE,Trougouboff P,Wood K,Cordell JL,The FOXP1 winged helix transcription factor is a novel candidate tumor suppressor gene on chromosome 3p.Cancer.Res.2001,61;8820-8829.
    Banham AH,Connors JM,Brown P J,Cordell JL,Ott G,Sreenivasan G,Farinha P,Horsman DE,Gascoyne RD,Expression of the FOXP1 transcription factor is strongly associated with inferior survival in patients with diffuse large B-cell lymphoma.Clin.Cancer.Res.2005,11(3);1065-1072.
    Barrans SL,Fenton JA,Banham A,Owen RG.Jack AS,Strong expression of FOXP1 identifies a distinct subset of diffuse large B-cell lymphoma(DLBCL)patients with poor outcome.Blood.2004,104(9);2933-2935.
    Bennett CL,Christie J,Ramsdell F,Brunkow ME,Ferguson PJ,Whitesell L,Kelly TE,Saulsbury FT,Chance PF,Ochs HD.The immune dysregulation,polyendocrinopathy,enteropathy,X-linked syndrome(IPEX)is caused by mutations of FOXP3.Nat Genet.2001,27(1);20-21.
    Bettelli E,Dastrange M,Oukka M.Foxp3 interacts with nuclear factor of activated T cells and NF-kappa B to repress cytokine gene expression and effector functions of T helper cells.Proc Watl Acad Sci USA.2005,102(14);5138-5143..
    Bonkowsky JL,Chien CB,Molecular cloning and developmental expression of foxP2 in zebrafish,Dev.Dyn.2005,234(3);740-746.
    Brunkow ME,Jeffery EW,Hjerrild KA,Paeper B,Clark LB,Yasayko SA,Wilkinson JE,Galas D,Ziegler SF,Ramsdell F.Disruption of a new forkhead/winged-helix protein,scurfin,results in the fatal lymphoproliferative disorder of the scurfy mouse.Nat Genet.2001,27(1);68-73.
    Carlsson P,Mahlapuu M.Forkhead transcription factors;key players in development and metabolism.Dev.Biol.2002,250;1-23.
    Chatila TA,Blaeser F,Ho N,Lederman HM,Voulgaropoulos C,Helms C,Bowcock AM.JM2,encoding a fork head-related protein,is mutated in X-linked autoimmunity-allergic disregulation syndrome.J Clin Invest.2000,106(12);R75-81.
    Ferland RJ,Cherry TJ,Preware PO,Morrisey EE,Walsh CA,Characterization of Foxp2 and Foxp1 mRNA and protein in the developing and mature brain.J.Comp.Neurol.2003,460(2);266-279.
    Fox SB,Brown P,Hart C,Ashe S,Leek RD,Harris AL,Banham AH,Expression of the forkhead transcription factor FOXP1 is associated with estrogen receptor alpha and improved survival in primary human breast carcinomas.Clin.Cancer.Res.2004,10(10);3521-3527.
    Haesler S,Wada K,Nshdejan A,Morrisey EE,Lints T,Jarvis ED,Scharff C,FoxP2 expression in avian vocal learners and non-learners.J.Neurosci.2004,24(13);3164-3175.
    Kaufmann E,W.Knochel,Five years on the wings of fork head.Mech.Dev.1996,57;3-20.
    Kimmel CB,Ballard WW,Kimmel SR,Ullmann B,Schilling TF,Stages of embryonic development of the zebrafish,Dev.Dyn.1995,203;253-310.
    Li C,Tucker PW,DNA-binding properties and secondary structural model of the hepatocyte nuclear factor 3/fork head domain.Proc.Nat.Acad.Sci.1993,90(24);11583-11587.
    Li S,Weidenfeld J,Morrisey EE,Transcriptional and DNA binding activity of the Foxp1/2/4 family is modulated by heterotypic and homotypic protein interactions.Mol.Cell.Biol.2004,24(2);809-822.
    Lu MM,Li S,Yang H,Morrisey EE.Foxp4;a novel member of the Foxp subfamily of winged-helix genes co-expressed with Foxp1 and Foxp2 in pulmonary and gut tissues.Mech Dev.2002,119;S197-202
    MacDermot KD,Bonora E,Sykes N,Coupe AM,Lai CS,Vernes SC,Vargha-Khadem F,McKenzie F,Smith RL,Monaco AP,Fisher SE.Identification of FOXP2 truncation as a novel cause of developmental speech and language deficits.Am J Hum Genet.2005,76(6);1074-1080.
    Pack M,Solnica-Krezel L,Malicki J,Neuhauss SC,Schier AF,Stemple DL,Driever W,Fishman MC.Mutations affecting development of zebrafish digestive organs.Development.1996,123;321-328.
    Pohl BS,Rossner A,Knochel W.The Fox gene family in Xenopus laevis;FoxI2,FoxM1 and FoxP1 in early development.Int.J.Dev.Biol.2005,49(1);53-58.
    Shi C,Zhang X,Chen Z,Sulaiman K,Feinberg MW,Ballantyne CM,Jain MK,Simon DI,Integrin engagement regulates monocyte differentiation through the forkhead transcription factor Foxpl.J.Clin.Invest.2004,114(3);408-418.
    Shu W,Yang H,Zhang L,Lu MM,Morrisey EE,Characterization of a new subfamily of winged-helix/forkhead(Fox)genes that are expressed in the lung and act as transcriptional repressors.J.Biol.Chem.2001,276(29);27488-27497.
