免疫治疗结束后肿瘤微环境中的IFN-γ撤除通过增强整合素αvβ3信号导致有潜力的肿瘤细胞侵袭转移
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过去的二十年在细胞和分子免疫的进展使我们进一步认识了肿瘤-宿主之间相互作用,这为肿瘤免疫治疗的发展创造了极好的机会。迄今为止,在调节免疫系统方面已经设计出一些非常有效肿瘤免疫治疗方法并取得了非常好的治疗效果。尽管这些方法也取得了令人激动的效果,但完全清除肿瘤的目的却是很难达到。实体肿瘤免疫治疗后肿瘤复发和转移却是导致患者致命最终和最后的结果。现在已经发现在肿瘤微环境中肿瘤细胞也有一些免疫分子的表达,这却成为肿瘤进一步进展和更有利于肿瘤逃逸以及抑制宿主肿瘤免疫的因素。但仍然不清楚的是在免疫治疗过程中哪些因子具有双刃剑的作用,又能够抑制肿瘤侵袭转移,而在免疫治疗后这些因子的下调是否会成为促进肿瘤侵袭转移的因素?
     IFN-γ是由活化的淋巴细胞分泌的一种重要的细胞因子,并且已经发现它的一些抗肿瘤活性机制,包括通过介导FAS依赖和非FAS依赖细胞凋亡途径改变肿瘤细胞的特性而更有利于宿主免疫识别和免疫攻击。IFN-γ也被发现能够通过下调肿瘤内生抗原促进肿瘤免疫逃逸,以及上调肿瘤细胞表面负性免疫调节分子B7-H1的表达诱导负性免疫调节。但是在肿瘤微环境中增加IFN-γ的水平仍然是一种关键而且与众不同的有效免疫治疗方法。然而,尽管在肿瘤生长方面IFN-γ正性和负性效果有大量广泛的研究报道,却很少有关于IFN-γ影响肿瘤侵袭转移行为方面的的报道。在我们的研究中发现了在免疫治疗结束后肿瘤细胞侵袭转移潜力的增强,其可能的机制是免疫治疗结束后微环境中的IFN-γ水平降低增强了肿瘤细胞对ECM分子的反应性,并加强活化肿瘤细胞表面的整合素ανβ3信号通路,而且这种免疫治疗后的缺陷可以利用作用肿瘤细胞整合素分子ανβ3的重组蛋白(CH50多肽)补救,达到抑制肿瘤细胞生长和侵袭的作用。本实验研究内容主要分为以下五部分:
     第一部分:研究肿瘤免疫治疗后残存肿瘤细胞的侵袭转移能力。免疫治疗并不能完全清除肿瘤细胞,而且我们不清楚残存肿瘤的侵袭转移能力又发生什么改变?体内转染4-1BBL/sPD-1质粒,RT-PCR和Western blot结果显示,转染48 h后,小鼠肌肉注射部位均有4-1BBL和sPD-1 mRNA和蛋白质表达。体内转染p4-1BBL/psPD-1质粒进行基因治疗,能够显著抑制小鼠腿部肿瘤生长,肿瘤生长速率显著低于空白对照组和pcDNA3.1组。动物实验结果表明,经过p4-1BBL/psPD-1质粒治疗的肿瘤组织块其肝移植瘤明显大于空白对照组和pcDNA3.1组的肝移植瘤,肝表面可见较多的转移结节。
     第二部分:研究免疫治疗结束后残存的肿瘤细胞侵袭转移能力的变化及其影响因素。IFN-γ是肿瘤免疫治疗中非常重要的细胞因子,IFN-γ具有明显抑制小鼠腿部肿瘤生长的作用。采用IFN-γELISA试剂盒检测,结果显示p4-1BBL/psPD-1组治疗结束时和治疗结束后14天IFN-γ浓度降低10倍。IFN-γ治疗后的移植瘤停用IFN-γ治疗,肝移植瘤生长速度加快,瘤体明显增大,而且肝表面可见多个转移结节。体外经IFN-γ处理的B16细胞和H22细胞分别接种于C57BL/6和BALB/c小鼠的肝脏,16天后解剖小鼠,IFN-γ撤除组(接种IFN-γ处理的瘤细胞后,动物不再进行免疫治疗组),肿瘤生长明显增强,瘤体明显增大。
     第三部分:研究旨在观察IFN-γ处理和撤除后肿瘤细胞生物学特性的改变,并探讨引起这些生物学特性改变可能的机制。IFN-γ处理后浓度降低s速度与细胞体外增殖速度成正比。而且IFN-γ撤除后B16细胞在抵抗MMC诱导凋亡、粘附以及恢复粘附能力、侵袭能力等方面均明显高于对照组细胞。同时应用RealTime-PCR、western-blot检测相关基因变化情况:与增殖、抵抗凋亡正相关的基因如c-Myc、Bcl-2和Bcl-xL表达均明显高于对照组细胞:而负相关基因如p21~(WAF1)、p27~(Kip)和Bax均明显低于对照组细胞;Western blot检测ERK1/2、JNK磷酸化,IFN-γ撤除后B16细胞的ERK1/2、JNK磷酸化水平增高。尾静脉接种IFN-γ处理B16细胞于小鼠,5、24小时小鼠肺部肿瘤荧光数目明显高于对照组;14天后IFN-γ撤除组肺部转移结节数目明显多于对照组,并且小鼠的存活时间明显短于对照组。
     第四部分:探讨IFN-γ撤除后B16细胞侵袭潜能增强可能的机制。采用Real-time PCR,RT-PCR和Western blot检测αν、β3、CDC2、MMP2、MMP9mRNA和蛋白表达。结果显示:IFN-γ处理后的B16细胞与ECM作用后,αν、β3、CDC2、MMP2、MMP9上调,Western blot检测IFN-γ撤除后的B16细胞与ECM作用后FAK磷酸化水平增强,并且时间持续更久。荧光显微镜检测细胞微丝F-actin聚合能力增强。Zymography assay结果显示,活化型MMP2、MMP9蛋白水平增高。
     第五部分:探讨防止肿瘤免疫治疗后残存肿瘤细胞侵袭潜能增强的可能措施。在体内转染pCH510 12 h、24 h、48 h和72 h后,通过RT-PCR检测到小鼠肝脏细胞表达的CH50的mRNA,同时在体内转染pCH510 72 h后应用Western-blot检测到小鼠肝脏组织和血清中表达的CH50蛋白。小鼠尾静脉肿瘤肺转移模型结果显示,IFN-γ撤除后的B16细胞组的小鼠肺部肿瘤转移结节最多。体外IFN-γ撤除后联合CH50处理B16细胞能有效地抑制肿瘤细胞转移至肺部,同时体内表达CH50也同样能抑制肿瘤的转移。在小鼠肿瘤移植模型中我们观察到,CH50无论在免疫治疗过程中和免疫治疗后都能极大地抑制移植瘤的生长和侵袭。
Progress in molecular and cellular immunology during the past two decades hasadvanced our understanding of tumor-host interactions and opened extraordinaryopportunities for the development of antitumor immunotherapy. So far, there aremany available approaches designed to modulate the immune system for a betterefficacy in tumor immunotherapy. Although the exciting efficacy has been obtained byusing these approaches, the complete tumor eradication occurs infrequently. Tumorrecurrence and metastasis are frequently the final and fatal step in the progression ofsolid malignancies in patients after immunotherapy. It has been found that a variety ofmolecular alterations occur in tumors so that they become more progressive and betterequipped to evade or inhibit host defenses. However, it is still unclear whichfactor(s) is responsible for the inhibition of tumor metastasis during immunotherapyand what happens if such factor(s) is downregulated after immunotherapy.
