人类癌症相关基因FoxP4的结构、功能及其调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
癌症是目前人类健康的头号杀手。目前已知的癌症发病机理多是生长因子和生长因子的表面受体发生异常所致,因此,进一步阐明受体下游的调控基因对于阐明癌症的发生机理和进一步设计药物靶位点都是十分有意义的。
     forkhead box P4(FoxP4)就是本文作者在利用生物信息学方法筛选人类心脏发育候选基因的过程中发现的一个人类新基因,目前发现三种转录本。该基因编码蛋白属于Fox转录因子家族P亚家族,包含一个N-端C2HC型锌指结构(307aa-332aa)和一个C-端Fork Head(465aa-547aa)结构域,在343aa至366aa有一个Coiled Coil Motif,具有结合DNA的功能。在哺乳动物中,如大鼠、小鼠,发现了它的同源蛋白,并且它们之间具有极高的保守度,说明此蛋白所在的亚家族可能具有一定的功能。组织表达分析表明该基因在80天胚胎中有不同的表达模式,且在大脑、胃、肾和肺组织中有较高水平的表达。亚细胞定位分析表明FoxP4分布于细胞质中,是一种胞浆蛋白。转录活性分析在COS7细胞中过表达FoxP4蛋白可以使MAPK信号途径的下游转录因子SRE的转录激活活性显著提高。此外,过表达FoxP4蛋白对Hela细胞的生长表现出一定的促进作用。综合目前的研究结果来看,FoxP4可能通过MAPK信号途径参与了对细胞生命活动的调控过程。
     另外,通过酵母双杂交技术筛出FoxP4蛋白的两种相互作用候选蛋白Cat D和Tcap。Cat D是一个很有效的内源性蛋白质水解酶,很多研究表明它与细胞凋亡有关。如Cat D参与Fas介导的细胞调亡的信号转导,并在P53介导的细胞凋亡中起重要作用,还促使线粒体释放细胞色素c。因此我们推测FoxP4也可能参与了细胞凋亡。另一方面,与Titin相互作用的蛋白Tcap,在心肌伸展机制有非常重要的作用,这也为从其他方面研究FoxP4的功能提供了线索。
Cancer is the most dangerous killer in all the diseases, and lung carcinoma is the most one in all the cancer. So far, the cancerogenic mechanism of lung cancer is not well elucidated. Some growth factors and growth factor receptors have been identified to participate in cancerogenic processes, but the downstream pathways regulated by those growth factor receptors are uncleared. Clarif ing these pathways and genes are essential to understand the cancerogenic process and design medicines.forkhead box P4 (FoxP4) is one of the candidate genes that the author of this article obtained from the scanning for genes related to heart development with bioinformatics methods. This protein contains a consensus domain of CCHC Zinc finger in N-terminal ( 307aa-332aa ) , a Fork Head(465aa-547aa) domain in C-terminal, and a motif, Coiled Coil, between 343aa to 366aa . In many mammalians, such as mouse, rat, and so on, we discovered the homologues of FoxP4 and they present highly consensus during evolution, which suggests the potential importance of this subfamily. Expression assays present that FoxP4 is expressed with different pattern at fetal of 80 days and strongly expressed in brain, stomach, kidney and lung. The results of transcripteion activity assays show that overexpression of FoxP4 in COS7 cells can remarkably activate the transcriptional activity of SRE, which are downstream effectors of MAPK pathway. Furthermore, overexpression of FoxP4 can slightly promote the growth of Hela cell. In conclusion, we suggest that FoxP4 probably take part in regulation of cell life progress through acting a role in MAPK pathway.
     Otherwise, Cat D and rcap, two candidates for interacted with FoxP4, were obtained by screening in Yeast two-hybrid system. Interestingly, Cat D is a potent endoprotease and several studies have linked it to apoptosis. For example, it was shown that Cat D is involved in the signal transduction of Fas-mediated cell death. In addition, Cat D plays a role in p53-mediated cell death and triggers the release of cytochrome c from the mitochondria. Therefore we presume that FoxP4 is involved in apoptosis. In addition a Z disc Tcap , a Titin interacting protein, is a key component of the in vivo cardiomyocyte stretch sensor machinery, and it provide a research clue for us to investigate the function of FoxP4 in other way.
引文
[1] Morgan D O. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol, 1997, 13: 261-291.
    [2] Jeffrey P D, Russo A A, Polyak K, et al. Mechanism of CDK activation revealed by the structure of a cyclin A-CDK2 complex. Nature, 1995,376:313320
    [3] Roberts J M. Evolving ideas about cyclins. Cell, 1999, 98: 129-132.
    [4] Sherr C J, Roberts J M. CDK inhibitors: positive and negative regulators of G,-phase progression. Genes Dev, 1999, 13: 1501-1512.
    [5] Jeoung D I, Oehlen L J, Cross F R. CIn3-associated kinase activity in Saccharomyc cerevisiae is regulated by the mating factor pathway. Mol Cell Biol, 1998, 18: 433-441
    [6] Correa-Bordes J, Nurse 1? p25 ruml orders S phase and mitosis by acting as an inhibitor of the p34cdc2 mitotic kinase. Cell, 1995, 83:1001-1009
    [7] Schwob E, Bohm T, Mendenhall M D, et al. The B-type cyclin kinase inhibitor p40SIC1 controls the G1 to S transition in S. cerevisiae. Cell, 1994, 79: 233-244
    [8] LaBaer J, Garrett L F, Stevenson J M, et al. New functional activities for the p21 family of CDK inhibitors. Genes Dev, 1997, 11:847~862
    
