NAC和雷帕霉素通过抑制镉诱导神经元氧化应激和mTOR通路激活抗凋亡机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过体外分离培养原代小鼠皮质神经元,运用细胞培养、Western blotting等技术从细胞分子生物学角度,分析N-乙酰-L-半胱氨酸(NAC)和雷帕霉素(Rap)干预镉诱导神经元ROS和mTOR通路激活抗凋亡的机制;通过慢性镉染毒实验小鼠模型,运用HE染色、透射电镜和免疫组织化学染色等分析方法,探究了镉诱发大脑组织和细胞损伤过程中,NAC对其变化效应,综合分析了NAC拮抗镉诱导神经元介导mTOR通路激活发挥抗凋亡的机理。结果如下:
     1 NAC和Rap通过抑制镉诱导神经元ROS和]mTOR通路激活抗凋亡
     以原代小鼠皮质神经元为对象,将分离的原代神经元细胞悬液接种在96(1×104/孔)或6(5×105/孔或2×106/孔)孔板中培养6天后的大脑皮质神经元分别用0-120μM CdCl2处理24 h,或用N-乙酰-L-半胱氨酸(NAC,5 mM)和雷帕霉素(Rap,0.2μg/ml)预处理1h和48h后用10和20μM CdCl2暴露4h或24h。采用MTT法分析细胞活性,用荧光探针CM-H2DCFDA分析细胞ROS荧光强度。Western blot测定mTOR通路相关信号蛋白变化。我们观察到镉以浓度依赖的方式诱导神经元凋亡,这与镉诱导ROS产生和Akt/mTOR通路激活有密切关系。用ROS清除剂NAC预处理或mTOR靶向特异抑制剂Rap预处理,可以通过阻滞ROS产生和mTOR通路激活,明显削弱镉诱导的神经元凋亡。提示:NAC和Rap通过抑制镉诱导神经元ROS和mTOR通路激活抗凋亡。
     2 NAC对慢性镉染毒实验小鼠大脑组织和细胞损伤的保护作用研究
     选用健康成年ICR小鼠64只,分为对照组(0.9%生理盐水)和镉处理10、25或50 mg/L CdCl2处理组诱发小鼠大脑组织和细胞损伤,及NAC组,NAC加10、25或50 mg/L CdCl2处理组观察保护情况,共8组。镉采用自由饮水方式,NAC溶于生理盐水(15mg/ml)按150mg/kg体重,每隔1天腹腔注射,连续4周。采用常规HE染色观察组织学变化和透射电镜TEM观察细胞超微结构变化,以及免疫组化分析4E-BP1磷酸化表现。结果表明:在光学显微镜下,大脑皮层和海马区组织结构的变化,大脑颞叶皮层三层结构(CP1-3)出现明显的混乱等现象,而且底板区(SP)模糊、心室层(VZ)减少和底板(SP)到中间层(IZ)细胞松动现象,细胞异常集中在中间带,且以镉浓度依赖的方式呈现大脑颞叶皮层结构不清,部分神经细胞核固缩,出现筛网状结构;海马区CA1-CA2区细胞异位,呈空泡样变性,海马齿状回明显松散,细胞间出现间隙。而NAC和Cd联合处理组的小鼠在皮层组织学结构上可以看到NAC明显的保护作用,小鼠大脑皮层三层结构明显。海马结构齿状回颗粒细胞密集,排列均匀,CA1-CA2区明显。透射电镜观察皮层神经细胞内胞体缩小,神经元细胞内细胞器结构紊乱,线粒体肿胀。免疫组化结果证明mTOR信号通路的下游蛋白p-4EBP1以浓度依赖的方式在海马CA1区表达,大脑皮层犹以底板层的Ⅰ-Ⅲ层更为密集,海马区阳性细胞沿海马齿状回颗粒细胞层呈线状排列,细胞呈圆形,均匀深染,NAC对小鼠大脑皮层额叶分子层的Ⅰ-Ⅲ层和海马CA1区4E-BP1磷酸化有明显的保护作用。提示:NAC干预了慢性镉染毒实验小鼠大脑皮层和海马区组织结构变化和mTOR通路激活。
The present study studied was divided into two series. First, the primary neurons were chosen as object of study. We examined the mechanisms of N-acetyl-L-cysteine (NAC) and Rapamycin (Rap) prevention of cadmium (Cd)-induced apoptosis by suppressing reactive oxygen species (ROS) generation and activation of mammalian target of rapamycin (mTOR) pathway in in vitro neurons. In the second series, the histology and ultrastructure of cerebral cortex and/or hippocampus in chronic Cd-exposed mice were observed by light microscopy (LM) and transmission electron microscopy (TEM). Consistently, NAC inhibited 4E-BP1 phosphorylation of the cerebral cortex and hippocampus tissue cells in chronic Cd-exposed mice were discussed. The results were as follows:
     1 NAC and Rap prevents Cd-induced apoptosis by suppressing ROS production and activation of mTOR pathway in neurons
     The primary cortical neurons were isolated and seeded in 96- or 6-well flat-bottomed plates at a density of 1×105 or 2×106 cells/well for culture of 6 days. Then cells were exposed to different concentration of Cd (0-120μM) for 24 h, or were treated with 10 or 20μM Cd for 4 h or 24 h post pretreatment with NAC (5 mM) for 1 h or with Rap (0.2 p.g/ml) for 48 h. Cell viability was evaluated using an MTT assay, intracellular ROS generation was detected using fluorescent probe CM-H2DCFDA, and morphological analysis was taken to assess the protective effect of NAC and Rap on Cd-induced neurons. Simultaneously, Western Blotting was used to investigate protein expression associated with mTOR pathways. We found Cd induced a concentration-dependent increase of apoptosis in neurons, which was associated with ROS production and activation of mTOR pathway in Cd-induced neurons. Pretreatment with NAC, a ROS scavenger or with mTOR inhibitor Rap, we observed that NAC and Rap significantly rescued Cd-induced neuronal apoptosis by inhibiting ROS production and activation of mTOR pathways. The findings reveal that NAC and Rap prevent Cd-induced apoptosis by suppressing ROS production and activation of mTOR pathway in neurons.
     2 Studies on protective effects of NAC administered on the cerebral tissue and cell injuries in chronic Cd-exposed mice
     Sixty-four healthy adult ICR mice were chosen and randomly divided into 8 sets:control group (treated with 0.9% physiological saline),10,25, or 50 mg/L CdGl2 group, NAC group, NAC+10,25, or 50 mg/LCdCl2 group. CdCl2 was dissolved into water and mice with ad libitum access to food and water. NAC (150 mg/Kg body weight) was dissolved in 0.9% NaCl (15 mg/ml) and administered by intraperitoneal injection every 1 days. The entire experiment lasted 4 weeks. Changes of cerebral cortex and hippocampus in mice were observed by light microscopy (LM) for histology, transmission electron microscopy (TEM) for ultrastructure, and immunohistochemistry for phosphorylation of 4E-BP1. We showed NAC protected the disorganization of the cerebral cortex and hippocampus in chronic Cd-exposed mice at LM and TEM level. The cerebral cortex in control and NAC groups contained a sharply defined three zones. In contrast, Cd-exposed mice's one displayed a hypotrophic cortical plate, a reduced ventricular zone, and a loose band of cells positioned below the subplate in the normally clear intermediate zone. NAC apparently protected the disorganization of the cerebral cortex in the morphological and the vacuolization of neuron were reduced significantly. An abnormal laminar pattern was also evident in the hippocampus. The hippocampus also displayed striking heterotopia in the CA1-CA2 regions. Consistent with these observations, TEM revealed the change of cytoplasmic organelles includings welling and hollowed mitochondria. The results of immunohistochemistry exhibited Cd-induced a marked increase phosphorylation of 4E-BP1, at the same time, there was considerable decreased phospho-4EBPl levels by NAC combined with CdC12 in mouse brain. These data suggests NAC protected the disorganization of the cerebral cortex and hippocampus and suppressed mTOR associated with phosphorylation of 4E-BP1.