    Stainier D,Fishman M,.Patterning the zebrafish heart tube;acquisition of anteroposterior polarity.Dev.Biol.1992,153;91-101.
    Streubel B,Vinatzer U,Lamprecht A,Raderer M,Chott A,T(3;14)(p14.1;q32)involving IGH and FOXP1 is a novel recurrent chromosomal aberration in MALT lymphoma.Leukemia.2005,19(4);652-658.
    Tamura S,Morikawa Y,Iwanishi H,Hisaoka T,Senba E,Expression pattern of the winged-helix/forkhead transcription factor Foxpl in the developing central nervous system.Gene.Expr.Patterns.2003,3(2);193-197.
    Tamura S,Morikawa Y,Iwanishi H,Hisaoka T,Senba E,Foxp1 gene expression in projection neurons of the mouse striatum.Neuroseienee.2004,124(2);261-267.
    Teramitsu I,Kudo LC,London SE,Geschwind DH,White SA,Parallel FoxP1 and FoxP2 expression in songbird and human brain predicts functional interaction.J.Neurosei.2004,24(13);3152-3163.
    Teufel A,Wong EA,Mukhopadhyay M,Malik N,Westphal H.FoxP4,a novel forkhead transcription factor.Bioehim Biophys Acta.2003,1627(2-3);147-152.
    Wang B,Lin D,Li C,Tucker P,Multiple domains define the expression and regulatory properties of Foxp1 forkhead transcriptional repressors.J.Biol.Chem.2003,278(27);24259-24268.
    Wang B,Weidenfeld J,Lu MM,Maika S,Kuziel WA,Morrisey EE,Tucker PW,Foxp1 regulates cardiac outflow tract,endocardial cushion morphogenesis and myocyte proliferation and maturation.Development.2004,131(18);4477-4487.
    Weigel D,Jurgens G,Kuttner F,Seifert E,Jackle H,The homeotic gene fork head encodes a nuclear protein and is expressed in the terminal regions of the Drosophila embryo.Cell.1989,57;645-658.
    Weigel,D,Jackle H,The fork head domain;A novel DNA binding motif of eukaryotic transcription factors? Cell.1990,63;455-456.
    Adelman DM,Gertsenstein M,Nagy A,Simon MC,Maltepe E,Placental cell fates are regulated in vivo by HIF-mediated hypoxia responses.Genes.Dev.2000,14;3191-3203.
    Akazawa H,Komuro I,Cardiac transcription factor Csx/Nkx2-5;Its role in cardiac development and diseases.Pharmacol.Then.2005,107(2);252-268.
    Balza RO Jr,Misra RP,Role of the serum response factor in regulating contractile apparatus gene expression and sarcomeric integrity in cardiomyocytes.J.Biol.Chem.2006,281(10);6498-6510.
    Bamforth SD,Braganca J,Eloranta JJ,Murdoch JN,Marques FIR,Kranc KR,Farza H,Henderson DJ,Hurst HC,Bhattacharya S,Cardiac malformations,adrenal agenesis,neural crest defects and exencephaly in mice lacking Cited2,a new Tfap2 co-activator.Nat.Genet.2001,29;469-474.
    Barron M,Gao M,Lough J,Requirement for BMP,and FGF signaling during cardiogenic induction in non-precardiac mesoderm is specific,transient,and cooperative.Dev.Dyn.2000,218;383-393.
    Basson CT,Bachinsky DR,Lin RC,Levi T,Elkins JA,Soults J,Grayzel D,Kroumpouzou E,Traill TA,Leblanc-Straceski J,Renault B,Kucherlapati R,Seidman JG,Seidman CE,Mutations in human TBX5 cause limb and cardiac malformation in Holt-Oram syndrome.Nat Genet.1997,15;30-35.
    Bodmer R,The gene tinman is required for specification of the heart and visceral muscles in Drosophila.Development.1993,118;719-729.
    Brand T,Heart development;molecular insights into cardiac specification and early morphogenesis.Dev.Biol.2003,258(1);1-19.
    Breckenridge RA,Mohun TJ,Amaya E,A role for BMP signalling in heart looping morphogenesis in Xenopus.Dev.Biol.2001,232;191-203.
    Bruneau BG,Bao ZZ,Tanaka M,Schott JJ,Izumo S,Cepko CL,Seidman JG,Seidman CE,Cardiac expression of the ventricle-specific homeobox gene Irx4 is modulated by Nkx2-5 and dHand.Dev Biol.2000,217;266-277.
    Bruneau BG,Bao ZZ,Tanaka M,Schott JJ,Izumo S,Cepko CL,Seidman JG,Seidman CE.Cardiac expression of the ventricle-specific homeobox gene Irx4 is modulated by Nkx2-5 and dHand.Dev Biol.2000,217;266-277.
    Bruneau BG,Nemer G,Schmitt JP,Charron F,Robitaille L,Caron S,Conner DA,Gessler M, Nemer M, Seidman CE, Seidman JG, A murine model of Holt-Oram syndrome defines roles of the T-box transcription factor Tbx5 in cardiogenesis and disease. Cell. 2001,106:709-721. Bruneau BG, Transcriptional regulation of vertebrate cardiac morphogenesis. Circ. Res. 2002, 90 (5):509-519.
    