     Interferonγ(IFN-γ) is an important cytokine produced by the activatedlymphocytes and contributes to antitumor activity via several mechanisms, includingphenotypic or functional modification of neoplastic cells, rendering them moreamenable to immune recognition and attack via Fas-dependent and Fas-independentpathways. Although IFN-γ, has also been found to promote tumor immune evasionby downregulating cellular level of an endogenous tumor antigen and induce thenegative immune regulation by upregulating B7-H1 expression, the increase ofIFN-γlevel is still crucial for the therapeutic efficacy of different immunotherapeuticapproaches. However, despite the extensive studies on the positive and negative effectsof IFN-γon tumor growth, little is known about the influence of IFN-γon the metastatic behavior of tumor cells.
     In this study, we found that the metastatic potential of tumor cells was increasedafter the termination of immunotherapy. Underlying mechanisms involve the increasedactivity of integrin.Theαvβ3 signaling pathway and the increased responses of tumorcells to ECM molecules after the removal of IFN-γ. This pitfall of immunotherapytermination could be remedied by the administration of a recombinant polypeptide offibronectin, which counteracts the increasedαvβ3 signaling of tumor cells. Thesefindings suggest that the termination of immunotherapy, especially the drop of IFN-γ,may increase the risk of tumor metastasis and that targetingαvβ3 signaling.Thisexperiments are subdivided into four parts.
     Part 1: To explore the invasive behavior of tumor cells after immunotherapy.Although the exciting efficacy has been obtained by using tumor immunotherapy. Thecomplete tumor eradication occurs infrequently. Plasmid p4-1BBL was injected intomuscle of mice. The expressed 4-1BBL and sPD-1 were identified by RT-PCR andWestern blot Gene therapy with p4-1BBL/psPD-1 inhibits the tumor growth but theresidual tumor exhibits an enhanced capability of invasive growth. The donor mice(n=8 per group) were inoculated by subcutaneous injection of B16 cells, and genetherapy with p4-1BBL/psPD-1 was performed. Small pieces of tumor tissues afterimmunotherapy were transplanted to recipient mice. The transplanted tumors weremeasured and other tumor nodes in the liver of recipient mice were counted. The resultshowed that the transplanted tumors from p4-1BBL/psPD-1-treated mice grew fasterthan those from control mice, concomitant with the appearance of more satellitenodules around the main tumor.
     Part 2: To explore which factor(s) is responsible for the enhanced of the residualtumor metastasis after immunotherapy and what happens if such factor(s) is changed inmicroenvironment. Interferonγ(IFN-γ) is an important cytokine produced by theactivated lymphocytes and contributes to antitumor activity. IFN-γexpression in tumormicroenvironment was 10 fold lower several days after the termination of P4-1BBLtransfaction. Gene therapy with pIFN-γinhibits the tumor growth but the residualtumor exhibits an enhanced capability of invasive growth. The donor mice (n=8 pergroup) were inoculated by subcutaneous injection of B16 cells, and gene therapy with pIFN-γwas performed. Small pieces of tumor tissues after immunotherapy weretransplanted to recipient mice. The transplanted tumors were measured and othertumor nodes in the liver of recipient mice were counted. The result showed that thetransplanted tumors from pIFN-γ-treated mice grew faster than those from controlmice, concomitant with the appearance of more satellite nodules around the maintumor. B16 cells and H22 cells were treated with IFN-γ(20 ng/ml) in vitro for 48 h,and then injected into the liver of C57BL/6 and BALB/c mice (n=8 per group)respectively. The mice were sacrificed d14 later. The result showed that the injectedinto the liver tumors from IFN-γtreatment mice grew faster than those from controlmice, concomitant with the appearance of more satellite nodules around the maintumor.
     Part 3: This study was designed to investigate the tumor cells biologicalphenotype after the treatment of the IFN-γand to analyze the possible mechanism.Decrease or removal of IFN-γresulted in the increase of tumor cell proliferation.Similarly, and the cells were more resistant to MMC-induced apoptosis. The resultsshowed that the expression of c-Myc, Bcl-2, and Bcl-xL was down-regulated and thatof p21~(WAF1), p27~(Kip1), and Bax was up-regulated in the presence of IFN-γ, but theexpression pattern of these genes was totally reversed after the decrease or removal ofIFN-γ. And the activation of ERK and JNK in tumor cells was intensified in therecovered tumor cells. Adhesion assay showed that the continuous presence of IFN-γslightly suppressed the adhesive ability of tumor cells to fibrinogen, fibronectin andlaminin, whereas the adhesion of tumor cells to these molecules was strongly increased24 h after the removal of IFN-γ. The increased adhesive ability of tumor cells lastedfor several days after the removal of IFN-γ. After the injection of CSFE-labeled B16cells into mice via tail vein, the fluorescent spots in lung tissues, both 5 h and 24 hafter tumor cell injection, were significantly increased in the treatment/recover group.The results showed that the metastatic tumor nodes in lung were significantlyincreased and the survival of mice was shortened if B16 cells were pretreated withIFN-γbefore inoculation.
     Part 4: To elucidate the molecular mechanism involved in the increased invasivegrowth and metastasis of tumor cells after IFN-γ. The results showed that the activation of FAK in tumor cells was intensified in the recovered tumor cells,indicating thatαvβ3 signalling pathway is indeed intensified. The expression of cdc2gene, a down-stream gene ofαvβ3 signalling pathway, was up-regulated in thepresence of matrigel, and further up-regulated in the recovered cells. The productionand activation of MMP-2 and MMP-9, and the polymerization of actin in response toECM molecules were also increased in the recovered B16 cells.