引文
1. Kurihara I, Kobayashi E, Suwazono Y, Uetani M, Inaba T, Oishiz M, et al. Association between exposure to cadmium and blood pressure in Japanese peoples [J]. Arch Environ Health.2004; 59(12):711-6.
    2. Lane TW, Saito MA, George GN, Pickering IJ, Prince RC, Morel FM. Biochemistry:a cadmium enzyme from a marine diatom [J]. Nature.2005; 435(7038):42.
    3. Perry HM, Jr., Thind GS, Perry EF. The biology of cadmium [J]. Med Clin North Am.1976; 60(4):759-69.
    4. Lane TW, Morel FM. A biological function for cadmium in marine diatoms [J]. Proc Natl Acad Sci USA.2000; 97(9):4627-31.
    5. Brauer M, Mannetje A. Restaurant smoking restrictions and environmental tobacco smoke exposure [J]. Am J Public Health.1998; 88(12):1834-6.
    6. Akinloye O, Arowojolu AO, Shittu OB, Anetor JI. Cadmium toxicity: a possible cause of male infertility in Nigeria [J]. Reprod Biol.2006; 6(1):17-30.
    7. Waalkes MP. Cadmium carcinogenesis. Mutat Res.2003 Dec 10;533(1-2):107-20.
    8. Pathak N, Khandelwal S. Oxidative stress and apoptotic changes in murine splenocytes exposed to cadmium [J]. Toxicology.2006; 220(1):26-36.
    9. Lasfer M, Vadrot N, Aoudjehane L, Conti F, Bringuier AF, Feldmann G, et al. Cadmium induces mitochondria-dependent apoptosis of normal human hepatocytes [J]. Cell Biol Toxicol.2008; 24(1):55-62.
    10. Pathak N, Khandelwal S. Role of oxidative stress and apoptosis in cadmium induced thymic atrophy and splenomegaly in mice [J]. Toxicol Lett.2007; 169(2):95-108.
    11. Pathak N, Khandelwal S. Influence of cadmium on murine thymocytes: potentiation of apoptosis and oxidative stress [J]. Toxicol Lett.2006; 165(2):121-32.
    12. Yoshida S. Re-evaluation of acute neurotoxic effects of Cd2+ on mesencephalic trigeminal neurons of the adult rat [J]. Brain Res.2001; 892(1):102-10.
    13. Andersson H, Petersson-Grawe K, Lindqvist E, Luthman J, Oskarsson A, Olson L Low-level cadmium exposure of lactating rats causes alterations in brain serotonin levels in the offspring [J]. Neurotoxicol Teratol.1997; 19(2):105-15.
    14. Nordberg GF. Cadmium carcinogenesis and its relationship to other health effects in humans [J]. Scand J Work Enviro Health.1993; 19 Suppl 1:104-7.
    15. De Castro ESE, Ferreira H, Cunha M, Bulcao C, Sarmento C, De Oliveira I, et al. Effect of central acute administration of cadmium on drinking behavior [J]. Pharmacol Biochem Behav.1996; 53(3):687-93.
    16. Okuda B, Iwamoto Y, Tachibana H, Sugita M. Parkinsonism after acute cadmium poisoning [J]. Clin Neurol Neurosurg.1997; 99(4):263-5.
    17. Sulkowski WJ, Rydzewski B, Miarzynska M. Smell impairment in workers occupationally exposed to cadmium [J].Acta Otolaryngol.2000; 120(2):316-8.
    18. Marlowe M, Stellern J, Errera J, Moon C. Main and interaction effects of metal pollutants on visual-motor performance [J]. Arch Environ Health.1985; 40(4):221-5.
    19. Pihl RO, Parkes M. Hair element content in learning disabled children [J]. Science.1977; 198(4313):204-6.
    20. Lafuente A, Gonzalez-Carracedo A, Romero A, Esquifino AI. Effect of cadmium on 24-h variations in hypothalamic dopamine and serotonin metabolism in adult male rats [J]. Exp Brain Res.2003; 149(2):200-6.
    21. Lafuente A, Gonzalez-Carracedo A, Romero A, Cano P, Esquifino AI. Cadmium exposure differentially modifies the circadian patterns of norepinephrine at the median eminence and plasma LH, FSH and testosterone levels [J]. Toxicol Lett. 2004; 146(2):175-82.
    22. Engelmann M, Landgraf R, Wotjak CT. Taurine regulates corticotropin secretion at the level of the supraoptic nucleus during stress in rats [J]. Neurosci Lett.2003; 348(2):120-2.
    23. Antonio MT, Benito MJ, Leret ML, Corpas I. Gestational administration of cadmium alters the neurotransmitter levels in newborn rat brains [J]. J Appl Toxicol.1998; 18(2):83-8.
    24. Kotsonis FN, Klaassen CD. Toxicity and distribution of cadmium administered to rats at sublethal doses [J]. Toxicol Appl Pharmacol.1977; 41(3):667-80.
    25. Fern R, Black JA, Ransom BR, Waxman SG. Cd2+-induced injury in CNS white matter [J].J Neurophysiol.1996; 76(5):3264-73.
    26. Borges VC, Santos FW, Rocha JB, Nogueira CW. Heavy metals modulate glutamatergic system in human platelets [J]. Neurochem Res.2007; 32(6):953-8.
    27. Oh SH, Lim SC. A rapid and transient ROS generation by cadmium triggers apoptosis via caspase-dependent pathway in HepG2 cells and this is inhibited through N-acetylcysteine-mediated catalase upregulation [J]. Toxicol Appl Pharmacol.2006; 212(3):212-23.
    28. Nemmichea S, Chabane-Sari D, Guiraud P. Role of alpha-tocopherol in cadmium-induced oxidative stress in Wistar rat's blood, liver and brain [J]. Chem Biol Interact.2007; 170(3):221-30.
    29. Yu X, Hong S, Faustman EM. Cadmium-induced activation of stress signaling pathways, disruption of ubiquitin-dependent protein degradation and apoptosis in primary rat Sertoli cell-gonocyte cocultures [J]. Toxicol Sci.2008; 104(2):385-96.
    30. Nargund AM, Avery SV, Houghton JE. Cadmium induces a heterogeneous and caspase-dependent apoptotic response in Saccharomyces cerevisiae [J]. Apoptosis. 2008; 13(6):811-21.
    31. Chen L, Liu L, Huang S. Cadmium activates the mitogen-activated protein kinase (MAPK) pathway via induction of reactive oxygen species and inhibition of protein phosphatases 2A and 5 [J]. Free Radic Biol Med.2008; 45(7):1035-44.
    32. Liu Y, Templeton DM. Initiation of caspase-independent death in mouse mesangial cells by Cd2+:involvement of p38 kinase and CaMK-Ⅱ [J]. J Cell Physiol.2008; 217(2):307-18.
    33. Li M, Xia T, Jiang CS, Li LJ, Fu JL, Zhou ZC. Cadmium directly induced the opening of membrane permeability pore of mitochondria which possibly involved in cadmium-triggered apoptosis [J]. Toxicology.2003; 194(1-2):19-33.
    34. Papadakis ES, Finegan KG, Wang X, Robinson AC, Guo C, Kayahara M, et al. The regulation of Bax by c-Jun N-terminal protein kinase (JNK) is a prerequisite to the mitochondrial-induced apoptotic pathway [J]. FEBS Lett. 2006; 580(5):1320-6.
    35. Kim J, Sharma RP. Calcium-mediated activation of c-Jun NH2-terminal kinase (JNK) and apoptosis in response to cadmium in murine macrophages [J]. Toxicol Sci.2004; 81(2):518-27.
    36. Miguel BG, Rodriguez ME, Aller P, Martinez AM, Mata F. Regulation of cadmium-induced apoptosis by PKCdelta in U937 human promonocytic cells [J]. Biochim Biophys Acta. 2005; 1743(3):215-22.
    37. Swandulla D, Armstrong CM. Calcium-channel block by cadmium in chicken sensory neurons [J]. Proc Natl Acad Sci USA.1989; 86(5):1736-40.