    Carmena A, Gisselbrecht S, Harrison J, Jimenez F, Michelson A. Combinatorial signaling codes for the progressive determination of cell fates in the Drosophila embryonic mesoderm. Genes Dev. 1998,15:3910-3922.
    
    Charron F, Nemer M, GATA transcription factors and cardiac development. Semin. Cell. Dev. Biol. 1999,10(1):85-91.
    
    Chen,F, Kook H, Milewski R, Gitler A, Lu M, Li J, Nazarian R, Schnepp R, Jen K, Biben C, Runke G, Mackay J, Novotny J, Schwartz R, Harvey R, Mullins M, Epstein J, Hop is an unusual homeobox gene that modulates cardiac development. Cell. 2002,110:713-723.
    
    Chin MT, Maemura K, Fukumoto S, Jain MK, Layne MD, Watanabe M, Hsieh CM, Lee ME. Cardiovascular basic helix loop helix factor 1, a novel transcriptional repressor expressed preferentially in the developing and adult cardiovascular system. J Biol Chem. 2000, 275: 6381-6387.
    
    Christoffels V, Keijser A, Houweling A, Clout D, Moorman A, Patterning the embryonic heart: identification of five mouse Iroquois homeobox genes in the developing heart. Dev Biol. 2000, 224:263-274.
    
    Dathe V, Gamel A, Manner J, Brand-Saberi B, Christ B, Morphological left-right asymmetry of Hensen's node precedes the asymmetric expression of Shh and Fgf8 in the chick embryo. Anat. Embryol. 2002,205:343-354.
    
    Foley AC, Mercola M, Heart induction by Wnt antagonists depends on the homeodomain transcription factor Hex. Genes. Dev. 2005,19(3):387-96.
    