     Part 5: This study was designed to explore possible method of therapy that theresidual tumor metastasis were enhanced after immunotherapy. The CH50 mRNAs of12 h, 24 h, 48 h and 72 h on hepatic cells of the mouse after in vivo transfection ofpCH510 by i.v. injection were detected by RT-PCR. 72 h after in vivotransfection of pCH510 by i.v. injection, the expressed CH50 in serum or livertissue was detected by Western blot. The results showed that the in vitropretreatment with IFN-γsignificantly increased the lung metastasis of tumor cells,which was abolished by in vivo expressed CH50. The in vitro pretreatment of tumorcells with IFN-γtogether with CH50 also suppressed the tumor metastasis to lung sothat the in vivo expressed CH50 effectively inhibited the lung metastasis of tumor cells.We then investigated the effect of CH50 in immunotherapy/transplantation model.The treatment with in vivo expression of CH50 either during immunotherapy (in donormice) or after immunotherapy (in recipient mice) significantly inhibited the invasivegrowth of transplanted tumor.
引文
1. Goodwin RG, Din WS, Davis-Smith T et al. Molecular cloning of a ligand for the inducible T cell gene 4-1BB: a member of an emerging family of cytokines with homology to tumor necrosis factor [J]. Eur J Immunol, 1993; 23(10): 2631.
    2. Pollok KE, Kim YJ, Zhou Z et al. Inducible T cell antigen 4-1BB. Analysis of expression and function [J]. J Immunol, 1993; 150(3): 771.
    3. Wilcox RA, Chapoval AI, Gorski KS et al. Cutting edge: expression of functional CD137 receptor by dendritic cells [J]. J Immunol, 2002; 68(9): 4262.
    4. De Benedette MA, Shahinian A, Mak TW et al. Costimulation of CD282 T lymphocytes by 4-1BB ligand [J]. J Immunol, 1997; 158(2): 551.
    5. Cannons JL, Lau P, Ghumman B et al. 4-1BB ligand induces cell division, sustains survival, and enhances effector function of CD4 and CD8 T cells with similar efficacy [ J ]. J Immunol, 2001; 167(3): 1313.
    6. Shuford, WW, Klussman K, Tricher DD et al. 4-1BB costimulatory signals preferentially induce CD8+ T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses [ J ]. J Exp Med., 1997; 186(1): 47.
    7. Katina Saoulli, Soo Young Lee, Jennifer et al. CD28-independent, TRAF2-dependent costimulation of resting T cells by 4-1BB ligand [ J ]. J Exp Med, 1998; 187(11): 1849.
    8. Yoshida H, Katayose Y, Unno M, Suzuki M, Kodama H, Takemura S, Asano R, Hayashi H, Yamamoto K, Matsuno S, Kudo T. A noveladenovirus expressing human 4-1BB ligand enhances antitumor immunity. Cancer Immunol Immunother 2003; 52: 97-106.
    9. Gollob JA, Sciambi CJ, Huang Z, Dressman HK. Gene expression changes and signaling events associated with the direct antimelanoma effect of IFN-g. Cancer Res 2005;65:8869-77.
    10. Karmakar S, Dhar R, Das C. Inhibition of cytotrophoblastic (JEG-3) cell invasion by interleukin 12 involves an interferon gamma-mediated pathway. J Biol Chem 2004; 279:55297-307.
    11. Van Nimwegen MJ, van de Water B. Focal adhesion kinase: a potential target in cancer therapy. Biochem Pharmacol 2007; 73: 597- 609.
    12. Mitra SK, Schlaepfer DD. Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr Opin Cell Biol 2006; 18:516-23.
    13. Manes T, Zheng DQ, Tognin S, Woodard AS, Marchisio PC, Languino LR.αvβ 3 integrin expression up-regulates cdc2, which modulates cell migration. J Cell Biol 2003; 161:817-26.
    14. Felding-Habermann B. Integrin adhesion receptors in tumor metastasis. Clin Exp Metastasis 2003; 20:203-13.
    15. Popow A, Nowak D, Malicka-Blaszkiewicz M. Actin cytoskeleton and beta-actin expression in correlation with higher invasiveness of selected hepatoma morris 5123 cells. J Physiol Pharmacol 2006; 57 (Suppl 7): 111-23.
    16. CheukAT, Mufti GJ,GuinnBA. Role of4-1BB:4-1BB ligand in cancer immunotherapy. Cancer Gene Ther 2004; 11:215-26.
    17. Zhang H, Merchant MS, Chua KS, et al. Tumor expression of 4-1BB ligand sustains tumor lyticTcells. Cancer BiolTher 2003; 2:579-86.
    18. Xu DP, Sauter BV, Huang TG, Meseck M,Woo SL, Chen SH. The systemic administration of Ig-4-1BB ligand in combination with IL-12 gene transfer eradicates hepatic colon carcinoma. GeneTher 2005;12: 1526-33
    1. Gilboa E. How tumors escape immune destruction and what we can do about it. Cancer Immunol Immunother 1999; 48:382-5.
    2. Rivoltini L, Carrabba M, Huber V, Castelli C. Novellino L, Dalerba P,Mortarini R, Arancia G, Anichini A, Fais S. Parmiani G. Immunity to cancer:attack and escape in T lymphocyte-tumor cell interaction. Immunol Rev 2002; 188:97-113.
    3. Kaplan DH. Shankaran V. Dighe AS, Stockert E, Aguet M, Old LJ, Schreiber RD. Demonstration of an interferon-g dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci USA 1998; 95: 7556-61.
    4. LiuK, Abrams SI. Coordinate regulation of IFN consensus sequence-binding protein and caspase-1 in the sensitization of human colon carcinoma cells to Fas-mediated apoptosis by IFN-g. J Immunol 2003; 170:6329-37.
    5. Detjen KM, Farwig K, Welzel M, Wiedenmann B, Rosewicz S. IFN-g inhibits growth of human pancreatic carcinoma cells via caspase-1 dependent induction of apoptosis. Gut 2001; 49:251-62.
    6. Yoshida H. Katayose Y, Unno M, Suzuki M, Kodama H, Takemura S, Asano R, Hayashi H, Yamamoto K, Matsuno S, Kudo T. A noveladenovirus expressing human 4-1BB ligand enhances antitumor immunity. Cancer Immunol Immunother 2003; 52: 97-106.
    7. Street SE, Cretney E, Smyth MJ. Perforin and interferon-g activities independently control tumor initiation, growth, and metastasis. Blood 2001; 97:192-7.
    8. Beatty GL, Paterson Y. IFN-g can promote tumor evasion of the immune system in vivo by down-regulating cellular levels of an endogenous tumor antigen. J Immunol 2000; 165:5502-8.
    9. 11. Xiao H, Huang B, Yuan Y, Li D, Han LF, Liu Y, Gong W, Wu FH, Zhang GM, Feng ZH. Soluble PD-1 facilitates 4-1BBL-triggered antitumor immunity against murine H22 hepatocarcinoma in vivo. Clin Cancer Res 2007; 13:1823-30.
    10. 12. He YF, Wang XH, Zhang GM, Chen HT, Zhang H, Feng ZH. Sustained low-level expression of interferon-g promotes tumor development: potential insights in tumor prevention and tumor immunotherapy. Cancer Immunol Immunother 2005; 54:891-7.
