西北人群中三个分子人类学指标的研究初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:在众多的人类遗传表型性状中,人类身高是一种高度遗传的经典的多基因互作的表型性状。而语言是人类特有的精神活动和高级神经活动,是一种白发学习并通过模仿得来的一种行为模式。视力则是人类最近几十年变化最显著的表型性状之一,且近视已经成为世界上发病率最高的眼病。寻找与这三种人类表型性状有关的基因一直是人类遗传学的研究热点。最近几年GWAS(genome wide association studies,全基因组关联性研究1方法的应用已经在这三个人类表型性状的基因定位取得了巨大进步:在白种人群中找到了一系列与人类身高有关的基因。FOXP2的单核苷酸多态性证明与KE家族(一种语言功能障碍症1、自闭症和精神分裂有关。RASGRF1基因的单核苷酸多态位点在高加索人群中与高度近视显著相关,然而这些基因多态性研究在中国人群中相关研究却没有报道。身高基因的多态性在人类生长发育过程中对身高指数调节机制和发挥作用,FOXP2多态性是否与中国西北不同民族的语言划分是否有关系,RASGRF1基因的多态性在中国西北人群生长发育过程中对视力指数调节机制和发挥作用尚不明确。通过对基因遗传多态性的研究,探索该基因多态性与中国西北人群三个遗传性状的关系,为研究与中国西北人群性状相关的因素提供有价值的线索。最终为研究与中国人群身高、语言和近视相关的因素提供有价值的基础数据。
     方法:身高检测方面:选择与身高相关基因的6个SNP位点,实验对象为534例(男性315例,女性219例)中国西北部的成年健康个体。语言检测方面:选择FOXP2语言基因上5'UTR区上一个tagSNP位点-rs9640758,实验对象为462个汉族男性样本和327个东乡族男性样本。近视检测方面:选择RASGRF1基因上一个tagSNP位点-rs16970495,实验对象为205名中国西北健康无关汉族男性个体。
     对上述位点采用聚合酶链式反应-限制性内切酶长度多态性检测技术(PCR-RFLP)进行基因分型,对基因型及等位基因频率进行连续数量性状的统计学分析,并对数据按照样本的民族、性别和身高进行分层统计;对基因型及等位基因频率进行病例对照研究方法即x2检验。
     结果:各位点的多态性分析显示:
     身高检测方面:CDK基因rs2282978位点的三种基因型人群的身高均值在中国西北人群中无显著性差异。BMP-2基因的rs967417位点多态性与中国西北人群身高指数的差异具有显著相关性(P<0.05)。NOG基因的rs4794665位点与中国西北人群身高指数的差异具有显著相关性(P<0.05)。DYM基因的rs8099584位点多态性与中国西北人群身高指数的差异具有显著相关性(P<0.05)。而是这三个位点所在的基因的突变都是骨骼发育不良综合征显著相关。ZBTB38基因rs36440003位点在中西北人群中的多态性分布与其人群的身高指数差异有显著关联性(P<0.05)。这些位点的多态性共同解释了中国西北人群身高变化的4.88%。ITM2A基因的rs1474563位点的多态性分布只与中国西北男性群体的身高有显著相关性(P<0.05),而在女性群体中与身高无显著相关性(P>0.05)。
     语言检测方面:FOXP2基因的rs964075多态性分布在汉族组中和东乡族组中分布有显著性差异(p<0.05)。
     近视检测方面:单因素方差分析结果显示,rs16970495位点三种基因型的平均视力无显著性差异(P>0.05)。
     结论:身高检测方面:上述结果表明在中国西北人群中,基因BMP-2, NOG, DYM和zbtb38的rs967417、rs4794665、rs8099584和rs36440003的遗传多态性与身高指数有不同程度的显著相关性。BMP-2基因rs967417位点的C型、DYM基因rs4794665位点的A型和NOG基因位点的A型与中国西北人群的高身材显著相关。而ITM2A基因rs1474563位点的T基因型只与中国西北男性人群的高身材显著相关。
     语言检测方面:研究结果表明FOXP2基因rs964075位点的多态性与中国西北人群的语言类型具有相关性。
     近视检测方面:本研究未发现RASGRF1基因的rs16970495位点遗传多态性和中国西北人群近视易感性之间的相关性。
Background:Among so many anthropologic polygenetic trait, human height is a highly heritable, classic polygenetic trait. Identification of height-related genes is a hot spot in genetic study. Speech is a form of auditory-guided, learned vocal motor behaviour that evolved in mammals and certain species of birds. Myopia is the highest eye disease, which has increasingly prevailed a lot recent years. Recently, the application of large-scale genome-wide association (GWAS) approach has made tremendous improvement in this aspect: scientists identified a subset of polymorphisms associated with human stature variation in Caucasian; the polymorphism of FOXP2is related with KE family disease (a language disorder), and the polymorphism of RASGRF1is related with myopia. However, few reports on this issue were published in Chinese people, which is evidently differs from Caucasian in genetic background. The associations of height-related genes, FOXP2and RASGRF1polymorphisms with high stature, different languages and myopia in northwest China remain elusive. The aim of our study is to select a subset of genes identified in previous GWAS studies and test their genotypes in Chinese people from northwest China, and to determine whether the correlation between the3phenotypes and the polymorphisms of the selected genes are universal or ethnic specific.