    Frasch M, Induction of visceral and cardiac mesoderm by ectodermal Dpp in the early Drosophila embryo. Nature. 1995,374:464-467.
    
    Gajewski K, Fossett N, Molkentin JD, Kim Y, Choi CY, Schulz RA, The zink finger proteins
    Pannier and GATA4 function as cardiogenic factors in Drosophila.Development.1999,126;5679-5688.
    Garrity DM,Childs S,Fishman MC,The heartstrings mutation in zebrafish causes heart/fin Tbx5 deficiency syndrome.Development.2002,129(19);4635-4645.
    Ghosh TK,Packham EA,Bonser AJ,Robinson TE,Cross SJ,Brook JD,Characterization of the TBX5 binding site and analysis of mutations that cause Holt-Oram syndrome.Hum.Mol.Genet.2001,10;1983-1994.
    Halfon M,Carmena A,Gisselbrecht S,Sackerson C,Jimenez F,Baylies M,Michelson A,Ras pathway specificity is determined by the integration of multiple signal-activated and tissue-restricted transcription factors.Cell.2000,103;63-74.
    Hamada H,Meno C,Watanabe D,Saijoh,Y,Establishment of vertebrate left-right asymmetry.Nat.Rev.Genet.2002,3;103-113.
    Hatcher CJ,Goldstein MM,Mah CS,Delia CS,Basson CT.Identification and localization of TBX5 transcription factor during human cardiac morphogenesis.Dev Dyn.2000,219;90-95.
    Henderson DJ,Phillips HM,Chaudhry B,Vang-like 2 and Noncanonical Wnt Signaling In Outflow Tract Development.Trends in Cardiovascular Medicine.2006,16;38-45
    Jamali M,Karamboulas C,Rogerson P,Skerjanc I,BMP signaling regulates Nkx2-5 activity during cardiomyogenesis.FEBS.Lett.2001,509;126-130.
    Kelly R,Buckingham M,The anterior heart-forming field;voyage to the arterial pole of the heart.Trends.Genet.2002,18;210-216.
    Kioussi C,Briata P,Back S,Rose D,Hamblet N,et al,Identification of a Wnt/Dvl/-Catenin Pitx2 pathway mediating cell-type-specific proliferation during development.Cell 2002,111;673-685.
    Kitajima S,Takagi A,Inoue T,Saga Y.MesP1 and MesP2 are essential for the development of cardiac mesoderm.Development.2000,127;3215-3226.
    Knirr S,Frasch M,Molecular integration of inductive and mesodermintrinsic inputs governs even-slapped enhancer activity in a subset of pericardial and dorsal muscle progenitors.Dev.Biol. 2001,238:13-26.
    
    Koshiba-Takeuchi K, Takeuchi JK, Arruda EP, Kathiriya IS, Mo R, Hui CC, Srivastava D, Bruneau BG, Cooperative and antagonistic interactions between Sall4 and Tbx5 pattern the mouse limb and heart. Nat. Genet. 2006,38 (2):175-183.
    
    Ladd A, Yatskievych T, Antin P, Regulation of avian cardiac myogenesis by activin/TGFp and bone morphogenetic proteins. Dev. Biol. 1998,204:407-419.
    
    Lee H, Frasch M, Wingless effects mesoderm patterning and ectoderm segmentation events via induction of its downstream target sloppy paired. Development. 2000,127:5497-5508.
    
    Levin M, Thorlin T, Robinson K, Nogi T, Asymmetries in H/K ATPase and cell membrane potentials comprise a very early step in left-right patterning. Cell. 2002,111: 77-98.
    
    Lickert H, Kutsch S, Kanzler B, Tamai Y, Taketo MM, Kemler R, Formation of multiple hearts in mice following deletion of beta-catenin in the embryonic endoderm. Dev. Cell. 2002,3:171-181.
    
    Linask KK, Yu X, Chen Y, Han MD, Directionality of heart looping: effects of Pitx2c misexpression on flectin asymmetry and midline structures. Dev. Biol. 2002,246: 407-417.
    
    Lindsay EA, Vitelli F, Su H, Morishima M, Huynh T, Pramparo T, Jurecic V, Ogunrinu G, Sutherland HF, Scambler PJ, Bradley A, Baldini A, Tbxl haploinsufficieny in the DiGeorge syndrome region causes aortic arch defects in mice. Nature. 2001,410:97-101.
    