    11. Inoue S, Hakamata Y, Kaneko M, Kobayashi E. Gene therapy for organ grafts using rapid injection of naked DNA: application to the rat liver. Transplantation,2004, 77(7): 997-1003
    12. Maruyama H, Higuchi N, Kameda S, Miyazaki J, Gejyo F. Rat liver-targeted naked plasmid DNA transfer by tail vein injection. Mol Biotechnol, 2004, 26(2): 165-172.
    13. Cannons JL, Lau P, Ghumman B, DeBenedette MA, Yagita H, Okumura K, Watts TH. 4-1BB ligand induces cell division, sustains survival, and enhances effector function of CD4 and CD8 T cells with similar efficacy. J Immunol, 2001, 167(3):1313-1324.
    14. Shuford WW, Klussman K, Tritchler DD, Loo DT, Chalupny J, Siadak AW, Brown TJ, Emswiler J, Raecho H, Larsen CP, Pearson TC, Ledbetter JA, Aruffo A, Mittler RS. 4-1BB costimulatory signals preferentially induce CD8+ T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses. J Exp Med, 1997, 186(1): 47-55.
    1. CheukAT, Mufti GJ, GuinnBA. Role of4-1BB:4-1BB ligand in cancer immunotherapy. Cancer Gene Ther 2004: 11:215-26.
    2. LiuK, Abrams SI. Coordinate regulation of IFN consensus sequence-binding protein and caspase-1 in the sensitization of human colon carcinoma cells to Fas-mediated apoptosis by IFN-g. J Immunol 2003; 170:6329-37.
    3. Detjen KM, Farwig K, Welzel M, Wiedenmann B, Rosewicz S. IFN-g inhibits growth of human pancreatic carcinoma cells via caspase-1 dependent induction of apoptosis. Gut 2001; 49:251-62.
    4.Yoshida H, Katayose Y, Unno M, Suzuki M, Kodama H. Takemura S, Asano R, Hayashi H, Yamamoto K, Matsuno S, Kudo T. A noveladenovirus expressing human 4-1BB ligand enhances antitumor immunity. Cancer Immunol Immunother 2003; 52: 97-106.
    5. Street SE, Cretney E, Smyth MJ. Perforin and interferon-g activities independently control tumor initiation, growth, and metastasis. Blood 2001;97:192-7.
    6. Beatty GL, Paterson Y. IFN-g can promote tumor evasion of the immune system in vivo by down-regulating cellular levels of an endogenous tumor antigen. J Immunol 2000; 165:5502-8.
    7. Xiao H, Huang B, Yuan Y, Li D, Han LF. Liu Y, Gong W, Wu FH, Zhang GM,Feng ZH. Soluble PD-1 facilitates 4-1BBL-triggered antitumor immunity against murine H22 hepatocarcinoma in vivo. Clin Cancer Res 2007; 13:1823-30.
    8. He YF, Wang XH. Zhang GM, Chen HT, Zhang H, Feng ZH. Sustained low-level expression of interferon-g promotes tumor development: potential insights in tumor prevention and tumor immunotherapy. Cancer Immunol Immunother 2005; 54:891-7.
    9.Andy J. Minnl, Gaorav P. Guptal, Peter M. Siegell, Paula D. Bos, Weiping Shu,Genes that mediate breast cancer metastasis to lung. Nature 2005; 436:518
    10. Gollob JA, Sciambi CJ, Huang Z, Dressman HK. Gene expression changes and signaling events associated with the direct antimelanoma effect of IFN-γ. Cancer Res 2005; 65:8869-77.
    11. Soraya Abouzahr, Georges Bismuth, Catherine Gaudin, Oliver Caroll Identification of target actin content and polymerization status as a mechanism of tumor resistance after cytolytic T lymphocyte pressure. Pnas 2005
    12. Khong, H. T. & Restifo, N. P. 2002 Nat. Immunol. 3:999-1005.
    13. HT Khong, NP Restifo Natural selection of tumor variants in the generation of"tumor escape" phenotypes Nature Immunology 2002 3:999
    14. Liu, K., Caldwell, S. A. & Abrams, S. I. 2005 Cancer Res. 65,4376-4388.
    15. Shankaran, V., Ikeda, H., Bruce, A. T., White, J. M., Swanson, P. E., Old, L. J.& Schreiber, R. D. Nature 2001 410,1107-1111.
    16. Chilakamarti V.Ramana,Nicholas Grammatikakis,Mikhail Chernov,Regulation of c-myc expression by IFN-γthrough Stat1-dependent and-independent pathways. EMBO .2000 19; 263:
    17. Mahitosh Mandal, Debdutta Bandyopadhyay, Thea M Goepfert. IFN induces expression of cyclin-dependent kinase inhibitors p21WAFl and p27Kipl that prevent activation of cyclin-dependent kinase by CDK-activating kinase.Oncogene 1998 16, 217
    18. Sang-Youel Park, Jae-Won Seol, You-Jin Leel, IFN-gamma enhances TRAIL-induced apoptosis through IRF-1. Eur.J. Biochem.2004 271; 4222
    19. John D. Gordan, Jessica A. Bertout, Cheng-Jun Hu,J. Alan Diehl, M. Celeste Simon. HIF-2a Promotes Hypoxic Cell Proliferation by Enhancing c-Myc Transcriptional Activity. Cancer Cell 2007 11, 335-347
    20. Angel Ortega, Paula Ferrer, Julian Carretero, Elena Obrador, Miguel Asensi,Jose' A. Pellicer, Jose' M. Estrela. Down-regulation of Glutathione and Bcl-2 Synthesis in Mouse B16 Melanoma Cells Avoids Their Survival during Interaction with the Vascular Endothelium.JBC 2003; 278: 39591
    21. Trikha M, Timar J, Zacharek A, Nemeth JA, Cai Y, Dome B, Somlai B, Raso E,Ladanyi A, Honn KV. Role for β3 integrins in human melanoma growth and survival. Int J Cancer 2002; 101: 156-167
    22. Jared A. Gollob, Catherine J. Sciambi, Zhiqing Huang, Holly K. Dressman. Gene expression changes and signaling events associated with the direct antimelanoma effect of IFN-gamma. Cancer Res 2005; 65: 8869
    1 Damsky CH, Ilic D. Integrin signaling: it's where the action is [J]. CurrOpin Cell B iol, 2002, 14 5: 594-602.
    2 张惠静,卢晓,蔡绍皙.整合素与肿瘤 [J].肿瘤防治研究,2002,29:425-27.
    3 Yamada KM, Miyamoto S. Integrin transmembrane signaling and cytoskeletal control. Curr Opin Cell Biol. 1995, 7: 681-689.
    4 Schwartz MA, Schaller MD, Ginsberg MH. Integrins: emerging paradigms of signal transduction. Annu Rev Cell Dev Biol. 1995, 11: 549-599.