     Methods:In high stature aspect, selected6genes from the result of GWAS, used PCR-RFLP (polymerase chain reaction-restriction fragment length polymorphism) assay in534(315of male and219of female) healthy over adult individuals which were randomly investigated in northwest of China. In language aspect, selected a tagSNP-rs9640758of FOXP2and tested it's genotype in462males of Han and327males of Dongxiang. In myopia aspect, selected a tagSNP-rs16970495of RASGRF1and tested it's genotype in205males of Han in northwest of China. Genotype and allele distributions were analyzed in inheritance of quantitative character study and case-control study to determine whether the correlation between the3phenotypes and gene polymorphisms.
     Results: In high stature aspect, the result indicted that CDK's rs2282978was not significant associated with individual's height in three ethnic groups, however, BMP-2's rs967417, NOG's rs4794665, and DYM's rs8099594(P<0.05) were significant correlated with individual's height in three ethnic groups. Remarkably, these three SNPs are also implicated in skeletal dysplasia syndromes. Besides, ZBTB38's rs36440003was also significant correlated with individual's height in three ethnic groups. Together, these SNPs accounted for approximately4.88%of the height variation in Chinese people from northwest China.ITM2A's rs1474563was significant correlated with individual's height in male group.
     In language aspect, A/A、A/G and G/G for rs964075were significantly different between Han and Dongxiang (p<0.05).
     In myopia aspect, the result of ANOVA test shows that RASGRF1's rs16970495has little related with the myopia in the Northwest of Chinese population(P>0.05).
     Conclusion:In high stature aspect: Our data strongly suggested that the three SNPs identified in the present work may generally associate with the height trait in Chinese population. C type for rs967417, G type for rs4794665and G type for rs8099594were associated with high stature in Chinese northwest population.
     In language aspect, these findings suggested genetic polymorphisms of rs964075identified in our study may affect language variations in northwest of Chinese population.
     In myopia aspect, rs16970495of the RASGRF1gene had no significant effect on the myopia in the Northwest of Chinese population.
引文
[1]Tar A, Postel-Vinay MC, Brauner R, et al. Determination of growth hormone binding protein in a normal population and in subjects with short stature due to growth hormone resistance. Orv Hetil.1992,133(12):721-2,727-30.
    [2]Weedon MN, Lettre G, Freathy RM, et al. A common variant of HMGA2 is associated with adult and childhood height in the general population.Nat Genet. 2007,39(10):1245-50.
    [3]Cho YS, Go MJ, Kim YJ, et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet. 2009, 41(5):527-534.
    [4]Wang Y, Cufar K, Eckstein D, et al. Variation of maximum tree height and annual shoot growth of smith fir at various elevations in the sygera mountains, southeastern tibetan plateau. PLoS One. 2012;7(3):e31725.
    [5]Okada Y, Kamatani Y, Takahashi A, et al. A genome-wide association study in 19 633 Japanese subjects identified LHX3-QSOX2 and IGF1 as adult height loci. Hum Mol Genet. 2010,19(11):2303-2312.
    [6]Liu Y, Zan L, Zhao S, Xin Y, et al. Molecular characterization, polymorphism of bovine ZBTB38 gene and association with body measurement traits in native Chinese cattle breeds.Mol Biol Rep. 2010,37(8):4041-40499.
    [7]Cole, T.J. The secular trend in human physical growth: a biological view. Econ. Hum. Biol. 2003,1,161-168
    [8]McCarthy, M.I. et al. Genome-wide association studies for complex traits:consensus, uncertainty and challenges. 2008, Nat. Rev. Genet. 9, 356-369
    [9]Gazzerro, E. and Canalis, E. Bone morphogenetic proteins and their antagonists. 2006, Rev. Endocr. Metab. Disord. 7, 51-65
    [10]Phillips BA, Gaudette S, McCracken A, et al. Psychosocial Functioning in Children and Adolescents with Extreme Obesity. J Clin Psychol Med Settings. 2012 Mar 22. [Epub ahead of print]
    [11]Kramer KL, Greaves RD. Juvenile Subsistence Effort, Activity Levels, and Growth Patterns: Middle Childhood among Pume Foragers. Hum Nat. 2011,22(3):303-26.
    [12]Chaplin JE. Growth-related quality of life. Horm Res Paediatr. 2011,13:51-52.
    [13]Wong SY, Leung JC, Leung PC, et al. Depressive symptoms and change in abdominal obesity in the elderly:positive or negative association? Am J Geriatr Psychiatry.2011, 19(8):730-42.
    [14]Carson SA. Height of female Americans in the 19th century and the antebellum puzzle. Econ Hum Biol.2011, (2):157-64. Epub 2011 Jan 26.
    [15]Kanchan T, Krishan K, Sharma A, etal. A study of correlation of hand and foot dimensions for personal identification in mass disasters. Forensic Sci Int. 2010, 199(1-3):112.e1-6.