    38. King LM, Banks WA, George WJ. Differential zinc transport into testis and brain of cadmium-sensitive and -resistant murine strains [J]. J Androl.2000; 21(5):656-63.
    39. Hamada T, Sasaguri T, Tanimoto A, Arima N, Shimajiri S, Abe T, et al. Apoptosis of human kidney 293 cells is promoted by polymerized cadmium-metallothionein [J]. Biochem Biophys Res Commun.1996; 219(3):829-34.
    40. Biagioli M, Pifferi S, Ragghianti M, Bucci S, Rizzuto R, Pinton P. Endoplasmic reticulum stress and alteration in calcium homeostasis are involved in cadmium-induced apoptosis [J]. Cell Calcium.2008; 43(2):184-95.
    41. Yokouchi M, Hiramatsu N, Hayakawa K, Okamura M, Du S, Kasai A, et al. Involvement of selective reactive oxygen species upstream of proapoptotic branches of unfolded protein response [J]. J Biol Chem.2008; 283(7):4252-60.
    42. Yokouchi M, Hiramatsu N, Hayakawa K, Kasai A, Takano Y, Yao J, et al. Atypical, bidirectional regulation of cadmium-induced apoptosis via distinct signaling of unfolded protein response [J]. Cell Death Differ.2007; 14(8):1467-74.
    43. Bertin G, Averbeck D. Cadmium:cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review) [J]. Biochimie. 2006; 88(11):1549-59.
    44. Xie J, Shaikh ZA. Cadmium-induced apoptosis in rat kidney epithelial cells involves decrease in nuclear factor-kappa B activity [J]. Toxicol Sci.2006; 91(1):299-308.
    45. Chatterjee S, Kundu S, Bhattacharyya A. Mechanism of cadmium induced apoptosis in the immunocyte [J]. Toxicol Lett.2008; 177(2):83-9.
    46. Kotsonis P, Funk L, Prountzos C, Iannazzo L, Majewski H. Differential abilities of phorbol esters in inducing protein kinase C (PKC) down-regulation in noradrenergic neurones [J]. Br J Pharmacol.2001; 132(2):489-99.
    47. Leski ML, Valentine SL, Coyle JT. L-type voltage-gated calcium channels modulate kainic acid neurotoxicity in cerebellar granule cells [J]. Brain Res.1999; 828(1-2):27-40.
    48. Monroe RK, Halvorsen SW. Cadmium blocks receptor-mediated Jak/STAT signaling in neurons by oxidative stress [J]. Free Radic Biol Med.2006; 41(3):493-502.
    49. Silva RF, Falcao AS, Fernandes A, Gordo AC, Brito MA, Brites D. Dissociated primary nerve cell cultures as models for assessment of neurotoxicity [J]. Toxicol Lett.2006; 163(1):1-9.
    50. Chen L, Liu L, Luo Y, Huang S. MAPK and mTOR pathways are involved in cadmium-induced neuronal apoptosis [J]. JNeurochem.2008; 105(1):251-61.
    51. Kim SD, Moon CK, Eun SY, Ryu PD, Jo SA. Identification of ASK1, MKK4, JNK, c-Jun, and caspase-3 as a signaling cascade involved in cadmium-induced neuronal cell apoptosis [J]. Biochem Biophys Res Commun.2005; 328(1):326-34.
    52. Lopez E, Figueroa S, Oset-Gasque MJ, Gonzalez MP. Apoptosis and necrosis: two distinct events induced by cadmium in cortical neurons in culture [J]. Br J Pharmacol.2003; 138(5):901-11.
    53. Shi J. A study on the effect and mechanism of acupuncture suppression of neuronal apoptosis following cerebral ischemia [J]. Sheng Li Ke Xue Jin Zhan. 1999;30(4):326-9.
    54. Stinson LJ, Darmon AJ, Dagnino L, D'Souza SJ. Delayed apoptosis post-cadmium injury in renal proximal tubule epithelial cells [J]. Am J Nephrol. 2003;23(1):27-37.
    55. Ding W, Templeton DM. Activation of parallel mitogen-activated protein kinase cascades and induction of c-fos by cadmium [J]. Toxicol Appl Pharmacol.2000; 162(2):93-9.
    56. Kang CD, Ahn BK, Jeong CS, Kim KW, Lee HJ, Yoo SD, et al. Downregulation of JNK/SAPK activity is associated with the cross-resistance to P-glycoprotein-unrelated drugs in multidrug-resistant FM3A/M cells overexpressing P-glycoprotein [J]. Exp Cell Res.2000; 256(1):300-7.
    57. Watters D. Molecular mechanisms of ionizing radiation-induced apoptosis [J]. Immunol Cell Biol.1999; 77(3):263-71.
    58. Chuang SM, Wang IC, Yang JL. Roles of JNK, p38 and ERK mitogen-activated protein kinases in the growth inhibition and apoptosis induced by cadmium [J]. Carcinogenesis.2000; 21(7):1423-32.
    59. Chrestensen CA, Starke DW, Mieyal JJ. Acute cadmium exposure inactivates thioltransferase (Glutaredoxin), inhibits intracellular reduction of protein-glutathionyl-mixed disulfides, and initiates apoptosis [J]. J Biol Chem. 2000; 275(34):26556-65.
    60. Huang YH, Shih CM, Huang CJ, Lin CM, Chou CM, Tsai ML, et al. Effects of cadmium on structure and enzymatic activity of Cu, Zn-SOD and oxidative status in neural cells [J]. J Biol Chem.2006; 98(3):577-89.
    1. Jaworski J, Sheng M. The growing role of mTOR in neuronal development and plasticity [J]. Mol Neurobiol.2006; 34(3):205-19.
    2. Sabers CJ, Martin MM, Brunn GJ, Williams JM, Dumont FJ, Wiederrecht G, et al. Isolation of a protein target of the FKBP12-rapamycin complex in mammalian-cells [J]. JBiol Chem.1995; 270(2):815-22.
    3. Fingar DC, Blenis J. Target of rapamycin (TOR):an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression [J]. Oncogene.2004; 23(18):3151-71.
    4. Heitman J, Movva NR, Hall MN. Targets for cell-cycle arrest by the immunosuppressant rapamycin in yeast [J]. Science.1991; 253(5022):905-9.
    5. Kunz J, Henriquez R, Schneider U, Deuterreinhard M, Movva NR, Hall MN. Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for g(1) progression [J]. Cell.1993; 73(3):585-96.
    6. Harding MW, Galat A, Uehling DE, Schreiber SL. A receptor for the immunosuppressant FK506 is a cis-trans peptidyl-prolyl isomerase [J]. Nature. 1989;341(6244):758-60.
    7. Siekierka JJ, Hung SHY, Poe M, Lin CS, Sigal NH. A cytosolic binding-protein for the immunosuppressant FK506 has peptidyl-prolyl isomerase activity but is distinct from cyclophilin [J]. Nature.1989; 341(6244):755-7.
    8. Guertin DA, Sabatini DM. An expanding role for mTOR in cancer [J]. Trends Mol Med.2005; 11(8):353-61.
    9. Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell.2006;124(3):471-84.
    10. Sarbassov DD, Ali SM, Sabatini DM. Growing roles for the mTOR pathway. Curr Opin Cell Biol.2005; 17(6):596-603.
    11. Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control [J]. Mol Cell.2002; 10(3):457-68.
    12. Sabatini DM, Erdjumentbromage H, Lui M, Tempst P, Snyder SH. RAFT1-a mammalian protein that binds to fkbp12 in a rapamycin-dependent fashion and is homologous to yeast TORs [J]. Cell. 1994; 78(1):35-43.
    13. Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, Lane WS, et al. A mammalian protein targeted by G1-arresting rapamycin-receptor complex [J]. Nature.1994; 369(6483):756-8.
    14. Chiu MI, Katz H, Berlin V. RAPT1, A mammalian homolog of yeast tor, interacts with the fkbp12 rapamycin complex [J]. PNAS USA.1994; 91(26):12574-8.