    [9] Cheng M P, Olivier J A, Diehl M, et al. The p21 and p27 CDK inhibitors are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J, 1999, 18: 1571-1583
    [10] Pardee A B. A restriction point for control of normal animal cell proliferation. Proc Natl Acad Sci USA, 1974, 71: 1286-1290
    [11] Helin K, Harlow E, Fattaey A. Inhibition of E2F-1 mediated transactivation by direct binding of the retinoblastoma protein. Mol Cell Biol. 1993. 13:6501-6508
    
    [12] Sellers WR, Rodgers JW, Kaelin WI. A potent transrepression domain in the retinoblastoma protein induces a cell cycle arrest when bound to E2F sites. Proc Natl Acad Sci USA, 1995, 92: 11544-11548
    
    [13] Adnane J, Shao Z, Robbins P D. The retinoblastoma susceptibility gene product represses transcription when directly bound to the promoter. J Biol Chem, 1995, 270: 88378843
    
    [14] Brehm A, Miska E, McCance D J, et al. Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature, 1998, 591-597.
    
    [15] Magnaghl-Jaulin L, Groisman R, Naguibneva I, et al. Rednoblastoma protein represses transcription by recruiting a histone deacetylase. Nature, 1998, 391: 601 605
    [16] Nieisen S J, Schneider R, Mauer U, et al. Rb targets histone H3 methylation and HP1 to promoters. Nature, 2001, 412: 561—565
    
    [17] Cheng L, Rossi F, Fang W, et al. Cdk2-dependent phosphorylation and functional inactivation of the pRB-related p130 protein in pRB, p16 tumor cells. J. Biol Chem, 2000,275: 30317-30325.
    
    [18] Herrera R E, Sah V P, Williams B O, et al. Altered cell cycle kinetics, gene expression, and Gi restriction point regulation in Rb-deficient fibroblasts. Mol Cell Biol, 1996,16: 2402-2407
    
    [19] Hartwell L, Weinert T. Checkpoints: controls that ensure the order of cell cycle events. Science, 1989, 246: 629-634.
    
    [20] De la Torre-Ruiz M A, Green C M, Lowndes N F. RAD9 and RAD24 define two additives, interacting branches of the DNA damage checkpoint pathway in budding yeast normally required for Rad53 modification and activation. EMBO J, 1998, 17: 2687-2698.
    