    [16]Stinson S. Nutritional, developmental, and genetic influences on relative sitting height at high altitude. Am J Hum Biol.2009,21(5):606-13.
    [17]Tyagi R, Tungdim MG, Bhardwaj S, et al. Age, altitude and gender differences in body dimensions. Anthropol Anz. 2008, 66(4):419-34.
    [18]Varela-Silva MI, Azcorra H, Dickinson F, et al. Influence of maternal stature, pregnancy age, and infant birth weight on growth during childhood in Yucatan, Mexico:a test of the intergenerational effects hypothesis. Am J Hum Biol. 2009, 21(5):657-63.
    [19]Gustafsson A, Lindenfors P. Latitudinal patterns in human stature and sexual stature dimorphism. Ann Hum Biol. 2009,36(l):74-87.
    [20]Whitley E, Gunnell D, Davey Smith G, et al. Childhood circumstances and anthropometry: the Boyd Orr cohort. Ann Hum Biol.2008, 35(5):518-34.
    [21]Perola M, Sammalisto S, Hiekkalinna T, et al. Combined genome scans for body stature in 6,602 European twins: evidence for common Caucasian loci. PLoS Genet. 2007, 3(6):e97.
    [22]Silventoinen K, Sammalisto S, Perola M, et al. Heritability of adult body height: a comparative study of twin cohorts in eight countries. Twin Res. 2003,6(5):399-408.
    [23]Fitzpatrick SM, Nelson GC, Clark G. Small scattered fragments do not a dwarf make: biological and archaeological data indicate that prehistoric inhabitants of Palau were normal sized. PLoS One. 2008 Aug 27;3(8):e3015.
    [24]Temple DH. What can variation in stature reveal about environmental differences between prehistoric Jomon foragers? Understanding the impact of systemic stress on developmental stability. Am J Hum Biol. 2008,431-439.
    [25]Matsoukas J, Liarikos S, Giannikas A, et al. A newly recognized dominantly inherited syndrome:short stature, ocular and articular anomalies, mental retardation. Helv Paediatr Acta. 1973,28(5):383-6.
    [26]MacGillivray MH, Morishima A, Conte F, Grumbach M, Smith EP 1998 Pediatric endocrinology update:an overview. The essential roles of estrogens in pubertal growth, epiphyseal fusion and bone turnover: lessons from mutations in the genes for aromatase and the estrogen receptor. Horm Res 49(Suppl 1):2-8
    [27]Liu H, Espinoza-Lewis RA, Chen C, et al. The Role of Shox2 in SAN Development and Function. Pediatr Cardiol. 2012
    [28]Rao E, Weiss B, Fukami M, et al. 1997 Pseudoautosomal deletions encompassing a novel homeobox gene cause growth failure in idiopathic short stature and Turner syndrome. Nat Genet 16:54 - 63
    [29]Silventoinen K, Kaprio J, Yokoyama Y. Genetics of pre-pubertal growth:a longitudinal study of Japanese twins. Ann Hum Biol. 2011,38(5):608-614
    [30]Liu H, Chen CH, Espinoza-Lewis RA, et al. Functional redundancy between human SHOX and mouse Shox2 genes in the regulation of sinoatrial node formation and pacemaking function. J Biol Chem. 2011,286(19):17029-38.
    [31]Pan F, Liu XG, Guo YF, et al. The regulation-of-autophagy pathway may influence Chinese stature variation: evidence from elder adults. Hum Genet. 2010,55(7):441-7.
    [32]Bouatia-Naji N, Marchand M, Cavalcanti-Proenca C, et al. Smallness for gestational age interacts with high mobility group A2 gene genetic variation to modulate height. Eur J Endocrinol.2009,160(4):557-60.
    [33]Widen E, Ripatti S, Cousminer DL, Surakka, et al. Distinct variants at LIN28B influence growth in height from birth to adulthood. Am J Hum Genet. 2010,86(5):773-82.
    [34]Dempfle A, Wudy SA, Saar K, Evidence for involvement of the vitamin D receptor gene in idiopathic short stature via a genome-wide linkage study and subsequent association studies. Hum Mol Genet. 2006,15(18):2772-2783.
    [35]Walter S, Mackenbach J, Voko Z, et al. Genetic, Physiological, and Lifestyle Predictors of Mortality in the General Population. Am J Public Health. 2012, 102(4):e3-e10.
    [36]Lei SF, Tan LJ, Liu XG, et al. Genome-wide association study identifies two novel loci containing FLNB and SBF2 genes underlying stature variation. Hum Mol Genet. 2009, 8(9):1661-9. Epub 2008 Nov 27.
    [37]Sammalisto S, Hiekkalinna T, Schwander K, et al. Genome-wide linkage screen for stature and body mass index in 3.032 families:evidence for sex- and population-specific genetic effects.Eur J Hum Genet. 2009,17(2):258-66.
    [38]Tiu CM, Liu TC, Hsieh CW, et al.Turner syndrome phalangeal screening based on a two-stage linear regression concept. Pediatr Int. 2009, 51(4):453-9.