    5 Giancotti FG, Ruoslahti E. Integrin signaling. Science, 1999, 285: 1028-1032.
    6 Kumar CC. Signaling by integrin receptors. Oncogene. 1998, 17: 1365-1373.
    7 Pilch J, Habermann R, Felding-Habermann B. Unique ability of integrin alphavbeta 3 to support tumor cell arrest under dynamic flow conditions. J Biol Chem 2002; 277: 21930-8.
    8 Rolli M, Fransvea E, Pilch J, Saven A, Felding-Habermann B. Activated integrin alphavbeta3 cooperates with metalloproteinase MMP-9 in regulating migration of metastatic breast cancer cells. Proc Natl Acad Sci U S A. 2003; 100: 9482-7.
    9 Xiaoyang Wu, Boyi Gan, Youngdong Yoo, Jun-Lin Guan. FAK Mediated Src Phosphorylation of Endophilin A2 Inhibits Endocytosis of MT1-MMP and Promotes ECM Degradation. Developmental Cell, 2005; 9: 185
    10 R. B. Maccioni V. Cambiazo Role of microtubule-associated proteins in the control of microtubule assembly. Physiological Reviews. 1995; 75: 835
    11 Nathan D. Gallant, Kristin E. Michael, and Andre's J. Garc(?)'a Cell Adhesion Strengthening: Contributions of Adhesive Area, Integrin Binding, and Focal Adhesion Assembly. Molecular Biology of the Cell 2005. 16; 4329
    12 Jared A. Gollob, Catherine J. Sciambi, Zhiqing Huang, Holly K. Dressman. Gene expression changes and signaling events associated with the direct antimelanoma effect of IFN-gamma. Cancer Res 2005; 65: 8869
    13 Rolli M, Fransvea E, Pilch J, Saven A, Felding-Habermann B. Activated integrin alphavbeta3 cooperates with metalloproteinase MMP-9 in regulating migration of metastatic breast cancer cells. Proc Natl Acad Sci USA 2003; 100:9482-7.
    14 Bendeck MP, Irvin C, Reidy M, Smith L, Mulholland D, Horton M, Giachelli CM. Smooth muscle cell matrix metalloproteinase production is stimulated via alphavbeta3 integrin. Arterioscler Thromb Vasc Biol 2000; 20:1467-72.
    15 Kayoko Ookata, Shin-ichi Hisanaga, Jeannette Chloe Bulinski, Hiromu Murofushi, Hiroyuki Aizawa,- Tomohiko J. Itoh, Cyclin B Interaction with Microtubule-associated Protein 4 Targets p34 eda Kinase to Micrombules and Is a Potential Regulator of M-phase Microtubule Dynamics. J C B,128; 1995:849
    16 Subrata Haldar, Aruna Basu, Carlo M. Croce. Bc12 Is the Guardian of Microtubule Integrity. Cancer Res 1997 57, 229-233
    17 Yun Dai, Xin-Yan Pei, Mohamed Rahmani, Daniel H. Conrad, Paul Dent, and Steven Grant. Interruption of the NF-κB pathway by Bay 11-7082 promotes UCN-01-mediated mitochondrial dysfunction and apoptosis in human multiple myeloma cells.Blood, 2004,103:2761
    18 Kim M, Carman CV, Springer TA, et al. Bi-direction altransmembrane signaling by cytoplasmic doma in separation in integrins [J].S cience,2003;301(5640 ): 17 20-17258.
    1. Fan Qu, Feng Zuohua, Zhang Guimei, et al. Effect of recombinant human fibronectin polypeptide CH50 on growth and metastasis of melanoma [J]. Acta Pharmacol Sin,1999,20(2): 175-178.
    2. Nesbit M, Herlyn M. Adhesion recepotrs in human melanoma progression. Invasion Metastasis, 1994, 95,14(1-6): 131.
    3. Humphries MJ, Olden K, Yamada KM. A synthetic peptide from fibronectin inhibits experimental metastasis of murine melanoma cells. Science, 1986, 233(4762):467.
    4. Hirasawa M, Shijubo N, Uede T, et al. Integrin expression and ability to adhere to extracellular matrix protein and endothelials cells in human lung cancer lines.Br J Cancer, 1994, 70(3):466.
    5. Liu Y, Huang B, Yuan Y, Gong W, Xiao H, Li D, Yu ZR, Wu FH, Zhang GM,Feng ZH. Inhibition of hepatocarcinoma and tumor metastasis to liver by gene therapy with recombinant CBD-HepⅡ polypeptide of fibronectin. Int J Cancer 2007;121:184-92.
    6. Gollob JA, Sciambi CJ, Huang Z, Dressman HK. Gene expression changes and signaling events associated with the direct antimelanoma effect of IFN-g. Cancer Res 2005;65:8869 - 77.
    7. Karmakar S, Dhar R, Das C. Inhibition of cytotrophoblastic (JEG-3) cell invasion by interleukin 12 involves an interferon gamma-mediated pathway. J Biol Chem 2004;279:55297 - 307.
    8. Pilch J, Habermann R, Felding-Habermann B. Unique ability of integrin αvβ3 to support tumor cell arrest under dynamic flow conditions. J Biol Chem 2002;277:21930- 8.
    9. Rolli M, Fransvea E, Pilch J, Saven A, Felding-Habermann B. Activated integrin αvβ3 cooperates with metalloproteinase MMP-9 in regulating migration of metastatic breast cancer cells. Proc Natl Acad Sci USA 2003;100:9482- 7.
    10. Van Nimwegen MJ, van de Water B. Focal adhesion kinase: a potential target in cancer therapy. Biochem Pharmacol 2007;73:597 - 609.
    11.Mitra SK, Schlaepfer DD. Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr Opin Cell Biol 2006; 18:516 - 23.
    12. Manes T, Zheng DQ, Tognin S, Woodard AS, Marchisio PC, Languino LR.αvβ3 integrin expression up-regulates cdc2, which modulates cell migration. J Cell Biol 2003;161:817- 26.
    13.Felding-Habermann B. Integrin adhesion receptors in tumor metastasis.Clin Exp Metastasis 2003:20:203 - 13.
    14. Popow A, Nowak D, Malicka-Blaszkiewicz M. Actin cytoskeleton and beta-actin expression in correlation with higher invasiveness of selected hepatoma morris 5123 cells. J Physiol Pharmacol 2006; 57 (Suppl 7):111 23.
    15.Nowak D, Krawczenko A, Dus D, Malicka-Blaszkiewicz M. Actin in human colon adenocarcinoma cells with different metastatic potential. Acta Biochim Polym 2002;49:823 - 8.
    16.Tian B, Li Y, Ji XN, Chen J, Xue Q, Ye SL, Liu YK, Tang ZY. Basement membrane proteins play an active role in the invasive process of human hepatocellular carcinoma cells with high metastasis potential. J Cancer Res Clin Oncol 2005;131:80-6.