    [21] Green C M, Erdjument-Bromage H, Tempst P, et al. A novel Rad24 checkpoint complex closely related to replication factor C. Curr Biol, 1999, 10:39.42.
    
    [22] Navas T A, Zhou Z, Elledge S J. DNA polymerase epsilon links the DNA replication machinery to the S phase chec 冲 oint. Cell, 1995, 80: 2939.
    
    [23] Wang H, Elledge S J. DRC1, DNA replication and checkpoint protein 1, function with DPB11 to control DNA replication and the S-phase checkpoint in Saccharomyces cerevisiae. Proc Natl Acad Sci USA, 1999, 96: 3824-3829.
    
    [24] Jiang M R, Yang Y, Wu J R. Activation of DNA damage checkpoints in CHO cells requires a certain level of DNA damage. Biochem Biophys Res Commun, 2001, 287: 775-780.
    [25] Zhou BS, Elledge SJ. The DNA damage response: putting checkpoints in perspective. Nature, 2000, 408: 433-439.
    [26] Liu Q, Guntuku S, Cui X S, et al. Chk1 is an essential kinase that is regulated by ATR and required for the G(2)/M DNA damage checkpoint. Genes Dev, 2000, 14: 1448-1459.
    
    [27] Chaturvedi P, Eng WK, Zhu Y, et al. Mammalian Chk2 is a downstream effector of the ATM-dependent DNA damage checkpoint pathway. Oncogene, 1999, 18: 4047-4054.
    [28] Shieh SY, Ahn J, Tamai K, et al. The human homologs of checkpoint kinase Chk1 and Cds1(Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev, 2000, 14: 289-300.
    
    [29] Furnari B, Blasina A, Boddy M N, et al. Cdc25 inhibited in vivo and in vitro by checkpoint kinases Cds1 and Chk1. Mol Biol Cell, 1999, 10: 833-845.
    [30] Vogelstein B, Lane D, Levine A J. Surfing the p53 network. Nature, 2000, 408: 307-310.
    [31] Innocence S A, Abrahamson J A, Cogswell J P, et al.户 3 regulates a GZ checkpoint through cyclin B1. Proc Natl Acad Sci USA, 1999,96:2147-2152.
    [32] Dua R, Levy DL, Campbell J L. Role of the putative zinc finger domain of Saccharomyces cerevisiae DNA polymerase epsilon in DNA replication and the S/M checkpoint pathway. 1 Biol Chem, 1998, 273: 30046-30055.
    
    [33] Davey S, Han C S, Ramer S A, et al. Fission yeast rad12 regulates cell cycle checkpoint control and is homologous to the Bloom's syndrome disease gene. Mol Cell Biol, 1998, 18: 2721-2728.
    
    [34] Sanchez Y, Desany B A, Jones W J, et al. Regulation of RAD53 by the ATM-like kinases MECI and TELL in yeast cell cycle checkpoint pathways. Science, 1996, 271: 357-360.
    
    [35] Pellicioli A, Lucca C, Liberi G, et al. Activation of Rad53 kinase in response to DNA damage and its effect in modulating phosphorylation of the lagging strand DNA polymerase. EMBO J, 1999, 18: 6561-6572.
    
    [36] Lopes M, Cotta-Ramusino C, Pellicioli A, et al. The DNA replication checkpoint response stabilizes stalled replication forks. Nature, 2001, 412: 557-561.
    
    [37] Hoeijmakers J H. Genome maintenance mechanisms for preventing cancer. Nature, 2001, 411: 366-374.
    