    [39]Pan F, Liu XG, Guo YF, et al. The regulation-of-autophagy pathway may influence Chinese stature variation:evidence from elder adults.J Hum Genet. 2010,55(7):441-7.
    [40]Jianfeng X, Jongepier H, B leecker ER, et al. Major recessive genes with considerable residual polygenic effect regulating adult height: con firm association of genome wide scan resu Its for chromosom e6、9、and 12. Am J Hum Genet, 2002,71:646-650.
    [41]Hirschhorn JN, Lettre G. Progress in genome-wide association studies of human height.Horm Res. 2009 Apr;71 Suppl 2:5-13.
    [42]Axenovich TI, Zorkoltseva IV, Belonogova NM, et al. Linkage analysis of adult height in a large pedigree from a Dutch genetically isolated population. Hum Genet. 2009, 126(3):457-71.
    [43]Sanna, S. et al. Common variants in the GDF5-UQCC region are associated with variation in human height. Nat. Genet. 2008, 40, 198 - 203
    [44]Weedon, M.N. et al. Genome-wide association analysis identifies 20 loci that influence adult height. Nat. Genet. 2008, 40, 575 - 583
    [45]Lettre, G. et al. Identification of ten loci associated with height highlights new biological pathways in human growth. Nat. Genet. 2008, 40,584 - 591
    [46]Gudbjartsson, D.F. et al. Many sequence variants affecting diversity of adult human height. Nat. Genet. 2008,40,609-615
    [47]Zhao J, Li M, Bradfield JP, et al. The role of height-associated loci identified in genome wide association studies in the determination of pediatric stature. BMC Med Genet. 2010, 11:96.
    [48]WeedonM N, TurnerM, Knight B, C lark P, et al. Variants in the gene and on the Y-chromosome are not associated with adult height or insulin in resistance in a UK population. Clin Endocrinol, 2003,59 (2):175-179. Kulik-Rechberger
    [49]Kulik-Rechberger B, Skorupski P, Bogusiewicz M, et al. Polymorhism of CYP17 gene and age of menarche. Ginekol Pol.2007, 78(12):929-32.
    [50]Zmuda JM, Cauley JA, Kuller LH, et al. A common promoter variant in the cytochrome P450 c17a(CYP17) gene is associated with bio available testosterone levels and bone size in men. Bone Mineral Res,2001,16(5):911-917.
    [51]Schuit SC, van Meurs JB, Bergink AP, et al. Height in pre- and postmenopausal women is influenced by estrogen receptor alpha gene polymorphisms. J Clin Endocrinol Metab. 2004, 89(1):303-9.
    [52]KanshiM, Yoshihito T, M inagawa Y, et al. Difference in height associated with a translation start site polymorphism in the vitamin D receptor gene.Pediatric Res, 1998,44(5):628-632
    [53]Stephanie CE, Bergink AP, Fang Y, et a 1. Height in pre-and pos-menopausal women is influenced by estrogen receptor a gene polymorphisms. Clin Endocrinal Metab, 2004, 89 (1): 303-309.
    [54]Minamitani K, Takahashi Y, Minagawa M, et al. Difference in height associated with a translation start site polymorphism in the vitamin D receptor gene. Pediatr Res. 1998, 44(5):628-32.
    [55]Lorentzon M, Lorentzon R, Nordstrom P.Vitamin D receptor gene polymorphism is associated with birth height, growth to adolescence, and adult stature in healthy caucasian men:a cross-sectional and longitudinal study. J Clin Endocrinol Metab. 2000 Apr;85(4):1666-70.
    [56]Xiong DH, Xu FH, Liu PY, Shen H, Vitamin D receptor gene polymorphisms are linked to and associated with adult height. J Med Genet. 2005, 42(3):228-34.
    [57]Fang Y, van Meurs JB, Rivadeneira F, et al. Vitamin D receptor gene haplotype is associated with body height and bone size. J Clin Endocrinol Metab.2007,92(4):1491-501.
    [58]Hero M, Makitie O, Kroger H, et al. Impact of aromatase inhibitor therapy on bone turnover, cortical bone growth and vertebral morphology in pre-and peripubertal boys with idiopathic short stature. Horm Res. 2009;71(5):290-7.
    [59]Reich O, Regauer S, Tempfer C, et al. Polymorphism 1558 C > T in the aromatase gene (CYP19A1) in low-grade endometrial stromal sarcoma. Eur J Gynaecol Oncol. 2011;32(6):626-627.
    [60]Wang H, Li Q, Wang T, et al. A common polymorphism in the human aromatase gene alters the risk for polycystic ovary syndrome and modifies aromatase activity in vitro. Mol Hum Reprod. 2011,17(6):386-91.
    [61]Ellis MJ, Gao F, Dehdashti F, et al. Lower-dose vs high-dose oral estradiol therapy of hormone receptor-positive, aromatase inhibitor-resistant advanced breast cancer: a phase 2 randomized study. JAMA.2009, 302(7):774-80.