    17. Reich R, Blumenthal M, Liscovitch M. Role of phospholipase D in laminin-induced production of gelatinase A (MMP-2) in metastatic cells. Clin Exp Metastasis 1995; 13:134 - 40.
    18.Stanton H, Gavrilovic J, Atkinson SJ, d' Ortho MP, Yamada KM, Zardi L,Murphy G. The activation of ProMMP-2 (gelatinase A) by HT1080 fibrosarcoma cells is promoted by culture on a fibronectin substrate and is concomitant with an increase in processing of MT1- MMP (MMP-14) to a 45 kDa form. J Cell Sci 1998; 111:2789 - 98.
    19. Lentini A, Provenzano B, Caraglia M, Shevchenko A, Abbruzzese A, Beninati S. Impairment of the metastatic activity of melanoma cells by transglutaminase-catalyzed incorporation of polyamines into laminin and matrigel. Amino Acids 2008;34:251 - 6.
    20. Mellor A, Munn DH. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol 2004;4:762 - 74.
    21.Bogdan C. Nitric oxide and the immune response. Nat Immunol 2001;2:907 - 16.
    22.Belperio JA, Keane MP, Arenberg DA, Addison CL, Ehlert JE, Burdick MD, Strieter RM. CXC chemokines in angiogenesis. J Leukocyte Biol 2000;68:1 - 8.
    23.Dias S, Boyd R, Balkwill F. IL-12 regulates VEGF and MMPs in a murine breast cancer model. Int J Cancer 1998:78:361-5.
    24. Mitola S, Strasly M, Prato M, Ghia P, Bussolino F. IL-12 regulates an endothelial cell-lymphocyte network: effect on metalloproteinase-9 production. J Immunol 2003;171:3725 - 33.
    25.R(?)uegg C, Yilmaz A, Bieler G, Bamat J, Chaubert P, Lejeune FJ. Evidence for the involvement of endothelial cell integrin avb3 in the disruption of the tumor vasculature induced by TNF and IFN-g. Nat Med. 1998;4:408 - 14.
    26. Strasly M, Cavallo F, Geuna M, Mitola S, Colombo MP, Forni G, Bussolino F. IL-12 inhibition of endothelial cell functions and angiogenesis depends on lymphocyte-endothelial cell cross-talk. J Immunol 2001; 166:3890-9.
    1. Adair, B. D. and Yeager, M. (2002). Three-dimensional model of the human platelet integrin aⅡbb3 based on electron cryomicroscopy and X-ray crystallography. Proc. Natl. Acad. Sci. USA99,14059-14064.
    2. Armulik, A., Nilsson,Ⅰ., von Heijne, G and Johansson, S. (1999). Determination of the border between the transmembrane and cytoplasmic domains of human integrin subunits. J. Biol. Chem. 274, 37030-37034.
    3. Barry, W. T., Boudignon-Proudhon, C., Shock, D. D., McFadden, A., Weiss, J. M., Sondek, J. and Parise, L. V. (2002). Molecular basis of CIB binding to the integrin aⅡb cytoplasmic domain. J. Biol. Chem. 277, 28877-28883.
    4. Barsukov, I. L., Prescot, A., Bate, N., Patel, B. C., Floyd, D. N., Bhanji, N.,Bagshaw, C. R., Letinic, K., Di Paolo, G, De Camilli, P. et al. (2003). PIP kinase type lg and b1-integrin cytoplasmic domain bind to the same region in the talin FERM domain. J.Biol. Chem. 278, 31202-31209
    5. Beckerle, M. C. (1990). The adhesion plaque protein, talin, is phosphorylated in vivo in chicken embryo fibroblasts exposed to a tumor-promoting phorbolester. Cell Regul.1,227-236.
    6. Beglova, N., Blacklow, S. C., Takagi, J. and Springer, T. A. (2002). Cysteinerich module structure reveals a fulcrum for integrin rearrangement upon activation. Nat.Struct. Biol. 9, 282-287.
    7. Bodeau, A. L., Berrier, A. L., Mastrangelo, A. M., Martinez, R. and LaFlamme, S. E.(2001). A functional comparison of mutations in integrin β cytoplasmic domains:effects on the regulation of tyrosine phosphorylation,cell spreading, cell attachment and b1 integrin conformation. J. Cell Sci. 114,2795-2807.
    8. Bokel, C. and Brown, N. H. (2002). Integrins in development: moving on, responding to, and sticking to the extracellular matrix. Dev. Cell 3, 311-321.
    9. Bouvard, D. and Block, M. R. (1998). Calcium/calmodulin-dependent protein kinase Ⅱ controls integrin α5β1-mediated cell adhesion through the integrin cytoplasmic domain associated protein-la. Biochem. Biophys. Res. Commun.252,46-50.
    10. Bouvard,D.,Molla,A.and Block, M. R. (1998). Calcium/calmodulindependent protein kinase Ⅱ controls α5β1 integrin-mediated inside-out signaling. J. Cell Sci. 111,657-665.
    11. Bouvard, D., Vignoud, L., Dupe-Manet, S., Abed, N., Fournier, H. N., Vincent-Monegat, C., Retta, S. F., Fassler, R. and Block, M. R. (2003). Disruption of focal adhesions by integrin cytoplasmic domain-associated protein-la. J. Biol. Chem. 278,6567-6574.
    12. Brakebusch, C. and Fassler, R. (2003). The integrin-actin connection, an eternal love affair. EMBO J. 22, 2324-2333.
    13. Brown, N. H., Gregory, S. L., Rickoll, W. L., Fessler, L. I., Prout, M., White,R. A. and Fristrom, J. W. (2002). Talin is essential for integrin function in Drosophila. Dev. Cell 3, 569-579.
    14. Byzova, T. V. and Plow, E. F. (1998). Activation of aVb3 on vascular cells controls recognition of prothrombin. J. Cell Biol. 143, 2081-2092.
    15. Byzova, T. V., Goldman, C. K., Pampori, N., Thomas, K. A., Bett, A., Shattil, S. J. and Plow, E. F. (2000). A mechanism for modulation of cellular responses to VEGF:activation of the integrins. Mol. Cell 6, 851-860.
    16. Calderwood, D. A. and Ginsberg, M. H. (2003). Talin forges the links between integrins and actin. Nat. Cell Biol. 5, 694-697.
    17. Calderwood, D. A., Zent, R., Grant, R., Rees, D. J., Hynes, R. O. and Ginsberg, M. H.(1999). The Talin head domain binds to integrin b subunit cytoplasmic tails and regulates integrin activation. J. Biol. Chem. 274, 28071-28074.
    18. Calderwood, D. A., Shattil, S. J. and Ginsberg, M. H. (2000). Integrins and actin filaments: reciprocal regulation of cell adhesion and signaling. J. Biol. Chem. 275,22607-22610.