    [38] Schar P. Spontaneous DNA damage, genome instability, and cancer-when DNA replication escapes control. Cell, 2001, 104:329-332.
    [39] Morgan D O. Principles of CDK regulation. Nature, 1995, 374: 131-134.
    [40] Solomon M J. The functions of CAK, the p34-activating kinase. Trends Biochem Sci, 1994, 19: 496-500.
    [41] Gautier J, Solomon M J, Booher R N, et al. Cdc25 is a specific tyrosine phosphatase that directly activates p34cdc2. Cell, 1991, 67: 197-205.
    [42] Michael WM, Newport J. Coupling of mitosis to the completion of S phase through Cdc34-mediated degradation of Weel. Science, 1998,282: 1886-1889.
    [43] Martinho R G, Lindsay H D, Flaggs G, et al, Analysis of Rad3 and Chk1 protein kinases defines different checkpoint responses. EMBO J, 1998, 17: 7239-7249.
    
    [44] Lopez-Girona A, Furnari B, Mondesert O, et al. Nuclear localization of Cdc25 regulated by DNA damage and 14-3-3 protein. Nature, 1999,397: 172-175.
    [45] Stepanova L, Leng X, Parker S B, et al. Mammalian p50-Cdc37 is a protein kinase-targeting subunit of Hsp90 that binds and stabilizes Cdk4. Genes Dev, 1996, 10: 1491-1502.
    [46] Diehl J A, Cheng M, Roussel M F, et al. Glycogen synthease-kinase-3β regulates cyclin D1 proteolysis and subcellular localization. Genes Dev, 1998, 12: 3499-3511.
    [47] Diehl J A, Zindy F, Sherr C J. Inhibition of cyclin DI phosphorylation on threonine-286 prevents its rapid degradation via the ubiquitin-proteasome pathway. Genes Dev, 1997, 11: 957-972.
    [48] Jackman M, Firth M, Pines J. Human cyclin BI and B2 are localised to strikingly different structure: B1 to microtubules, B2 primarily to the Golgi apparatus. EMBO J, 1995, 14: 1646-1654.
    [49] Mudryj M, Devoto S H, Hiebert S W, et al. Cell cycle regulation of the E2F transcription factor involves an interaction with cyclin A. Cell, 1991, 65: 1243-1253.
    [50] Dynlacht B D, Moberg K, Lees J A, et al. Specific regulation of E2F family members by cyclin-dependent kinases. Mol Cell Biol, 1997, 17: 3867-3875.
    [51] Giaccia A J, Kastan M B. The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev, 1998, 12: 2973-2983.
    [52] Wang Y, Prives C. Increased and altered DNA binding of p53 by S and G2/M but not G1 in-dependent kinases. Nature, 1995, 376: 88-91.
    [53] Banin S, Moyal L, Shieh S, et al. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science, 1998, 281: 1674-1677.
    
    [54] Tibbetts R S, Brumbaugh K M, Williams J M, et al. A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev, 1999, 13: 152-157.
    
    [55] Nigg EA. Cyclin-dependent kinase 7: at the cross-roads of transcription, DNA repair and cell cycle control? Curr Opin Cell Biol, 1996,8: 312-317.
    
    [56] Laney J, Hochstrasser M. Substrate targeting in the ubiquitin system. Cell, 1999, 97: 427-430.
    
    [57] Peters J. SCF and APC: the Yin and Yang of cell cycle regulated proteolysis. Curr Opin Cell Biol, 1998, 10: 759-768.
    
    [58] Krek W. Proteolysis and the GI-S transition: the SCF connection. Curr Opin Genet Dev, 1998, 8: 36-42.
    
    [59] Feldman R M, Correll C C, Kaplan K B, et al. A complex of Cdc4p, Skplp, and Cdc53p/cullin catalyzes ubiquitination of the phospho-rylated CDK inhibitor Sicp. Cell, 1997, 91: 221-230.
    
    [60] Morgan DO. Regulation of the APC and the exit from mitosis. Nature Cell Biol, 1999, 1: 47-53.
    
    [61] Page AM, Hieter P. The anaphase-promoting complex: new sub-units and regulation. Annu Rev Biochem, 1999, 68: 583-609.
    [62] Peters J. Subunits and substrates of the anaphase- promoting complex. Exp Cell Res, 1999, 248: 339-349.
    