    15. Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S, et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action [J]. Cell. 2002; 110(2):177-89.
    16. Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery [J]. Cell.2002; 110(2):163-75.
    17. Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive [J]. Nat Cell Biol.2004; 6(11):1122-8.
    18. Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton [J]. Curr Biol. 2004; 14(14):1296-302.
    19. Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DH. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40 [J]. Nat Cell Biol.2007; 9(3):316-23.
    20. Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E, et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase [J]. Mol Cell.2007;25(6):903-15.
    21. Kim DH, Sarbassov DD, Ali SM, Latek RR, Guntur KVP, Erdjument-Bromage H, et al. G beta L, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR [J]. Mol Cell. 2003;11(4):895-904.
    22. Yang Q, Guan KL. Expanding mTOR signaling. Cell Res.2007; 17(8):666-81.
    23. Oshiro N, Takahashi R, Yoshino K, Tanimura K, Nakashima A, Eguchi S, et al. The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1 [J]. J Biol Chem.2007; 282(28):20329-39.
    24. Oh WJ, Wu CC, Kim SJ, Facchinetti V, Julien LA, Finlan M, et al. mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide [J]. EMBO J.2010; 29(23):3939-51.
    25. Manning BD, Cantley LC. United at last: the tuberous sclerosis complex gene products connect the phosphoinositide 3-kinase/Akt pathway to mammalian target of rapamycin (mTOR) signaling [J]. Biochem Soc T.2003; 31:573-8.
    26. Tee AR, Fingar DC, Manning BD, Kwiatkowski DJ, Cantley LC, Blenis J. Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling [J]. PNAS USA.2002; 99(21):13571-6.
    27. Kamiya H, Shinoda K, Kobayashi N, Kudo K, Nomura T, Morita T, et al. Tuberous sclerosis complex complicated by pulmonary multinodular shadows [J]. Internal Med (Tokyo, Japan).2006; 45(5):275-8.
    28. Holz MK, Ballif BA, Gygi SP, Blenis J. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events [J]. Cell.2005; 123(4):569-80.
    29. Jeno P, Ballou LM, Novak-Hofer I, Thomas G. Identification and characterization of a mitogen-activated S6 kinase [J]. PNAS USA.1988; 85(2):406-10.
    30. Thomas G. The S6 kinase signaling pathway in the control of development and growth [J]. Biol Res.2002; 35(2):305-13.
    31. Gingras AC, Raught B, Sonenberg N. Regulation of translation initiation by FRAP/mTOR [J]. Genes Dev.2001; 15(7):807-26.
    32. Fingar DC, Richardson CJ, Tee AR, Cheatham L, Tsou C, Blenis J. mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E [J]. Mol Cell Biol.2004; 24(1):200-16.
    33. Kwiatkowski DJ. Tuberous sclerosis:from tubers to mTOR [J]. Ann Hum Genet. 2003; 67(Pt 1):87-96.
    34. Swiech L, Perycz M, Malik A, Jaworski J. Role of mTOR in physiology and pathology of the nervous system [J]. Biochim Biophys Acta.2008; 1784(1):116-32.
    35. Secko D. For mTOR, clarification and confusion [J]. Scientist. 2006; 20(12):59-60.
    36. Guertin DA, Sabatini DM. Defining the role of mTOR in cancer [J]. Cancer Cell. 2007; 12(1):9-22.
    37. Guo W, Schubbert S, Chen JY, Valamehr B, Mosessian S, Shi HB, et al. Suppression of leukemia development caused by PTEN loss [J]. PNAS USA. 2011;108(4):1409-14.
    38. Chen L, Xu BS, Liu L, Luo Y, Yin J, Zhou HY, et al. Hydrogen peroxide inhibits mTOR signaling by activation of AMPK alpha leading to apoptosis of neuronal cells [J]. Lab Invest.2010; 90(5):762-73.
    39. Isidoro C, Biagioni F, Giorgi FS, Fulceri F, Paparelli A, Fornai F. The role of autophagy on the survival of dopamine neurons [J]. Curr Top Med Chem.2009; 9(10):869-79.
    40. Anglade P, Vyas S, Javoy-Agid F, Herrero MT, Michel PP, Marquez J, et al. Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease [J]. Histol Histopathol.1997; 12(1):25-31.
    41. Xilouri M, Stefanis L. Autophagy in the central nervous system:implications for neurodegenerative disorders [J]. CNS Neurol Disord-Dr.2010; 9(6):701-19.
    42. Ramirez A, Heimbach A, Grundemann J, Stiller B, Hampshire D, Cid LP, et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase [J]. Nat Genet.2006; 38(10):1184-91.
    43. Mizuno Y, Hattori N, Kubo SI, Sato S, Nishioka K, Hatano T, et al. Progress in the pathogenesis and genetics of Parkinson's disease [J]. PhilosT RoySoc B.2008; 363(1500):2215-27.
    44. Fahn S. Parkinson's disease:10 years of progress,1997-2007 [J]. Mov Disord. 2010;25 Suppl 1:S2-14.
    45. Lansbury PT, Lashuel HA. A century-old debate on protein aggregation and neurodegeneration enters the clinic [J]. Nature.2006; 443(7113):774-9.
    46. Schneider BL, Seehus CR, Capowski EE, Aebischer P, Zhang SC, Svendsen CN. Over-expression of alpha-synuclein in human neural progenitors leads to specific changes in fate and differentiation [J]. Hum Mol Genet.2007; 16(6):651-66.
    47. Pan TH, Kondo S, Le WD, Jankovic J. The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson's disease [J]. Brain.2008; 131:1969-78.
    48. Ravikumar B, Berger Z, Vacher C, O'Kane CJ, Rubinsztein DC. Rapamycin pre-treatment protects against apoptosis [J]. Hum Mol Genet.2006; 15(7):1209-16.
    49. Pan T, Rawal P, Wu Y, Xie W, Jankovic J, Le W. Rapamycin protects against rotenone-induced apoptosis through autophagy induction [J]. Neurosci.2009; 164(2):541-51.
    50. Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease [J]. Nat Genet.2004; 36(6):585-95.
    51. Sarkar S, Floto RA, Berger Z, Imarisio S, Cordenier A, Pasco M, et al. Lithium induces autophagy by inhibiting inositol monophosphatase [J]. J Cell Biol.2005; 170(7):1101-11.
    52. Sarkar S, Krishna G, Imarisio S, Saiki S, O'Kane CJ, Rubinsztein DC. A rational mechanism for combination treatment of Huntington's disease using lithium and rapamycin [J]. Hum Mol Genet.2008; 17(2):170-8.
    53. Sarkar S, Davies JE, Huang Z, Tunnacliffe A, Rubinsztein DC. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein [J]. J Biol Chem.2007 Feb 23;282(8):5641-52.
    54. O'Reilly T, Lane HA, Wood JM, Schnell C, Littlewood-Evans A, Brueggen J, et al. Everolimus and PTK/ZK show synergistic growth inhibition in the orthotopic BL16/BL6 murine melanoma model [J]. Cancer Chemoth Pharm.2011; 67(1):193-200.
    55. Ma T, Hoeffer CA, Capetillo-Zarate E, Yu F, Wong H, Lin MT, et al. Dysregulation of the mTOR pathway mediates impairment of synaptic plasticity in a mouse model of Alzheimer's disease [J]. PloS ONE.2010; 5(9):e12845.
    56. Guigon CJ, Fozzatti L, Lu C, Willingham MC, Cheng SY. Inhibition of mTORCl signaling reduces tumor growth but does not prevent cancer progression in a mouse model of thyroid cancer [J]. Carcinogenesis.2010; 31(7):1284-91.
    57. Fox JH, Connor T, Chopra V, Dorsey K, Kama JA, Bleckmann D, et al. The mTOR kinase inhibitor Everolimus decreases S6 kinase phosphorylation but fails to reduce mutant huntingtin levels in brain and is not neuroprotective in the R6/2 mouse model of Huntington's disease [J]. Mol Neurodegener.2010; 5:26.