    19. Calderwood, D. A., Huttenlocher, A., Kiosses, W. B., Rose, D. M., Woodside, D. G.,Schwartz, M. A. and Ginsberg, M. H. (2001). Increased filamin binding to β integrin cytoplasmic domains inhibits cell migration. Nat. Cell Biol. 3, 1060-1068.
    20. Calderwood, D. A., Yan, B., de Pereda, J. M., Alvarez, B. G, Fujioka, Y., Liddington, R. C. and Ginsberg, M. H. (2002). The phosphotyrosine binding-like domain of talin activates integrins. J. Biol. Chem. 277, 21749-21758.
    21. Calderwood, D. A., Fujioka, Y., de Pereda, J. M., Garcia-Alvarez, B., Nakamoto, T., Margolis, B., McGlade, C. J., Liddington, R. C. and Ginsberg, M. H. (2003). Integrin b cytoplasmic domain interactions with phosphotyrosine- binding domains: a structural prototype for diversity in integrin signaling. Proc. Natl. Acad. Sci. USA 100,2272-2277.
    22. Carman, C. V. and Springer, T. A. (2003). Integrin avidity regulation: are changes in affinity and conformation underemphasized? Curr. Opin. Cell Biol. 15, 547-556.
    23. Chang, D. D., Hoang, B. Q., Liu, J. and Springer, T. A. (2002). Molecular basis for interaction between ICAP-la PTB domain and b1 integrin. J. Biol. Chem. 277,8140-8145.
    24. Chen, Y.-P., O'Toole, T. E., Ylanne, J., Rosa, J.-P. and Ginsberg, M. H. (1994a). A point mutation in the integrin b3 cytoplasmic domain (S752-P) impairs bidirectional signaling through aⅡbb3 (platelet glycoprotein Ⅱb-Ⅲa). Blood 84, 1857-1865.
    25. Chen, Y.-P., O'Toole, T. E., Shipley, T., Forsyth, J., LaFIamme, S. E., Yamada, K. M.,Shattil, S. J. and Ginsberg, M. H. (1994b). 'Inside-out' signal transduction inhibited by isolated integrin cytoplasmic domains. J. Biol. Chem. 269, 18307-18310.
    26. Coller, B. S. (1985). A new murine monoclonal antibody reports an activationdependent change in the conformation and/or microenvironment of the
    27. platelet GPⅡb/Ⅲa complex. J. Clin. Invest. 76, 101-110.
    28. Cram, E., Clark, S. and Schwarzbauer, J. E. (2003). Talin loss-of-function uncovers roles in cell contractility and migration in C. elegans. J. Cell Sci. 116, 3871-3878.
    29. Critchley, D. R. (2000). Focal adhesions - the cytoskeletal connection. Curr. 30. Opin. Cell Biol. 12, 133-139.
    31. Crowe, D. T., Chiu, H., Fong, S. and Weissman, I. L. (1994). Regulation of the avidity of integrin a4b7 by the b7 cytoplasmic domain. J. Biol. Chem. 269,14411-14418.
    32. Datta, A., Shi, Q. and Boettiger, D. E. (2001). Transformation of chicken embryo fibroblasts by v-src uncouples b1 integrin-mediated outside-in but not inside-out signaling. Mol. Cell Biol. 21, 7295-7306.
    33. Datta, A., Huber, F. and Boettiger, D. (2002). Phosphorylation of β3 integrin controls ligand binding strength. J. Biol. Chem. 277, 3943-3949.
    34. Di Paolo, G., Pellegrini, L., Letinic, K., Cestra, G., Zoncu, R., Voronov, S., Chang, S.,Guo, J., Wenk, M. R. and De Camilli, P. (2002). Recruitment and regulation of phosphatidylinositol phosphate kinase type 1 g by the FERM domain of talin. Nature 420, 85-89.
    35. Du, X., Gu, M., Weisel, J. W., Nagaswami, C., Bennett, J. S., Bowditch, R.
    36. D. and Ginsberg, M. H. (1993). Long range propagation of conformational changes in integrin aⅡbβ3. J. Biol. Chem. 268, 23087-23092.
    37. Eigenthaler, M., Hofferer, L., Shattil, S. J. and Ginsberg, M. H. (1997). A conserved sequence motif in the integrin b3 cytoplasmic domain is required for its specific interaction with b3-endonexin. J. Biol. Chem. 272, 7693- 7698.
    38.Emsley, J., Knight, C. G, Farndale, R. W., Barnes, M. J. and Liddington, R. C. (2000).Structural basis of collagen recognition by integrin a2b1. Cell 101,47-56.
    39. Erb, E. M., Tangemann, K., Bohrmann, B., Muller, B. and Engel, J. (1997).
    40. Integrin aⅡbβ3 reconstituted into lipid bilayers is nonclustered in its activated state but clusters after fibrinogen binding. Biochemistry 36, 7395- 7402.
    41. Felding-Habermann, B., O'Toole, T. E., Smith, J. W., Fransvea, E., Ruggeri, Z. M., Ginsberg, M. H., Hughes, P. E., Pampori, N., Shattil, S. J., Saven, A. et al. (2001). Integrin activation controls metastasis in human breast cancer. Proc. Natl. Acad. Sci.USA 98, 1853-1858.
    42. Fenczik, C. A., Sethi, T., Ramos, J. W., Hughes, P. E. and Ginsberg, M. H. (1997).Complementation of dominant suppression implicates CD98 in integrin activation.Nature 390, 81-85.
    43. Fenczik, C. A., Zent, R., Dellos, M., Calderwood, D. A., Satriano, J., Kelly, C. and Ginsberg, M. H. (2001). Distinct domains of CD98hc regulate integrins and amino acid transport. J. Biol. Chem. 276, 8746-8752.
    44. Fox, J. E. B., Taylor, R. G., Taffarel, M., Boyles, J. K. and Goll, D. E. (1993).
    45. Evidence that activation of platelet calpain is induced as a consequence of binding of adhesive ligand to the integrin, glycoprotein Ⅱb-Ⅲa. J. Cell Biol. 120, 1501-1507.
    46. Garcia-Alvarez, B., de Pereda, J. M., Calderwood, D. A., Ulmer, T. S., Critchley, D. R., Campbell, I. D., Ginsberg, M. H. and Liddington, R. C. (2003). Structural determinants of integrin recognition by talin. Mol. Cell 11,49-58.
    47. Geiger, B., Bershadsky, A., Pankov, R. and Yamada, K. M. (2001). Transmembrane crosstalk between the extracellular matrix-cytoskeleton crosstalk. Nat. Rev. Mol. Cell Biol. 2, 793-805.
    48. Geiger, C., Nagel, W., Boehm, T., van Kooyk, Y., Figdor, C. G., Kremmer,
    49. E., Hogg, N., Zeitlmann, L., Dierks, H., Weber, K. S. et al. (2000). Cytohesin-1 regulates b-2 integrin-mediated adhesion through both ARFGEF function and interaction with LFA-1. EMBO J. 19, 2525-2536.