    [63] Parry DH, Farrell PH. The schedule of destruction of three mitotic cyclins can dictate the timing of events during exit from mitosis. Curr Biol, 2001, 11; 671-683.
    
    [64] English J, Pearson G, et al. New Insights into the Control of MAP Kinase Pathways. Experimental Cell Research, 1999, 253:255-270.
    
    [65] FrodinM, Gammeltoft S. Role and regulation of 90 kDa ribosomal S6 kinase (RSK) in signal transduction. Mol. Cell Endocrinol, 1999, 151: 65-77.
    
    [66] Denhardt DT. Signal-transducing protein phosphorylation cascades mediated by Ras/Rho proteins in the mammalian cell: the potential for multiplex signalling. Biochem J, 1996, 318: 729-747.
    
    [67] Pombo CM, Bonventre JV, Avruch J, Woodgett JR, Kyriakis JM, Force T. The stress-activated protein kinases are major c-Jun amino-terminal kinases activated by ischemia and reperfusion. J. Biol. Chem., 1994, 269: 26546 -26551.
    
    [68] Hoeflich KP, Woodgett JR. Signal transduction and gene expression in the regulation of natural freezing survival. In Cell and Molecular Responses to Stress, Vol. 2 (ed. K. B. Storey and J. M. Storey). Amsterdam: Elsevier Press, 2001, 175-193.
    [69] Irving EA, Bamford M. Role of mitogenand stress-activated kinases in ischemic injury. J. Cereb. Blood Flow Metab, 2002, 22: 631-647.
    [70] Hirai S, Izawa M, Osada S, Spyrou G, Ohno S. Activation of the JNK pathway by distantly related protein kinases, MEKK and MUK. Oncogene, 1996, 12: 641 -650.
    [71] Atfi A, Buisine M, Mazars A, Gespach C. Induction of apoptosis by DPC4, a transcriptional factor regulated by transforming growth factor-beta through stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) signaling pathway. J. Biol. Chem, 1997,272: 24731 -24734.
    [72] Zhang Y, Zhou L, Miller CA. A splicing variant of a death domain protein that is regulated by a mitogen-activated kinase is a substrate for c-Jun N-terminal kinase in the human central nervous system. Proc. Natl. Acad. Sci. USA, 1998, 95: 2586-2591.
    [73] Lisovsky M, Itoh K, Sokol SY. Frizzled receptors activate a novel JNK-dependent pathway that may lead to apoptosis. Curr. Biol., 2002, 12: 53-58.
    [74] Moreno E, Basler K, Morata G. Cells compete for decapentaplegic survival factor to prevent apoptosis in Drosophila wing development. Nature, 2002, 416: 755-759.
    
    [75] New L and Han J. The p38 MAP kinase pathway and its biological function. Trends Cardiovasc. Me., 1998, 8: 220-229.
    
    [76] Stein B, Yang MX, Young DB, Janknecht R, Hunter T, Murray BW, Barbosa MS. p38-2, a novel mitogen-activated protein kinase with distinct properties. J. Biol. Chem., 1997, 272: 19509 -19517.
    
    [77] Beyaert R, Cuenda A, Vanden Berghe W, Plaisance S, Lee JC, Haegeman G, Cohen P. and Fiers W. The p38/RK mitogen-activated protein kinase pathway regulates interleukin-6 synthesis response to tumor necrosis factor. EMBO J, 1996, 15: 1914-1923.
    
    [78] Huot J, Houle F, Marceau, F and Landry J. Oxidative stress-induced actin reorganization mediated by the p38 mitogen-activated protein kinase/heat shock protein 27 pathway in vascular endothelial cells. Circ. Res. 1997, 80: 383 -392.
    
    [79] Zhu T, and Lobie P E, Janus. kinase 2-dependent activation of p38 mitogen-activated protein kinase by growth hormone. J. Biol. Chem., 2002,275:2103-2114.
    