    Marvin MJ, Di Rocco G, Gardiner A, Bush SM, Lassar AB, Inhibition of Wnt activity induces heart formation from posterior mesoderm. Genes. Dev. 2001,15:316-327.
    
    Merscher S, Funke B, Epstein JA, Heyer J, Puech A, et al, TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell. 2001,104:619-629.
    
    Michelson AM, Gisselbrecht S, Zhou Y, Baek KH, Buff EM, Dual functions of the heartless fibroblast growth factor receptor in development of the Drosophila embryonic mesoderm. Dev. Genet. 1998,22:212-229.
    
    Miskolczi-McCallum CM, Scavetta RJ, Svendsen PC, Soanes KH, Brook WJ, The Drosophila melanogaster T-box genes midline and H15 are conserved regulators of heart development Dev. Biol.2005,278;459-472 Miskolczi-McCallum CM
    Mumm J,Kopan R,Notch signaling;from the outside in.Dev.Biol.2000,228;151-165.
    Nakajima Y,Yamagishi T,Ando K,Nakamura H,Significance of bone morphogenetic protein-4 function in the initial myofibrillogenesis of chick cardiogenesis.Dev.Biol.2002,245;219-303.
    Narasimha M,Leptin M,Cell movements during gastrulation;come in and be induced.Trends.Cell.Biol.2000,10;169-172.
    Nowotschin S,Liao J,Gage PJ,Epstein JA,Campione M,Morrow BE,Tbx1 affects asymmetric cardiac morphogenesis by regulating Pitx2 in the secondary heart field.Development.2006,133(8);1565-1573.
    Pereira FA,Qiu Y,Zhou G,Tsai MJ,Tsai SY.The orphan nuclear receptor COUP-TFII is required for angiogenesis and heart development.Genes Dev.1999,13;1037-1049.
    Peterkin T,Gibson A,Loose M,Patient R.The roles of GATA-4,-5 and -6 in vertebrate heart development.Semin.Cell.Dev.Biol.2005,16(1);83-94.
    Pikkarainen S,Tokola H,Kerkela R,Ruskoaho H,GATA transcription factors in the developing and adult heart.Cardiovasc.Res.2004,63(2);196-207.
    Reifers F,Walsh E,Leger S,Stainier D,Brand M,Induction and differentiation of the zebrafish heart requires fibroblast growth factor 8(fgf8/acerebellar).Development.2000,127;2549-2561.
    Reiter J,Verkade H,Stainier D,Bmp2b and Oep promote early myocardial differentiation through their regulation of gata5.Dev.Biol.2001,234;330-338.
    Rones M,McLaughlin K,Raffin M,Mercola M,Serrate,Notch specify cell fates in the heart field by suppressing cardiomyogenesis.Development.2000,127;3865-3876.
    Rossant J,Ciruna B,Partanen J,FGF signaling in mouse gastrulation and anteroposterior patterning.Cold.Spring.Harb.Syrup.Quant.Biol.1997,62;127-133.
    Saga Y,Miyagawa-Tomita S,Takagi A,Kitajima S,Miyazaki J,Inoue T.MesP1 is expressed in the heart precursor cells and required for the formation of a single heart tube.Development.1999, 126;3437-3447.
    Schneider VA,Mercola M,Wnt antagonism initiates cardiogenesis in Xenopus laevis.Genes.Dev.2001,15;304-315.
    Searcy RD,Yutzey KE,Analysis of Hox gene expression during early avian heart development.Dev.Dyn.1998,213;82-91.
    Sepulveda J,Vlahopoulos S,Iyer D,Belaguli N,Schwartz R,Combinatorial expression of GATA4,Nkx2-5,and serum response factor directs early cardiac gene activity.J.Biol.Chem.2002,277;25775-25782.
    Shin C,Liu Z,Passier R,Zhang C,Wang D,Harris T,Yamagishi H,Richardson J,Childs G,Olson E,Modulation of cardiac growth and development by HOP,an unusual homeodomain protein.Cell.2002,110;725-735.
    Shiratori H,Sakuma R,Watanabe M,Hashiguchi,H.,Mochida,K.,Sakai,Y.,Nishino,J.,Saijoh,Y.,Whitman,M.,Hamada,H.,Two-step regulation of left-right asymmetric expression of Pitx2;initiation by nodal signaling and maintenance by Nkx2.Mol.Cell 2001,7;137-149.
    Somi S,Buffing AA,Moorman AF,Van Den Hoff MJ,Dynamic patterns of expression of BMP isoforms 2,4,5,6,and 7 during chicken heart development.Anat.Rec.A.Discov.Mol.Cell.Evol.Biol.2004,279(1);636-651.
    Stennard FA,Costa MW,Lai D,Biben C,Furtado MB,Solloway MJ,McCulley DJ,Leimena C,Preis JI,Dunwoodie SL,Elliott DE,Prall OW,Black BL,Fatkin D,Harvey RP,Murine T-box transcription factor Tbx20 acts as a repressor during heart development,and is essential for adult heart integrity,function and adaptation.Development.2005,132(10);2451-2462.
    Stennard FA,Harvey RP.T-box transcription factors and their roles in regulatory hierarchies in the developing heart.Development.2005,132(22);4897-4910.
    Szeto DP,Griffin KJ,Kimelman D,HrT is required for cardiovascular development in zebrafish.Development.2002,129(21);5093-5101.
    Tevosian SG,Deconinck AE,Tanaka M,Schinke M,Litovsky SH,Izumo S,Fujiwara Y,Orkin SH,FOG-2,a cofactor for GATA transcription factors,is essential for heart morphogenesis and development of coronary vessels from epicardium. Cell. 2000, 101:729-739. Tzahor E, Lassar AB, Wnt signals from the neural tube block ectopic cardiogenesis. Genes.Dev. 2001,15:255-260.
    