    58. King MA, Hands S, Hafiz F, Mizushima N, Tolkovsky AM, Wyttenbach A. Rapamycin inhibits polyglutamine aggregation independently of autophagy by reducing protein synthesis [J]. Mol Pharmacol.2008; 73(4):1052-63.
    59. Campbell DS, Holt CE. Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation [J]. Neuron.2001; 32(6):1013-26.
    60. Choi YJ, Di Nardo A, Kramvis I, Meikle L, Kwiatkowski DJ, Sahin M, et al. Tuberous sclerosis complex proteins control axon formation [J]. Gene Dev.2008; 22(18):2485-95.
    61. Beauquis J, Roig P, De Nicola AF, Saravia F. Short-term environmental enrichment enhances adult neurogenesis, vascular network and dendritic complexity in the hippocampus of type 1 diabetic mice [J]. PloS ONE.2010; 5(11):e13993.
    62. Tam WY, Leung CKY, Tong KK, Kwan KM. Foxp4 is essential in maintenance of purkinje cell dendritic arborization in the mouse cerebellum [J]. Neurosci. 2011;172:562-71.
    63. Garelick MG, Kennedy BK. TOR on the brain [J]. Exp Gerontol. 2011;46(2-3):155-63.
    64. Ropelle ER, Pauli JR, Fernandes MFA, Morari J, Souza KK, Veirloso LA, et al. A central role for neuronal mTOR in high protein diet induced weight loss [J]. Diabetes.2007; 56:695-6.
    65. Hoeffer CA, Tang W, Wong H, Santillan A, Patterson RJ, Martinez LA, et al. Removal of FKBP12 enhances mTOR-Raptor interactions, LTP, memory, and perseverative/repetitive behavior[J]. Neuron.2008; 60(5):832-45.
    66. Leung LS, Peloquin P. Cholinergic modulation differs between basal and apical dendritic excitation of hippocampal CA1 pyramidal cells [J]. Cereb Cortex.2010; 20(8):1865-77.
    1. Chen JR, Lazarenko OP, Shankar K, Blackburn ML, Lumpkin CK, Badger TM, et al. Inhibition of NADPH oxidases prevents chronic ethanol-induced bone loss in female rats [J]. J Pharmacol Exp Ther.2011; 336(3):734-42.
    2. Lorrio S, Negredo P, Roda JM, Garcia AG, Lopez MG. Effects of memantine and galantamine given separately or in association, on memory and hippocampal neuronal loss after transient global cerebral ischemia in gerbils [J]. Brain Res. 2009; 1254:128-37.
    3. Viora M, Quaranta MG, Straface E, Vari R, Masella R, Malorni W. Redox imbalance and immune functions:opposite effects of oxidized low-density lipoproteins and N-acetylcysteine [J]. Immunology.2001; 104(4):431-8.
    4. Augustin A, Shahum A, Kalavsky E, Liskova A, Kisac P, Krcmery V. Colonization of the respiratory tract by drug-resistant bacteria in HIV-infected children and prior exposure to antimicrobials [J]. Med Sci Monitor.2008; 14(12):19-22.
    5. Bejarano I, Espino J, Barriga C, Reiter RJ, Pariente JA, Rodriguez AB. Pro-oxidant effect of melatonin in tumour leucocytes: relation with its cytotoxic and pro-apoptotic effects [J]. Basic Clin Pharmacol Toxicol.2011; 108(1):14-20.
    6. Chen JK, Zhan YJ, Yang CS, Tzeng SF. Oxidative stress-induced attenuation of thrombospondin-1 expression in primary rat astrocytes [J]. J Cell Biochem.2011; 112(1):59-70.
    7. Huang TJ, Sayers NM, Verkhratsky A, Fernyhough P. Neurotrophin-3 prevents mitochondrial dysfunction in sensory neurons of streptozotocin-diabetic rats [J]. Exp Neurol.2005; 194(1):279-83.
    8. Leib SL, Kim YS, Chow LL, Sheldon RA, Tauber MG. Reactive oxygen intermediates contribute to necrotic and apoptotic neuronal injury in an infant rat model of bacterial meningitis due to group B streptococci [J]. J Clin Invest.1996; 98(11):2632-9.
    9. Gao P, He P, Wang A, Xia T, Xu B, Xu Z, et al. Influence of PCB153 on oxidative DNA damage and DNA repair-related gene expression induced by PBDE-47 in human neuroblastoma cells in vitro [J]. Toxicol Sci.2009; 107(1):165-70.
    10. Wang Y, Schmeichel AM, Iida H, Schmelzer JD, Low PA. Ischemia-reperfusion injury causes oxidative stress and apoptosis of Schwann cell in acute and chronic experimental diabetic neuropathy [J]. Antioxid Redox Sign.2005; 7(11-12):1513-20.
    11. Feldman EL. Oxidative stress and diabetic neuropathy:a new understanding of an old problem [J].J Clin Invest.2003; 111(4):431-3.
    12. Chandra J, Samali A, Orrenius S. Triggering and modulation of apoptosis by oxidative stress. Free radical bio med.2000; 29(3-4):323-33.
    13. Valencia A, Moran J. Role of oxidative stress in the apoptotic cell death of cultured cerebellar granule neurons [J]. JNeurosci Res.2001; 64(3):284-97.
    14. Huang D, Zhang Y, Qi Y, Chen C, Ji W. Global DNA hypomethylation, rather than reactive oxygen species (ROS), a potential facilitator of cadmium-stimulated K562 cell proliferation [J]. Toxicol Lett.2008; 179(1):43-7.
    15. Jia J, Chen J. Chronic nickel-induced DNA damage and cell death: the protection role of ascorbic acid [J]. Environ Toxicol.2008; 23(3):401-6.
    16. Chen L, Xu B, Liu L, Luo Y, Zhou H, Chen W, et al. Cadmium induction of reactive oxygen species activates the mTOR pathway, leading to neuronal cell death [J]. Free Radical BioMed.2011; 50(5):624-32.
    17. Li J, Liu R, Lei Y, Wang K, Lau QC, Xie N, et al. Proteomic analysis revealed association of aberrant ROS signaling with suberoylanilide hydroxamic acid-induced autophagy in Jurkat T-leukemia cells [J]. Autophagy. 2010; 6(6):711-24.
    18. Deeb D, Gao X, Jiang H, Janic B, Arbab AS, Rojanasakul Y, et al. Oleanane triterpenoid CDDO-Me inhibits growth and induces apoptosis in prostate cancer cells through a ROS-dependent mechanism [J]. Biochem Pharmacol. 2010; 79(3):350-60.
    19. Cao XH, Zhao SS, Liu DY, Wang Z, Niu LL, Hou LH, et al. ROS-Ca2+ is associated with mitochondria permeability transition pore involved in surfactin-induced MCF-7 cells apoptosis [J]. Chem-biol Interact. 2010; 190(1):16-27.
    20. Choi MJ, Park EJ, Min KJ, Park JW, Kwon TK. Endoplasmic reticulum stress mediates withaferin A-induced apoptosis in human renal carcinoma cells [J]. Toxicolin Vitro.2010; 25(3):692-8.
    21. Chiu YJ, Hour MJ, Lu CC, Chung JG, Kuo SC, Huang WW, et al. Novel quinazoline HMJ-30 induces U-2 OS human osteogenic sarcoma cell apoptosis through induction of oxidative stress and up-regulation of ATM/p53 signaling pathway [J]. J Orthop Res.2010; 21:in press.
    22. Braun JS, Sublett JE, Freyer D, Mitchell TJ, Cleveland JL, Tuomanen EI, et al. Pneumococcal pneumolysin and H(2)O(2) mediate brain cell apoptosis during meningitis [J].JClin Invest.2002; 109(1):19-27.
    23. Lorber A, Baumgartner WA, Bovy RA, Chang CC, Hollcraft R. Clinical application for heavy metal-complexing potential of N-acetylcysteine [J]. J Clin Pharmaco.1973; 13(8):332-6.