    [80] Xia Y. MEK kinase 1 is critically required for c-Jun N-terminal kinase activation by proinflammatory stimuli and growth factor-induced cell migration. Proc. Natl Acad. Sci. USA, 2002, 97: 5243-5248.
    [81] Yujiri T, Sather S, Fanger CR & Johnson GL. Role of MEKK1 in cell survival and activation of JNK and ERK pathways de/Ened by targeted gene disruption. Science, 1998, 282: 1911-1914.
    [82] Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature, 2001, 410: 37-40.
    [83] Treisman R. Regulation of transcription by MAP kinase cascades. Curr. Opin. Cell Biol, 1996, 8: 205-215.
    [84] Kallunki T, Deng T, Hibi M & Karin, M. c-Jun can recruit JNK to phosphorylate dimerization partners via specific docking interactions. Cell, 1996, 87: 929-939.
    [85] Shaw PE, Frasch S and Nordheim A. Repression of c-fos transcripttion is mediated through p67SRF bound to the SRE. The EMBO Journal, 1989, 8: 2567-2574.
    [86] Han J, Jiang Y, Li Z, Kravchenko VV, Ulevitch RJ. Activation of the transcription factor MEF2C by the MAP kinase p38 in inΦammation. Nature, 1997, 386: 296-299.
    [87] Chen CY. Nucleolin and YB-1 are required for JNK-mediated interleukin-2 mRNA stabilization during T-cell activation. Genes Dev. 2000, 14: 1236-1248.
    [88] Winzen R. The p38 MAP kinase pathway signals for cytokine-induced mRNA stabilization via MAP kinase-activated protein kinase 2 and an AU-rich region-targeted mechanism. EMBO J, 1999, 19: 6742-6753.
    
    [89] Lasa M. Regulation of cyclooxygenase 2 mRNA stability by the mitogen-activated protein kinase p38 signaling cascade. Mol. Cell. Biol., 1998, 20: 4265-4274.
    
    [90] Graves LM. Regulation of carbamoyl phosphate synthetase by MAP kinase. Nature, 2000, 403: 328-332.
    
    [91] Palmer A, Gavin AC, Nebreda AR. A link between MAP kinase and p34(cdc2)/cyclin B during oocyte maturation: p90(rsk) phosphorylates and inactivates the p34(cdc2) inhibitory kinase Myt1.EMBO J., 1998, 17: 5037-5047.
    
    [92] Bhatt RR, Ferrell JEJ. The protein kinase p90 rsk as an essential mediator of cytostatic factor activity. Science, 1999, 286: 1362-1365.
    
    [93] Gross SD, Schwab MS, Lewellyn AL, Maller JL. Induction of metaphase arrest in cleaving Xenopus embryos by the protein kinase p90Rsk. Science, 1999, 286: 1365-1367.
    
    [94] Treinies I, Paterson HF, Hooper S, Wilson R, Marshall CJ, Activated MEK stimulates expression of AP-1 components independently of phosphatidylinositol 3-kinase (PI3-kinase) but requires a PI3-kinase signal To stimulate DNA synthesis. Mol. Cell. Biol. 1999, 19: 321-329.
    
    [95] Sabapathy K, et al. JNK2 is required for efficient T-cell active- tion and apoptosis but not for normal lymphocyte development. Curr.Biol. 1999,9: 116-125.
    [96] Xia Z, Dickens M, Raingeaud J, Davis RJ & Greenberg ME. Opposing effects of ERK and JNKp38 MAP kinases on apoptosis. Science, 1995,270: 1326-1331.
    