    [62]Hammoud AO, Griffin J, Meikle AW, et al. Association of aromatase (TTTAn) repeat polymorphism length and the relationship between obesity and decreased sperm concentration. Hum Reprod. 2010, 25(12):3146-51.
    [63]Miyake H, Nagashima K, Onigata K, et al. Allelic variations of the D2 dopamine receptor gene in children with idiopathic short stature. J Hum Genet. 1999, 44(1):26-9.
    [64]Arinami T, Iijima Y, Yamakawa-Kobayashi K, et al.Supportive evidence for contribution of the dopamine D2 receptor gene to heritability of stature:linkage and association studies. Ann Hum Genet.1999,63(Pt 2):147-51.
    [65]Comings DE. Molecular heterosis as the explanation for the controversy about the effect of the DRD2 gene on dopamine D2 receptor density. Mol Psychiatry. 1999, 4(3):213-5.
    [66]Raivio T, Huhtaniemi I, Attila R, et al. The role of lueinizing hormone- beta gene polymorphism in the on set and progression of puberty in healthy boys. JC lin Endocrinal Metab,1996,81 (9):3278-3282.
    [67]Garnero P, BorelO, Grant SF, et al. Collagen I aiphal Sp1 polymorphism, bone mass, and bone turnover in healthy French premenopausal women:the OFELY study. Bone Miner Res, 1998,13 (5):813-817
    [68]Minagawa M, Y asuda T, Watanabe T, et al. Association between AAAG repeat polymorphism in the P3 promoter of the human parathyroid hormone (PTH)/PTH - related peptide receptor gene and adult height, urinary pyridinoline excretion, and promoter activity. Clin Endocrinal,2002,87 (4):1791-1796.
    [69]Thompson DB, Ossowski V, Janssen RC, et al.Linkage between stature and a region on chromosome 20 and analysis of a candidate gene, bone morphogenetic protein 2.Am J Med Genet. 1995,59(4):495-500.
    [70]Shu B, Zhang M, Xie R, et al. BMP2, but not BMP4, is crucial for chondrocyte proliferation and maturation during endochondral bone development. J Cell Sci.2011,124(Pt 20):3428-40.
    [71]Hsu YL, Huang MS, Yang CJ, et al. Lung tumor-associated osteoblast-derived bone morphogenetic protein-2 increased epithelial-to-mesenchymal transition of cancer by Runx2/Snail signaling pathway. J Biol Chem.201,286(43):37335-46.
    [72]Anderson RM, Stottmann RW, Choi M, et al. Endogenous bone morphogenetic protein antagonists regulate mammalian neural crest generation and survival. Dev Dyn. 2006, 235(9):2507-20.
    [73]Usami S, Abe S, Nishio S, et al. Mutations in the NOG gene are commonly found in congenital stapes ankylosis with symphalangism, but not in otosclerosis. Clin Genet. 2012, 30. doi:10.1111/j.1399-0004.2011.01831.x.
    [74]Murphy AJ, Li Y, Pietsch JB, et al.Mutational analysis of NOG in esophageal atresia and tracheoesophageal fistula patients. Pediatr Surg Int. 2011
    [75]Kubo A, Ohmura M, Wakui M, et al. Semi-quantitative analyses of metabolic systems of human colon cancer metastatic xenografts in livers of superimmunodeficient NOG mice.Anal Bioanal Chem. 2011,400(7):1895-904.
    [76]Kantaputra PN, Pongprot Y, Praditsap O, et al. A new syndrome of symphalangism, multiple frenula, postaxial polydactyly, dysplastic ears, dental anomalies, and exclusion of NOG and GDF5. Am J Med Genet A.2003 Jul 30;120A(3):381-5.
    [77]Aglan MS, Temtamy SA, Fateen E, et al. Dyggve-Melchior-Clausen syndrome: clinical, genetic, and radiological study of 15 Egyptian patients from nine unrelated families. J Child Orthop. 2009
    [78]Lee JJ, Essers JB, Kugathasan S, et al.Association of linear growth impairment in pediatric Crohn's disease and a known height locus:a pilot study. Ann Hum Genet. 2010, 74(6):489-97. doi:10.1111/j.1469-1809.2010.00606.x.
    [79]Liu Y, Zan L, Zhao S, et al. Molecular characterization, polymorphism of bovine ZBTB38 gene and association with body measurement traits in native Chinese cattle breeds. Mol Biol Rep. 2010, 37(8):4041-9.
    [80]Kim JJ, Park YM, Baik KH, et al. Exome sequencing and subsequent association studies identify five amino acid-altering variants influencing human height. Hum Genet. 2012, 131(3):471-8. Epub 2011 Sep 29.
    [81]Hong KW, Shin YB, Jin HS, et al. Alternative splicing of human height-related zinc finger and BTB domain-containing 38 gene through Alu exonization. Biochem Genet. 2011, 49(5-6):283-91. Epub 2010 Dec 29.
    [82]Lee JJ, Essers JB, Kugathasan S,et al. Association of linear growth impairment in pediatric Crohn's disease and a known height locus:a pilot study. Ann Hum Genet. 2010, 74(6):489-97. doi:10.1111/j.1469-1809.2010.00606.x.