    24. Pendyala L, Creaven PJ. Pharmacokinetic and pharmacodynamic studies of N-acetylcysteine, a potential chemopreventive agent during a phase I trial [J]. Cancer Epidem Biomar.1995; 4(3):245-51.
    25. Cotgreave IA, Moldeus P. Methodologies for the analysis of reduced and oxidized N-acetylcysteine in biological systems [J]. Biopharm Drug Dispos.1987; 8(4):365-75.
    26. Gabard B, Mascher H. Endogenous plasma N-acetylcysteine and single dose oral bioavailability from two different formulations as determined by a new analytical method [J]. Biopharm Drug Dispos.1991; 12(5):343-53.
    27. Kim S, Lee TJ, Park JW, Kwon TK. Overexpression of cFLIPs inhibits oxaliplatin-mediated apoptosis through enhanced XIAP stability and Akt activation in human renal cancer cells [J]. J Cellular Biochem.2008; 105(4):971-9.
    28. Kurien BT, Scofield RH. Lipid peroxidation in systemic lupus erythematosus [J]. Indian JExp Biol.2006; 44(5):349-56.
    29. Moldovan I. Systemic lupus erythematosus:current state of diagnosis and treatment [J]. Comprehensive Therapy.2006; 32(3):158-62.
    30. Frostegard J, Svenungsson E, Wu R, Gunnarsson I, Lundberg IE, Klareskog L, et al. Lipid peroxidation is enhanced in patients with systemic lupus erythematosus and is associated with arterial and renal disease manifestations [J]. Arthritis Rheum.2005; 52(1):192-200.
    31. Kang I, Park SH. Infectious complications in SLE after immunosuppressive therapies [J]. Curr Opin Rheumatol.2003; 15(5):528-34.
    32. Zhang Q, Ye DQ, Chen GP, Zheng Y. Oxidative protein damage and antioxidant status in systemic lupus erythematosus [J]. Clin Exp Dermatol.2010; 35(3):287-94.
    33. Taysi S, Gul M, Sari RA, Akcay F, Bakan N. Serum oxidant/antioxidant status of patients with systemic lupus erythematosus [J]. Clin Chem Lab Med.2002; 40(7):684-8.
    34. Miesel R, Zuber M. Elevated levels of xanthine oxidase in serum of patients with inflammatory and autoimmune rheumatic diseases [J]. Inflammation.1993; 17(5):551-61.
    35. Suwannaroj S, Lagoo A, Keisler D, McMurray RW. Antioxidants suppress mortality in the female NZB x NZW F1 mouse model of systemic lupus erythematosus (SLE) [J]. Lupus.2001; 10(4):258-65.
    36. Sato H, Tamba M, Ishii T, Bannai S. Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins [J]. J Biol Chem.1999; 274(17):11455-8.
    37. Wu G, Guo SH. [Clinical application of N-acetylcysteine in liver disease] [J]. Zhonghua Gan Zang Bing Za Zhi.2004; 12(3):185-6.
    38. Orr WC, Radyuk SN, Prabhudesai L, Toroser D, Benes JJ, Luchak JM, et al. Overexpression of glutamate-cysteine ligase extends life span in Drosophila melanogaster [J]. J Biol Chem.2005; 280(45):37331-8.
    39. Borras C, Esteve JM, Vina JR, Sastre J, Vina J, Pallardo FV. Glutathione regulates telomerase activity in 3T3 fibroblasts [J]. J Biol Chem.2004; 279(33):34332-5.
    40. Herzenberg LA, De Rosa SC, Dubs JG, Roederer M, Anderson MT, Ela SW, et al. Glutathione deficiency is associated with impaired survival in HIV disease [J]. PNAS USA.1997; 94(5):1967-72.
    41. Knudsen TT, Thorsen S, Jensen SA, Dalhoff K, Schmidt LE, Becker U, et al. Effect of intravenous N-acetylcysteine infusion on haemostatic parameters in healthy subjects [J]. Gut.2005; 54(4):515-21.
    42. Meek MF, Coert JH. US Food and Drug Administration/Conformit Europe-approved absorbable nerve conduits for clinical repair of peripheral and cranial nerves [J]. Ann Plas Surg.2008; 60(1):110-6.
    43. Sochman J. N-acetylcysteine in acute cardiology:10 years later: what do we know and what would we like to know? [J]. J Am Coll Cardiol.2002; 39(9):1422-8.
    44. Cuzzocrea S, Mazzon E, Costantino G, Serraino I, De Sarro A, Caputi AP. Effects of n-acetylcysteine in a rat model of ischemia and reperfusion injury [J]. Cardiovasc Res.2000; 47(3):537-48.
    45. Pieper GM, Siebeneich W. Oral administration of the antioxidant, N-acetylcysteine, abrogates diabetes-induced endothelial dysfunction [J]. J cardiovasc Pharm.1998; 32(1):101-5.
    46. Voghel G, Thorin-Trescases N, Farhat N, Mamarbachi AM, Villeneuve L, Fortier A, et al. Chronic treatment with N-acetyl-cystein delays cellular senescence in endothelial cells isolated from a subgroup of atherosclerotic patients [J]. Mech Ageing Dev.2008; 129(5):261-70.
    47. Zembron-Lacny A, Szyszka K, Szygula Z. Effect of cysteine derivatives administration in healthy men exposed to intense resistance exercise by evaluation of pro-antioxidant ratio [J]. J Physiol Sci.2007; 57(6):343-8.
    48. Yan CY, Greene LA. Prevention of PC 12 cell death by N-acetylcysteine requires activation of the Ras pathway [J]. J Neurosci.1998; 18(11):4042-9.
    49. Zips D, Krause M, Hessel F, Westphal J, Bruchner K, Eicheler W, et al. Experimental study on different combination schedules of VEGF-receptor inhibitor PTK787/ZK222584 and fractionated irradiation [J]. Anticancer Res. 2003; 23(5A):3869-76.
    50. Kang SJ, Kim BM, Lee YJ, Chung HW. Titanium dioxide nanoparticles trigger p53-mediated damage response in peripheral blood lymphocytes [J]. Environ Mol Mutagen.2008; 49(5):399-405.
    51. Haber CA, Lam TK, Yu Z, Gupta N, Goh T, Bogdanovic E, et al. N-acetylcysteine and taurine prevent hyperglycemia-induced insulin resistance in vivo:possible role of oxidative stress [J]. Am JPhysiol.2003; 285(4):E744-53.
    52. Sablina AA, Budanov AV, Ilyinskaya GV, Agapova LS, Kravchenko JE, Chumakov PM. The antioxidant function of the p53 tumor suppressor [J]. Nat Med.2005; 11(12):1306-13.
    53. De Flora S, Grassi C, Carati L. Attenuation of influenza-like symptomatology and improvement of cell-mediated immunity with long-term N-acetylcysteine treatment [J]. Eur Respir J.1997; 10(7):1535-41.
    54. Dekhuijzen PN. Antioxidant properties of N-acetylcysteine:their relevance in relation to chronic obstructive pulmonary disease [J]. Eur Respir J.2004; 23(4):629-36.
    55. Kim MH, Yoo HS, Kim MY, Jang HJ, Baek MK, Kim HR, et al. Helicobacter pylori stimulates urokinase plasminogen activator receptor expression and cell invasiveness through reactive oxygen species and NF-kappaB signaling in human gastric carcinoma cells [J]. Int Journal Mol Med.2007; 19(4):689-97.
    56. Matsuhashi T, Karbowski M, Liu X, Usukura J, Wozniak M, Wakabayashi T. Complete suppresion of ethanol-induced formation of megamitochondria by 4-hydroxy-2,2,6,6-tetramethyl-piperidine-l-oxyl (4-OH-TEMPO) [J]. Free Radical BioMed.1998; 24(1):139-47.
    57. Hayakawa M, Miyashita H, Sakamoto I, Kitagawa M, Tanaka H, Yasuda H, et al. Evidence that reactive oxygen species do not mediate NF-kappaB activation. EMBO J.2003; 22(13):3356-66.