    [97] Yang D. Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature, 1997, 389: 865-870.
    [98] Le-Niculescu H, et al. Withdrawal of survival factors results in activation of the JNK pathway in neuronal cells leading to Fas ligand induction and cell death. Mol. Cell. Biol., 1999, 19:751-763.
    [99] Behrens A, Sibilia M, Wagner EF. Amino-terminal phosphorylation of c-Jun regulates stressinduced apoptosis and cellular proliferation. Nature Genet, 1999, 21:326-329.
    [100] Bonni A. Cell survival promoted by the Ras-MAPK signaling pathway by transcriptiondependent and -independent mechanisms. Science, 1999, 286:1358-1362.
    [101] Sheng Z, Knowlton K, Chen J, Hoshijima M, Brown JH, Chien KR. Cardiotrophin 1 (CT-1) inhibition of cardiac myocyte apoptosis via a mitogen-activated protein kinase-dependent pathway. Divergence from downstream CT-1 signals for myocardial cell hypertrophy. J Biol Chem., 1997, 272: 5783-5791.
    
    [102] Parrizas M, Saltiel AR, LeRoith D. Insulin-like growth factor 1 inhibits apoptosis using the phosphatidylinositol 3'-kinase and mitogen-activated protein kinase pathways. J Biol Chem., 1997, 272: 154-161.
    
    [103] De Windt LJ, Lim HW, Taigen T, Wencker D, Condorelli G, Dorn GW II, Kitsis RN, Molkentin JD. Calcineurin-mediated hypertrophy protects cardiomyocytes from apoptosis in vitro and in vivo: An apoptosis-independent model of dilated heart failure. Circ Res., 2000, 86: 255-263.
    
    [104] Zhu W, Zou Y, Aikawa R, Harada K, Kudoh S, Uozumi H, Hayashi D, Gu Y, Yamazaki T, Nagai R, Yazaki Y, Komuro I. MAPK superfamily plays an important role in daunomycin-induced apoptosis of cardiac myocytes. Circulation., 1999, 100: 2100-2107.
    
    [105] Yue TL, Wang C, Gu JL, Ma XL, Kumar S, Lee JC, Feuerstein GZ, Thomas H, Maleeff B, Ohlstein EH. Inhibition of extracellular signal-regulated kinase enhances ischemia/reoxygenation-induced apoptosis in cultured cardiac myocytes and exaggerates reperfusion injury in isolated perfused heart. Circ Res., 2000, 86: 692-699.
    [106] Bueno OF, De Windt LJ, Tymitz KM, Witt SA, Kimball TR, Klevitsky R, Hewett TE, Jones SP, Lefer DJ, Peng CF, Kitsis RN, Molkentin JD. The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. EMBO J., 2000, 19: 6341-6350.
    
    [107] Moghal N,Sternberg PW. Multiple positive and negative regulators of sig naling by the EGR2 receptor. Current Opinionin Cell Biology, 1999, 11: 190.
    
    [108] Slieker LJ, Martensen TM, Lane MD. Synthesis of epidermal growth factor receptor in humnan A431 cells. Glycosylatior depenent acquisition of ligandbinding activity occurs post-translationally in the endoplasmic reticulum, J. Biol. Chem., 1986,261: 15233.
    
    [109] Jorissen RN., Walker F, Pouliot N, et al. Epidenmal growth factor receptor: mexchanisms of activation and signaling. Exp Cell Res, 2003,284:31.
    
    [110] Ward CW, Garrett TP. The relationship between the L I and L2 domains of the insulin and epidenmal growth factor receptors and leucine-rich repeat modules. BMC Bio Inf, 2001, 2 (1): 4.
    