    von Both I, Silvestri C, Erdemir T, Lickert H, Walls JR., Henkelman RM, et al, Foxh1 is essential for development of the anterior heart field. Dev. Cell. 2004,7:331- 345.
    
    Wang D, Chang PS, Wang Z, Sutherland L, Richardson JA, Small E, Krieg PA, Olson EN. Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor. Cell. 2001, 105:851-862.
    
    Wu X, Golden K, Bodmer R, Heart development in Drosophila requires the segment polarity gene wingless. Dev. Biol. 1995, 169:619-628.
    
    Xu X, Yin Z, Hudson J, Ferguson E, Frasch M, Smad proteins act in combination with synergistic and antagonistic regulators to target Dpp responses to the Drosophila mesoderm. Genes. Dev. 1998,12:2354-2370.
    
    Yamagishi H, Yamagishi C, Nakagawa O, Harvey RP, Olson EN, Srivastava D. The combinatorial activities of Nkx2.5 and dHAND are essential for cardiac ventricle formation. Dev Biol. 2001,239:190-203.
    
    Yin Z, Frasch M, Regulation and function of tinman during dorsal mesoderm induction and heart specification in Drosophila. Dev. Genet. 1998,22:187-200.
    
    Zaffran S, Frasch M, Early signals in cardiac development. Circ. Res. 2002,91 (6):457-469.
    