    [83]Soranzo N, Rivadeneira F, Chinappen-Horsley U,et al. Meta-analysis of genome-wide scans for human adult stature identifies novel Loci and associations with measures of skeletal frame size. PLoS Genet. 2009 Apr;5(4):e1000445.
    [84]Tuckermann JP, Pittois K, Partridge NC, et al. Collagenase-3 (MMP-13) and integral membrane protein 2a (ITM2A) are marker genes of chondrogenic/osteoblastic cells in bone formation: sequential temporal, and spatial expression of ITM2A, alkaline phosphatase, MMP-13, and osteocalcin in the mouse. J Bone Miner Res. 2000,15(7):1257-65.
    [85]Deleersnijder W, Hong G, Cortvrindt R, et al. Isolation of markers for chondro-osteogenic differentiation using cDNA library subtraction. Molecular cloning and characterization of a gene belonging to a novel multigene family of integral membrane proteins. J Biol Chem. 1996,271(32):19475-82.
    [86]Van den Plas D, Merregaert J. In vitro studies on ITM2A reveal its involvement in early stages of the chondrogenic differentiation pathway. Biol Cell. 2004, 96(6):463-70.
    [87]Liu GY, Ge CR, Zhang X, Gao SZ. Isolation, sequence identification and tissue expression distribution of three novel porcine genes--RAB14, S35A3 and ITM2A. Mol Biol Rep. 2008, 35(2):201-6.
    [88]McHenry HM. Femoral lengths and stature in Plio-Pleistocene hominids. Am J Phys Anthropol.1991,85(2):149-58.
    [89]Campbell BC, Leslie PW, et al. Pubertal timing, hormones, and body composition among adolescent Turkana males. Am J Phys Anthropol.2005,128(4):896-905.
    [90]徐勇勇,李春明,张汝涛,李宝君,何永才,尚磊。我国应征青年体格状况及历史变化。解放军医学杂志2003年6期:31-35。
    [91]尚磊。应用GIS技术研究我国应征男青年体质状况的生态学统计分布特征。第四军医大 学学报2004年1期:28-32。
    [92]Mendizabal I, Marigorta UM, Lao O, Comas D. Adaptive evolution of loci covarying with the human African Pygmy phenotype.Hum Genet. 2012, Epub ahead of print.
    [93]Lundberg M, Diderichsen F, Hallqvist J.Is the association between short stature and myocardial infarction explained by childhood exposures--a population-based case referent study (SHEEP). Scand J Public Health. 2002, 30(4):249-58.
    [94]张冬会,史英钦,张文杰。外周血DNA提取方法及其特点。《中国组织工程研究与临床康复》ISTIC PKU -2007年11期:457-459。
    [95]Yang TL, Guo Y, Zhang LS, et al. HMGA2 is confirmed to be associated with human adult height. Ann Hum Genet. 2010,74(1):11-6.
    [96]Kim JJ, Lee HI, Park T, et al. Identification of 15 loci influencing height in a Korean population. J Hum Genet. 2010, 55(1):27-31.
    [97]Dempfle A, Wudy SA, Saar K, et al. Evidence for involvement of the vitamin D receptor gene in idiopathic short stature via a genome-wide linkage study and subsequent association studies. Hum Mol Genet. 2006,5(18):2772-83
    [98]Bockstaele L, Kooken H, Libert F, et al. Regulated activating Thr172 phosphorylation of cyclin-dependent kinase 4(CDK4):its relationship with cyclins and CDK "inhibitors". Mol Cell Biol. 2006,26(13):5070-85.
    [99]Slomiany P, Baker T, Elliott ER, Grossel MJ. Changes in motility, gene expression and actin dynamics: Cdk6-induced cytoskeletal changes associated with differentiation in mouse astrocytes. J Cell Biochem.2006, 99(2):635-46.
    [100]Mantena SK, Sharma SD, Katiyar SK. Berberine inhibits growth, induces G1 arrest and apoptosis in human epidermoid carcinoma A431 cells by regulating Cdki-Cdk-cyclin cascade, disruption of mitochondrial membrane potential and cleavage of caspase 3 and PARP. Carcinogenesis. 2006, 27(10):2018-27. Epub 2006 Apr 18.
    [101]Choe KS, Ujhelly O, et al. PU.1 directly regulates cdk6 gene expression, linking the cell proliferation and differentiation programs in erythroid cells. J Biol Chem. 2010, 285(5):3044-52. Epub 2009 Dec 2.
    [102]Yang X, Feng M, Jiang X, et al. miR-449a and miR-449b are direct transcriptional targets of E2F1 and negatively regulate pRb-E2F1 activity through a feedback loop by targeting CDK6 and CDC25A. Genes Dev. 2009, 23(20):2388-93.
    [103]Sarek G, Jarviluoma A, Moore HM, et al. Nucleophosmin phosphorylation by v-cyclin-CDK6 controls KSHV latency. PLoS Pathog. 2010, 6(3):e1000818.