    58. Miquel J, Ferrandiz ML, De Juan E, Sevila I, Martinez M. N-acetylcysteine protects against age-related decline of oxidative phosphorylation in liver mitochondria [J]. Eur J Pharmacol.1995; 292(3-4):333-5.
    59. Han YH, Kim SH, Kim SZ, Park WH. Apoptosis in arsenic trioxide-treated Calu-6 lung cells is correlated with the depletion of GSH levels rather than the changes of ROS levels [J].J Cell Biochem.2008; 104(3):862-78.
    60. Biswas D, Sen G, Sarkar A, Biswas T. Atorvastatin acts synergistically with N-acetyl cysteine to provide therapeutic advantage against Fas-activated erythrocyte apoptosis during chronic arsenic exposure in rats [J]. Toxicol Appl Pharm.2010; 250(1):39-53.
    61. Watanabe T, Pakala R, Katagiri T, Benedict CR. Antioxidant N-acetylcysteine inhibits vasoactive agents-potentiated mitogenic effect of mildly oxidized LDL on vascular smooth muscle cells [J]. Hypertens Res.2002; 25(2):311-5.
    62. Patterson RA, Lamb DJ, Leake DS. Mechanisms by which cysteine can inhibit or promote the oxidation of low density lipoprotein by copper [J]. Atherosclerosis. 2003; 169(1):87-94.
    63. Hiraku Y, Inoue S, Oikawa S, Yamamoto K, Tada S, Nishino K, et al. Metal-mediated oxidative damage to cellular and isolated DNA by certain tryptophan metabolites [J]. Carcinogenesis.1995; 16(2):349-56.
    64. Liu J, Yoshida Y, Yamashita U. DNA-binding activity of NF-kappaB and phosphorylation of p65 are induced by N-acetylcysteine through phosphatidylinositol (PI) 3-kinase [J]. Mol Immunol.2008; 45(15):3984-9.
    65. Zafarullah M, Li WQ, Sylvester J, Ahmad M. Molecular mechanisms of N-acetylcysteine actions [J]. Cell Mol Life Sci.2003; 60(1):6-20.
    66. Liu YY, Xie Q, Wang H, Lin LY, Jiang S, Zhou XQ, et al. [The effect of N-acetyl-L-cysteine on endoplasmic reticulum stress mediated apoptosis of HepG2 cells] [J]. Zhonghua Gan Zang Bing Za Zhi.2008; 16(7):524-7.
    67. Chuang CY, Chen TL, Cherng YG, Tai YT, Chen TG, Chen RM. Lipopolysaccharide induces apoptotic insults to human alveolar epithelial A549 cells through reactive oxygen species-mediated activation of an intrinsic mitochondrion-dependent pathway [J]. Arch Toxicol.2010; 85(3):209-18.
    68. Lee YJ, Kim NY, Suh YA, Lee C. Involvement of ROS in Curcumin-induced Autophagic Cell Death [J]. Korean JPhysiol Pharmacol.2010; 15(1):1-7.
    69. Kinscherf R, Fischbach T, Mihm S, Roth S, Hohenhaus-Sievert E, Weiss C, et al. Effect of glutathione depletion and oral N-acetyl-cysteine treatment on CD4+ and CD8+ cells [J]. FASEB J.1994; 8(6):448-51.
    70. Sprietsma JE. Cysteine, glutathione (GSH) and zinc and copper ions together are effective, natural, intracellular inhibitors of (AIDS) viruses [J]. Med Hypotheses. 1999;52(6):529-38.
    71. Sharma M, Bhasin D, Vohra H. Differential induction of immunoregulatory circuits of phagocytic cells by Gal/Gal NAc lectin from pathogenic and nonpathogenic Entamoeba [J]. J Clinical Immunol.2008; 28(5):542-57.
    72. Yang YY, Lee KC, Huang YT, Wang YW, Hou MC, Lee FY, et al. Effects of N-acetylcysteine administration in hepatic microcirculation of rats with biliary cirrhosis [J]. J Hepatol.2008; 49(1):25-33.
    73. Knuckey NW, Palm D, Primiano M, Epstein MH, Johanson CE. N-acetylcysteine enhances hippocampal neuronal survival after transient forebrain ischemia in rats [J]. Stroke.1995; 26(2):305-10; discussion 11.
    74. Qian HR, Yang Y. Neuron differentiation and neuritogenesis stimulated by N-acetylcysteine (NAC) [J]. Acta Pharmacol Sin.20091; 30(7):907-12.
    75. Favit A, Grimaldi M, Nelson TJ, Alkon DL. Alzheimer's-specific effects of soluble beta-amyloid on protein kinase C-alpha and -gamma degradation in human fibroblasts [J]. PNAS USA.1998; 95(10):5562-7.
    76. Oda A, Tamaoka A, Araki W. Oxidative stress up-regulates presenilin 1 in lipid rafts in neuronal cells [J]. JNeurosci Res.2010; 88(5):1137-45.
    77. Turdi S, Guo R, Huff AF, Wolf EM, Culver B, Ren J. Cardiomyocyte contractile dysfunction in the APPswe/PS1dE9 mouse model of Alzheimer's disease [J]. PloS ONE.2009; 4(6):e6033.
    78. Louwerse ES, Weverling GJ, Bossuyt PM, Meyjes FE, de Jong JM. Randomized, double-blind, controlled trial of acetylcysteine in amyotrophic lateral sclerosis [J]. Arch Neurol.1995; 52(6):559-64.
    79. Orrell RW, Lane RJ, Ross M. A systematic review of antioxidant treatment for amyotrophic lateral sclerosis/motor neuron disease [J]. Amyotroph Lateral Sc. 2008; 9(4):195-211.
    80. Orrell RW, Lane JM, Ross MA. Antioxidant treatment for amyotrophic lateral sclerosis/motor neuron disease [J]. Cochrane DB Syst Rev.2004(4):CD002829.
    81. Antonio AM, Gillespie RA, Druse-Manteuffel MJ. Effects of lipoic acid on antiapoptotic genes in control and ethanol-treated fetal rhombencephalic neurons [J]. Brain Res.2010; 1383:13-21.
    82. Park JY, Kim EJ, Kwon KJ, Jung YS, Moon CH, Lee SH, et al. Neuroprotection by fructose-1,6-bisphosphate involves ROS alterations via p38 MAPK/ERK [J]. Brain Res.2004; 1026(2):295-301.
    1. Viora M, Quaranta MG, Straface E, Vari R, Masella R, Malorni W. Redox imbalance and immune functions:opposite effects of oxidized low-density lipoproteins and N-acetylcysteine [J]. Immunology.2001; 104(4):431-8.
    2. Bejarano I, Espino J, Barriga C, Reiter RJ, Pariente JA, Rodriguez AB. Pro-oxidant effect of melatonin in tumour leucocytes:relation with its cytotoxic and pro-apoptotic effects [J]. Basic Clin Pharmacol Toxicology. 2010; 108(1):14-20.
    3. Augustin A, Shahum A, Kalavsky E, Liskova A, Kisac P, Krcmery V. Colonization of the respiratory tract by drug-resistant bacteria in HIV-infected children and prior exposure to antimicrobials [J]. Med Sci Monit.2008; 14(12):SC19-22.
    4. Chen JK, Zhan YJ, Yang CS, Tzeng SF. Oxidative stress-induced attenuation of thrombospondin-1 expression in primary rat astrocytes [J]. J Cell Biochem.2011; 112(1):59-70.
    5. Lorber A, Baumgartner WA, Bovy RA, Chang CC, Hollcraft R. Clinical application for heavy metal-complexing potential of N-acetylcysteine [J]. J Clin Pharmacol.1973; 13(8):332-6.
    6. Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control [J]. Mol Cell.2002; 10(3):457-68.
    7. Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S, et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action [J]. Cell. 2002; 110(2):177-89.
    8. Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery [J]. Cell.2002; 110(2):163-75.