    Zhang XM, Ramalho-Santos M, McMahon AP, Smoothened mutants reveal redundant roles for shh and ihh signaling including regulation of 1/r asymmetry by the mouse node. Cell. 2001, 105:781-792.
    Banham AH,Connors JM,Brown PJ,Cordell JL,Ott G,Sreenivasan G,Farinha P,Horsman DE,Gascoyne RD,Expression of the FOXP1 transcription factor is strongly associated with inferior survival in patients with diffuse large B-cell lymphoma.Clin.Cancer.Res.2005,11(3);1065-1072.
    Banham AH,Beasley N,Campo E,Fernandez PL,Fidler C,Gatter K,Jones M,Mason DY,Prime JE,Trougouboff P,Wood K,Cordell JL,The FOXP1 winged helix transcription factor is a novel candidate tumor suppressor gene on chromosome 3p.Cancer.Res.2001,61;8820-8829.
    Barrans SL,Fenton JA,Banham A,Owen RG,Jack AS,Strong expression of FOXP1 identifies a distinct subset of diffuse large B-cell lymphoma(DLBCL)patients with poor outcome.Blood. 2004,104(9);2933-2935.
    Carlsson P,Mahlapuu M.Forkhead transcription factors;key players in development and metabolism.Dev.Biol.2002,250;1-23.
    Ferland RJ,Cherry TJ,Preware PO,Morrisey EE,Walsh CA,Characterization of Foxp2 and Foxp1 mRNA and protein in the developing and mature brain,J.Comp.Neurol.2003,460(2);266-279.
    Fox SB,Brown P,Han C,Ashe S,Leek RD,Harris AL,Banham AH,Expression of the forkhead transcription factor FOXP1 is associated with estrogen receptor alpha and improved survival in primary human breast carcinomas.Clin.Cancer.Res.2004,10(10);3521-3527.
    Haesler S,Wada K,Nshdejan A,Morrisey EE,Lints T,Jarvis ED,Scharff C,FoxP2 expression in avian vocal learners and non-learners.J.Neurosci.2004,24(13);3164-3175.
    Kaufmann E,W.Knochel,Five years on the wings of fork head.Mech.Dev.1996,57;3-20.
    Li C,Tucker PW,DNA-binding properties and secondary structural model of the hepatocyte nuclear factor 3/fork head domain.Proc.Nat.Acad.Sci.1993,90(24);11583-11587.
    Li S,Weidenfeld J,Morrisey EE,Transcriptional and DNA binding activity of the Foxp1/2/4 family is modulated by heterotypic and homotypic protein interactions.Mol.Cell.Biol.2004,24(2);809-822.
    Pohl BS,Rossner A,Knochel W.The Fox gene family in Xenopus laevis;FoxI2,FoxM1 and FoxP1 in early development.Int.J.Dev.BioL 2005,49(1);53-58.
    Shi C,Zhang X,Chen Z,Sulaiman K,Feinberg MW,Ballantyne CM,Jain MK,Simon DI,Integrin engagement regulates monocyte differentiation through the forkhead transcription factor Foxp1.J.Clin.Invest.2004,114(3);408-418.
    Shu W,Yang H,Zhang L,Lu MM,Morrisey EE,Characterization of a new subfamily of winged-helix/forkhead(Fox)genes that are expressed in the lung and act as transcriptional repressors.J.Biol.Chem.2001,276(29);27488-27497.
    Streubel B,Vinatzer U,Lamprecht A,Raderer M,Chott A,T(3;14)(p14.1;q32)involving IGH and
    FOXP1 is a novel recurrent chromosomal aberration in MALT lymphoma.Leukemia.2005,19(4);652-658.
    Tamura S,Morikawa Y,Iwanishi H,Hisaoka T,Senba E,Expression pattern of the winged-helix/forkhead transcription factor Foxp1 in the developing central nervous system.Gene.Expr.Patterns.2003,3(2);193-197.
    Tamura S,Morikawa Y,Iwanishi H,Hisaoka T,Senba E,Foxp1 gene expression in projection neurons of the mouse striatum.Neuroscience.2004,124(2);261-267.
    Teramitsu I,Kudo LC,London SE,Geschwind DH,White SA,Parallel FoxP1 and FoxP2 expression in songbird and human brain predicts functional interaction.J.Neurosci.2004,24(13);3152-3163.
    Wang B,Lin D,Li C,Tucker P,Multiple domains define the expression and regulatory properties of Foxp1 forkhead transcriptional repressors.J.Biol.Chem.2003,278(27);24259-24268.
    Wang B,Weidenfeld J,Lu MM,Maika S,Kuziel WA,Morrisey EE,Tucker PW,Foxp1 regulates cardiac outflow tract,endocardial cushion morphogenesis and myocyte proliferation and maturation.Development.2004,131(18);4477-4487.
    Weigel D,Jurgens G,Kuttner F,Seifert E,Jackle H,The homeotic gene fork head encodes a nuclear protein and is expressed in the terminal regions of the Drosophila embryo.Cell.1989,57;645-658.
    Weigel,D,Jackle H,The fork head domain;A novel DNA binding motif of eukaryotic transcription factors? Cell.1990,63;455-456.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700