    [104]Tokcaer-Keskin Z, Dikmen ZG, Ayaloglu-Butun F, et al.The effect of telomerase template antagonist GRN163L on bone-marrow-derived rat mesenchymal stem cells is reversible and associated with altered expression of cyclin d1, cdk4 and cdk6. Stem Cell Rev. 2010,6(2):224-33.
    [105]Zhao JJ, Lin J, Lwin T, et al. microRNA expression profile and identification of miR-29 as a prognostic marker and pathogenetic factor by targeting CDK6 in mantle cell lymphoma. Blood. 2010,115(13):2630-9.
    [106]Wahlstrom O, Linder C, Kalen A, Magnusson P.Acidic preparations of platelet concentrates release bone morphogenetic protein-2. Acta Orthop. 2008, 79(3):433-7.
    [107]Singhatanadgit W, Mordan N, Salih V, Olsen I. Changes in bone morphogenetic protein receptor-IB localisation regulate osteogenic responses of human bone cells to bone morphogenetic protein-2. Int J Biochem Cell Biol.2008,40(12):2854-64.
    [108]Viorst J. Creative writing and ego development.1979, 3(4):285-96.
    [109]Iauser M D, Chomsky N, Fiteh T. The Faculty of language:What Is It, Wh0 Has It and How Did It Evolve. Science,2002,298:1569-1579.
    [110]Lu MM. LiS, YangH, et aFoxp4:A Novel Member of the Foxp Subfamily of Winged —helix Gene Co-expressed With Foxpl and Foxp2 in Pulmonary and Gut Tissues. 2002(Suppl. 1):197-202.
    [111]FitchW T. Hattser M D. Chomsky N. The Evolution of the Language Faculty: Clarifications and Implications. Cognition.2005,97:179-210.
    [112]EnardW, PrzeworskiM, FisherSE, et al.2002Molecular evolution ofFOXP2,a gene involved in speech and language · Nature.18:869-872.
    [113]Jenkins, L. Biolinguistics:Exploring the Biology of Language. New York, Cambridge University Press,2000.
    [114]Yang G. PAN F, GAN W B. Stably maintained dendritic spines are associated with lifelong memories. Nature,2009,462:920.924.
    [115]Xu Tonghui, YU xinzhu. PERLIK AJ, et al. Rapid formation and selective stabilization of synapses for enduring motor memories. Nature. 2009,462:915.919.
    [116]Gopnik M. Crago M B. Familial Aggression of a Developmental Language Disorder. Cognition,1991,39:1-50.
    [117]Dianne F. Newbury,. Anthony P. Monaco. Molecular genetics of speech and language disorders, Current Opinion in Pediatrics 2002,14:696-701
    [118]Vargha Khadem F, Watkins K, Alcock K, et al. Praxic and nonverbal cognitive deficits in a large family with a genetically transmitted speech and language disorder. Proc Natl Aead Sci, USA 1995,92:930-933.
    [119]Fagerheim T, Raeymaekers P, Tonnessen FE, et al.A new gene (DYX3) for dyslexia is located on chromosome 2. Med Genet. 1999 Sep;36(9):664-9.
    [120]Fisher S E.Hurst J A. A Forkheed-domain Gene Is Mutated in a Severe Speech and Language Disorder. Nature,2001,413:519-523.
    [121]Pinker S. Talk of Genetics and Vice Versa. Nature,2001.413:465-466.
    [122]Pinker S. The Language Instinct:How the Mind Creates Language. New York:Harper Collins, 1994.
    [123]Gognik M. Genetic Basis of Grammar Defect. Nature,1990.347:26.
    [124]Fletcher P. Speech and language Defects. Nature, 1990.347:226.
    [125]Vargha-khadem F, Passingham R. Speech and Language Defects[J]. Nature,1990, 347:226.
    [126]Fisher S E, Vargha-khadem F, Watkins K E, et al. Localization of a Gene Implicated in a Severe Speech and language Disorder. Nature Genet.1998,18:168-170.
    [127]Liegois, F. J. et al. Functional abnormalities associated with the FOXP2(SPCHI) mutation in the KE family:all overt speech FMRJ study. Soc. Neurosci. Abstr. Program No.17.12. 2002.(Abstract Viewer,online).
    [128]Eur J Med Genet. 2009 Mar-Jun;52(2-3):123-7. Epub 2009 Mar 28.
    [129]Pariani MJ, Spencer A, Graham JM Jr, et al. A 785kb deletion of 3p14.1p13, including the FOXP1 gene, associated with speech delay, contractures, hypertonia and blepharophimosis.Eur J Med Genet. 2009,2(2-3):123-7.
    [130]Coop G, Bullaughey K, Luca F, et al.The timing of selection at the human FOXP2 gene. Mol Biol Evol. 2008 Jul;25(7):1257-9. Epub 2008 Apr 15.
    [131]Bradley BJ. Reconstructing phylogenies and phenotypes:a molecular view of human evolution. J Anat. 2008 Apr;212(4):337-53. Review.