    50. Giancotti, F. G. and Ruoslahti, E. (1999). Integrin signaling. Science 285, 1028-1032.
    51. Ginsberg, M. H., Yaspan, B., Forsyth, J., Ulmer, T. S., Campbell, I. D. and Slepak, M. (2001). A membrane-distal segment of the integrin aiib cytoplasmic domain regulates integrin activation. J. Biol. Chem. 276, 22514- 22521.
    52. Haas, T. A. and Plow, E. F. (1997). Development of a structural model for the cytoplasmic domain of an integrin. Protein Eng. 10, 1395-1405.
    53. Haataja, L., Kaartinen, V., Groffen, J. and Heisterkamp, N. (2002). The small GTPase Rac3 interacts with the integrin-binding protein CIB and promotes integrin aⅡbb3-mediated adhesion and spreading. J. Biol. Chem. 277, 8321-8328.
    54. Hamada, K., Shimizu, T., Yonemura, S., Tsukita, S., Tsukita, S. and Hakoshima, T.(2003). Structural basis of adhesion-molecule recognition by ERM proteins revealed by the crystal structure of the radixin-ICAM-2 complex. EMBO J. 22, 502-514.
    55. Hayashi, M., Suzuki, H., Kawashima, S., Saido, T. C. and Inomata, M. (1999). The behavior of calpain-generated N- and C-terminal fragments of talin in integrin-mediated signaling pathways. Arch. Biochem. Biophys. 371, 133-141.
    56. Hibbs, M. L., Jakes, S., Stacker, S. A., Wallace, R. W. and Springer, T. A. (1991a).The cytoplasmic domain of the integrin lymphocyte functionassociated antigen 1 b subunit: sites required for binding to intercellular adhesion molecule 1 and the phorbol ester-stimulated phosphorylation site. J. Exp. Med. 174, 1227-1238.
    57. Hibbs, M. L., Xu, H., Stacker, S. A. and Springer, T. A. (1991b). Regulation of adhesion to ICAM-1 by the cytoplasmic domain of LFA-1 integrin beta subunit. Science 251, 1611-1613.
    58. Hmama, Z., Knutson, K. L., Herrera-Velit, P., Nandan, D. and Reiner, N. E. (1999).Monocyte adherence induced by lipopolysaccharide involves CD14, LFA-1, and cytohesin-1. Regulation by Rho and phosphatidylinositol 3-kinase. J. Biol. Chem. 274,1050-1057.
    59. Hogg, N., Henderson, R., Leitinger, B., McDowall, A., Porter, J. and Stanley, P.(2002). Mechanisms contributing to the activity of integrins on leukocytes. Immunol.Rev. 186, 164-171.
    60.Horwitz, A., Duggan, K., Buck, C. A., Beckerle, M. C. and Burridge, K. (1986).Interaction of plasma membrane fibronectin receptor with talin - a transmembrane linkage. Nature 320, 531-533.
    61. Hughes, P. E., O'Toole, T. E., Ylanne, J., Shattil, S. J. and Ginsberg, M. H. (1995). The conserved membrane-proximal region of an integrin cytoplasmic domain specifies ligand binding affinity. J. Biol. Chem. 270,12411-12417.
    62. Hughes, P. E., Diaz-Gonzalez, F., Leong, L., Wu, C, McDonald, J. A., Shattil, S. J. and Ginsberg, M. H. (1996). Breaking the integrin hinge: a defined structural constraint regulates integrin signaling. J. Biol. Chem. 271, 6571-6574.
    63. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995;1:27-31.
    64. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971;285:1182-6.
    65. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996;86:353-64.
    66. Folkman J. Angiogenesis and apoptosis. Semin Cancer Biol 2003; 13:159-67. Darland DC, D'Amore PA. Blood vessel maturation: vascular development comes of age. J Clin Invest 1999; 103:157-8.
    67. Cao Y. Endogenous angiogenesis inhibitors and their therapeutic implications. Int J Biochem Cell Biol 2001; 33:357-69.
    68. Timpl R. Macromolecular organization of basement membranes. Curr Opin Cell Biol 1996;8:618-24.
    69. Prockop DJ, Kivirikko KI. Collagens: molecular biology, diseases, and potentials for therapy. Annu Rev Biochem 1995;64:403-34.
    70. Madri JA. Extracellular matrix modulation of vascular cell behaviour. Transpl Immunol 1997;5:179-83.
    71. Colorado PC, Torre A, Kamphaus G, et al. Antiangiogenic cues from vascular basement membrane collagen. Cancer Res 2000;60:2520-6.
    72. Grant DS, Kibbey MC, Kinsella JL, Cid MC, Kleinman HK. The role of basement membrane in angiogenesis and tumor growth. Pathol Res Pract 1994; 190:854-63.
    73. Senger DR, Claffey KP, Benes JE, Perruzzi CA, Sergiou AP, Detmar M. Angiogenesis promoted by vascular endothelial growth factor: regulation through α1β1 and α2β1 integrins. Proc Natl Acad Sci U S A 1997;94:13612-7.
    74. Bloch W, Forsberg E, Lentini S, et al. β1 Integrin is essential for teratoma growth and angiogenesis. J Cell Biol 1997;139:265-78.
    75. Pozzi A, Moberg PE, Miles LA, Wagner S, Soloway P, Gardner HA. Elevated matrix metalloprotease and angiostatin levels in integrin al knockout mice cause reduced tumor vascularization. Proc Natl Acad Sci U S A 2000;97:2202-7.
    76. Pozzi A,Wary KK, Giancotti FG, Gardner HA. Integrinα1β1 mediates a unique collagen-dependent proliferation pathway in vivo . J Cell Biol 1998; 142:587-94. Pozzi A, LeVine WF, Gardner HA. Low plasma levels of matrix metalloproteinase 9 permit increased tumor angiogenesis. Oncogene 2002;21:272-81.
    77. Keller KM, Keller JM, Kuhn K. The C-terminus of type Ⅰ collagen is a major binding site for heparin. Biochim Biophys Acta 1986;882:l-5.
    78. Kamphaus GD, Colorado PC, Panka DJ, et al. Canstatin, a novel matrix-derived inhibitor of angiogenesis and tumor growth. J Biol Chem 2000;275:1209-15.
    79. Panka DJ, Mier JW. Canstatin inhibits Akt activation and induces Fas-dependent apoptosis in endothelial cells. J Biol Chem 2003;278:37632-6.
    80. Petitclerc E, Boutaud A, Prestayko A, et al. New functions for non-collagenous domains of human collagen type Ⅳ. Novel integrin ligands inhibiting angiogenesis and tumor growth in vivo . J Biol Chem 2000;275:8051-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700