    9. Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive [J]. Nat Cell Biol.2004; 6(11):1122-8.
    10. Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton [J]. Curr Biol. 2004; 14(14):1296-302.
    11. Chen L, Liu L, Luo Y, Huang S. MAPK and mTOR pathways are involved in cadmium-induced neuronal apoptosis [J]. JNeurochem.2008; 105(1):251-61.
    12. Huang D, Zhang Y, Qi Y, Chen C, Ji W. Global DNA hypomethylation, rather than reactive oxygen species (ROS), a potential facilitator of cadmium-stimulated K562 cell proliferation [J]. Toxicol Lett.2008; 179(1):43-7.
    13. Jia J, Chen J. Chronic nickel-induced DNA damage and cell death:the protection role of ascorbic acid [J]. Environ Toxicol.2008; 23(3):401-6.
    14. Kim S, Lee TJ, Park JW, Kwon TK. Overexpression of cFLIPs inhibits oxaliplatin-mediated apoptosis through enhanced XIAP stability and Akt activation in human renal cancer cells [J]. J Cell Biochem.2008; 105(4):971-9.
    15. Antonio AM, Gillespie RA, Druse-Manteuffel MJ. Effects of lipoic acid on antiapoptotic genes in control and ethanol-treated fetal rhombencephalic neurons [J]. Brain Res.2011; 1383:13-21.
    16. Chen L, Xu B, Liu L, Luo Y, Zhou H, Chen W, et al. Cadmium induction of reactive oxygen species activates the mTOR pathway, leading to neuronal cell death [J]. Free Radic Biol Med.2010; 50(5):624-32.
    17. Li J, Liu R, Lei Y, Wang K, Lau QC, Xie N, et al. Proteomic analysis revealed association of aberrant ROS signaling with suberoylanilide hydroxamic acid-induced autophagy in Jurkat T-leukemia cells [J]. Autophagy.2010; 6(6):711-24.
    18. Deeb D, Gao X, Jiang H, Janic B, Arbab AS, Rojanasakul Y, et al. Oleanane triterpenoid CDDO-Me inhibits growth and induces apoptosis in prostate cancer cells through a ROS-dependent mechanism [J]. Biochem Pharmacol.2010; 79(3):350-60.
    19. Cao XH, Zhao SS, Liu DY, Wang Z, Niu LL, Hou LH, et al. ROS-Ca(2+) is associated with mitochondria permeability transition pore involved in surfactin-induced MCF-7 cells apoptosis [J]. Chem Biol Interact.2011; 190(1):16-27.
    20. Favit A, Grimaldi M, Nelson TJ, Alkon DL. Alzheimer's-specific effects of soluble beta-amyloid on protein kinase C-alpha and -gamma degradation in human fibroblasts [J]. Proc Natl Acad Sci U S A.1998; 95(10):5562-7.
    21. Oda A, Tamaoka A, Araki W. Oxidative stress up-regulates presenilin 1 in lipid rafts in neuronal cells [J]. JNeurosci Res.2010; 88(5):1137-45.
    22. Turdi S, Guo R, Huff AF, Wolf EM, Culver B, Ren J. Cardiomyocyte contractile dysfunction in the APPswe/PS1dE9 mouse model of Alzheimer's disease [J]. PLoS One.2009; 4(6):e6033.
    23. Louwerse ES, Weverling GJ, Bossuyt PM, Meyjes FE, de Jong JM. Randomized, double-blind, controlled trial of acetylcysteine in amyotrophic lateral sclerosis [J]. Arch Neurol.1995; 52(6):559-64.
    24. Orrell RW, Lane RJ, Ross M. A systematic review of antioxidant treatment for amyotrophic lateral sclerosis/motor neuron disease [J]. Amyotroph Lateral Scler. 2008;9(4):195-211.
    1. Akinloye O, Arowojolu AO, Shittu OB, Anetor JI. Cadmium toxicity: a possible cause of male infertility in Nigeria [J]. Reprod Biology.2006; 6(1):17-30.
    2. Waalkes MP. Cadmium carcinogenesis [J]. Mutat Res.2003; 533(1-2):107-20.
    3. Pathak N, Khandelwal S. Role of oxidative stress and apoptosis in cadmium induced thymic atrophy and splenomegaly in mice [J]. Toxicol Lett.2007; 169(2):95-108.
    4. Pathak N, Khandelwal S. Oxidative stress and apoptotic changes in murine splenocytes exposed to cadmium [J]. Toxicology.2006;220(1):26-36.
    5. Lasfer M, Vadrot N, Aoudjehane L, Conti F, Bringuier AF, Feldmann G, et al. Cadmium induces mitochondria-dependent apoptosis of normal human hepatocytes [J]. Cell Biol Toxicol.2008; 24(1):55-62.
    6. Pathak N, Khandelwal S. Influence of cadmium on murine thymocytes: potentiation of apoptosis and oxidative stress [J]. Toxicol Lett.2006; 165(2):121-32.
    7. Okuda B, Iwamoto Y, Tachibana H, Sugita M. Parkinsonism after acute cadmium poisoning [J]. Clin Neurol Neurosurg.1997; 99(4):263-5.
    8. Johnson S. Gradual micronutrient accumulation and depletion in Alzheimer's disease [J]. Med Hypotheses.2001; 56(6):595-7.
    9. Panayi AE, Spyrou NM, Iversen BS, White MA, Part P. Determination of cadmium and zinc in Alzheimer's brain tissue using inductively coupled plasma mass spectrometry [J]. J Neurol Sci.2002; 195(1):1-10.
    10. Qian HR, Yang Y. Neuron differentiation and neuritogenesis stimulated by N-acetylcysteine (NAC) [J]. Acta Pharmacol Sin.2009; 30(7):907-12.
    11. Favit A, Grimaldi M, Nelson TJ, Alkon DL. Alzheimer's-specific effects of soluble beta-amyloid on protein kinase C-alpha and- gamma degradation in human fibroblasts [J]. Pro Natil Acad Sciences U S A.1998; 95(10):5562-7.
    12. Oda A, Tamaoka A, Araki W. Oxidative stress up-regulates presenilin 1 in lipid rafts in neuronal cells [J]. JNeurosci Res.2010; 88(5):1137-45.
    13. Turdi S, Guo R, Huff AF, Wolf EM, Culver B, Ren J. Cardiomyocyte contractile dysfunction in the APPswe/PS1dE9 mouse model of Alzheimer's disease [J]. PloS One.2009; 4(6):e6033.
    14. Louwerse ES, Weverling GJ, Bossuyt PM, Meyjes FE, de Jong JM. Randomized, double-blind, controlled trial of acetylcysteine in amyotrophic lateral sclerosis [J]. Arch neurol.1995; 52(6):559-64.
    15. Orrell RW, Lane RJ, Ross M. A systematic review of antioxidant treatment for amyotrophic lateral sclerosis/motor neuron disease [J]. Amyotroph Lateral Scler. 2008; 9(4):195-211.
    16. Ringo E, Lodemel JB, Myklebust R, Kaino T, Mayhew TM, Olsen RE. Epithelium-associated bacteria in the gastrointestinal tract of Arctic charr (Salvelinus alpinus L.). An electron microscopical study [J]. J Appl Microbiol. 2001;90(2):294-300.
    17. Knuckey NW, Palm D, Primiano M, Epstein MH, Johanson CE. N-acetylcysteine enhances hippocampal neuronal survival after transient forebrain ischemia in rats [J]. Stroke.1995; 26(2):305-10.
    18. Park JY, Kim EJ, Kwon KJ, Jung YS, Moon CH, Lee SH, et al. Neuroprotection by fructose-1,6-bisphosphate involves ROS alterations via p38 MAPK/ERK [J]. Brain Res.2004; 1026(2):295-301.
    19. Chen L, Xu B, Liu L, Luo Y, Zhou H, Chen W, et al. Cadmium induction of reactive oxygen species activates the mTOR pathway, leading to neuronal cell death [J]. Free Radic Biol Med.2011; 50(5):624-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700