    [111] Sako Y, Minoghchi S, Yanagida T. Single-molexvlc imaging of EGFR signaling on the surface of living cells. Nat. cell Biol, 2000, 2: 168.
    [112] Mineo C, Gill GN, Anderson RG. Regulated migration of epidermal growth factor receptor from caveolae.J. Biol. Chem., 1999, 274: 30636.
    [113] Yn X, Shanna IUD, Takahashi T, et al. Ligand independent dimer formation of epidermal growth factor receptor (EGFR) is a step separable from ligand induced EGFR signaling. Mal Bin Cell, 2002, 13:2547.
    [114] Moriki T, Marnyama H, Marnyama IN. Activation of prefonnexl EGF receptor dimer by ligand induced rotation of the transmembrane domain. Mal. Bial, 2001, 311: 1011.
    [115] Olayioyc MA, Neve RM, Lane HA, et al. The EerbB signaling network: receptor heterdimerization in development and cancer. The EMBO .J., 2001, 19 (13): 3159.
    [116] Yamauchi T, Ueki k, Tobe K, et al. Tyrosine phosphorylation of the EGF rceptor by the kinase, Tak2 is induced by growth hormone. Nature, 1997, 390 (6655):91.
    [117] DUNDR M, MISTELI T, OLSON M J. The dynamics of postmitotic reassembly of the nucleolus. J Cell Biol, 2000, 150: 433-436.
    [118] Wille A, Gerber A, Heimburg A, et al. Cathepsin L is involved in cathepsin D processing and regulation of apoptosis in A549 human lung epithelial cells. Biol Chem,2004 Jul;385(7):665-70.
    [119] Gaetano Leto, Francesca M. Tumminello, et al. Cathepsin D expression levels in nongynecological solid tumors: Clinical and therapeutic implications. Clinical & Experimental Metastasis 2004,0: 1-16.
    
    [120] Guy Berchem, Murielle Glondu, Michel Gleizes, et al. Cathe-psin-D affects multiple tumor progression steps in vivo: proliferation angiogenesis and apoptosis. Oncogene ,2002 21,5951-5955.
    
    [121] Ralph Kno¨ 11, Masahiko Hoshijima, Hal M, et al. The Cardiac Mechanical Stretch Sensor Machinery Involves a Z Disc Complex that Is Defective in a Subset of Human Dilated Cardiomyopathy. Cell, 2002 ,Vol. 111, 943-955.
    
    [122] Gina Nicholas,Mark Thomas, Brettlangley, et al.Titin-Cap Associates With, and Regulates Secretion of, Myostatin. Journal of cellular physiology, 2002,193:120-131.
    
    [123] Shanru Li, Joel Weidenfeld, Edward E, et al.Transcriptional and DNA Binding Activity of the Foxp1/2/4 Family is Modulated by Heterotypic and Homotypic Protein Interactions. Molecular and cellular biology,2004, 809-822.
    
    [124] Masuko Katoh,Masaru Katoh. Human FOX gene family .International Journal of Oncology, 2004,25: 1495-1500.
    
    [125] Graf K, Xi X, Fleck E, et al. Troglitazone inhibits angiotensin II-induced DNA synthesis and migration in vascular smooth muscle cells. FEBS lett, 1997, 400:119-121.
    
    [126] Xi X, Graf K, Goetze S, Hsueh WA, et al. Inhibition of MAP kinase blocks insulin-mediated DNA synthesis and transcriptional activation of c-fos by Elk-1 in vascular. FEBS lett, 1997, 417:283-286.
    
    [127] De Windt LJ, Lim HW, Taigen T,et al. Calcineurin-mediated hypertrophy protects cardiomyocytes from apoptosis in vitro and in vivo: An apoptosis-independent model of dilated heart failure. Circ Res., 2000, 86: 255-263.
    
    [128] Zhu W, Zou Y, Aikawa R,et al. MAPK superfamily plays an important role in daunomycin-induced apoptosis of cardiac myocytes. Circulatio, 1999, 100: 2100-2107.
    
    [129] Yue TL, Wang C, Gu JL,et al. Inhibition of extracellular signal-regulated kinase enhances ischemia/reoxygenation-induced apoptosis in cultured cardiac myocytes and exaggerates reperfusion injury in isolated perfused heart. Circ Res., 2000, 86: 692-699.
    
    [130] Bueno OF, De Windt LJ, Tymitz KM,et al. The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. EMBO J., 2000, 19: 6341-6350.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700