    [132]Li T, Zeng Z, Zhao Q, et al. FoxP2 is significantly associated with schizophrenia and major depression in the Chinese Han Population. World J Biol Psychiatry.2012 Mar 9. [Epub ahead of print]
    [133]Hamar D. Rethinking Behavior Genetics. Science. 2002,298:71-72.
    [134]Enard W. Przeworski M. Fisher SE, et al. Molecular Evolution of FOXP2. a Gene Involved in Speech and Language. Nature,2002,418:869-872.
    [135]Cecilia S. L. Lai, Dianne Gerrelli, Anthony E Monaco, et al. FOXP2 expression brain development coincides with adult sites of pathologyin a severe speech and language disorder. 2003.Brain, V01.126, No.11,2455-2462.
    [136]Santos ME, Athanasiadis A, Leitao AB,et al. Alternative splicing and gene duplication in the evolution of the FoxP gene subfamily. Mol Biol Evol.2011 Jan;28(1):237-47.
    [137]Young TL,Ronan SM, Drahozal LA, et al, Evidence that a locus for familial high myopia to chromosome 18p[J], Am J Hum Genet,1998,(63):109-119
    [138]2004年,教育部《2004年全国学生体质健康监测报告》
    [139]Pirro G Hysi,Terri L Young et al..A genome-wide association study for myopia and refractive error identifies a susceptibility locus at 15q25 Nature GeneticsVolume:42, 902 -905
    [140]Saw, S.M., Katz, J., Schein, O.D., Chew, S.J. & Chan, T.K. Epidemiology of myopia.Epidemiol. 1996. Rev. 18,175-187.
    [141]Rose, K.A. et al. Outdoor activity reduces the prevalence of myopia in children. Ophthalmology2008.115,1279 - 1285.
    [142]Zylbermann R, Landau D,Berson D. The influence of study habits on myopia in Jewish teenagers.J Pediatr Ophthalmol Strabismus,1993,30;319-322
    [143]The Framingham Offspring Eye Study Group. Familial aggregation and prevalence of myopia in the Framingham Offspring Eye Study. Arch Ophthalmol,1996,114;326-332
    [144]汪芳润近视眼的研究现状及存在问题China J Ophthalmol June 2003.vol39, No.6
    [145]Lopes, M.C., Andrew, T., Carbonaro, F., Spector, T.D. & Hammond, C.J. Estimating heritability and shared environmental effects for refractive error in twin and familystudies. Invest. Ophthalmol. Vis. Sci. 2009.50,126-131.
    [146]Schwartz G, Rieke F.Perspectives on: information and coding in mammalian sensory physiology: nonlinear spatial encoding by retinal ganglion cells: when 1 + 1 ≠ 2.J Gen Physiol. 2011 Sep;138(3):283-90. doi:10.1085/jgp.201110629.
    [147]Young TL;Ronan SM;Drahozal LA. Evidence that a locus for familial high myopia maps to chromosome 18p. 1998.
    [148]Young TL;Ronan SM;Alvear AB. A second locus for familial high myopia maps to chromosome 12q.1998.
    [149]Paluru PC;Ronan SM;Heon E. New locus for autosomal dominant high myopia maps to the long arm of chromosome 17.2003.
    [150]Naiglin L;Gazagne C;Dallongeville F A genome wide scan for familial high myopia suggests a noval locus on chromosome 7q36 2002
    [151]Stambolian D;Ibay G;Reider L Genome-wide scan of additional Jewish families confirms linkage of a myopia susceptibility locus to chromosome 22q12 2006
    [152]Hammond CJ;Andrew T;Mak YT Asusceptibility locus for myopia in the normal population is linked to PAX6 gene region on chromosomell:a genomewide scan of dizygotic twins 2004
    [153]Zhang Q;Guo X;Xiao X Novel locus for X linked recessive high myopia maps to Xq23-q25 but outside MYP1 2006
    [154]Wojciechowski R;Moy C;Ciner E Genomewide scan in Ashkenazi Jewish families d.Nallasamy S;Paluru PC;Devoto M Genetic linkage study of high-grade myopia in a Hutterite
    [155]population from South Dakota 2007emonstrates evidence of linkage of ocular refraction to a QTL on chromosome 1 p36 2006
    [156]Lam CY;Tam POS;Fan DSP A genome-wide scan maps a novel high myopia locus to 5p15 2008
    [157]Young TL,Ronan SM, Alvear AB, et al, A second locus for familial high myopia to chromosome 12q[J], Am J Hum Genet,1998,63(5):1419-1424
    [158]A genome-wide association study for myopia and refractive error identifies a susceptibility locus at 15q25; Nature Genetics; 2010,42 (10)
    [159]Transforming genes of human bladder and lung carcinoma cell lines are homologous to the ras genes of Harvey and Kirsten sarcoma viruses Nature Genetics Volume:42,Pages:902-905 Yearpublished:(2010)DOI:doi:10.1038/ng.664Received02 February 2010Accepted19 August 2010.Published onlinel2 September 2010
    [160]Pirro G Hysi,Terri L Young et al..A genome-wide association study for myopia and refractive error identifies a susceptibility locus at 15q25. Nature Genetics Volume:42,Pages:902-905

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700