锌对糖尿病肾病的治疗作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖尿病(Diabetes mellitus,DM)是由遗传和环境因素共同作用而引起的一组以糖代谢紊乱为主要表现的临床综合征。胰岛素分泌缺陷、生物作用受损或两者同时存在引起碳水化合物、脂肪、蛋白质、水和电解质代谢紊乱;慢性高血糖为其共同特征。长期糖尿病可引起多个器官的慢性并发症,导致功能障碍和衰竭,成为致残或致死的主要原因。世界卫生组织预计到2030年,全世界范围内糖尿病患者的人数将超过550亿,将给社会带来沉重的经济负担。因此,如何有效治疗糖尿病及其并发症成为基础及临床研究中亟待解决的问题。
     糖尿病肾病(Diabetic nephropathy,DN)是糖尿病最严重的并发症之一。它也是导致终末期肾脏疾病最常见的原因,与糖尿病患者死亡率的增加密切相关。高血糖及相关的代谢紊乱是DN发生发展的关键因素。目前认为,高糖主要通过激活蛋白激酶C、形成糖基化终末产物、活化多元醇通路及己糖胺通路四条途径引起肾脏组织ROS产生增多、炎症反应及纤维化,最终导致肾小球基底膜弥漫增厚、系膜基质增生及肾小球硬化,从而推动DN的发生、发展。增加胰岛素信号的敏感性,改善糖代谢,从而纠正高血糖及相关代谢紊乱所致的肾脏组织损伤,成为近年DN临床研究的热点。
     锌(Zinc,Zn)是一种微量元素,在维持机体多种酶和转录因子的正常功能中起重要作用。临床上Zn是治疗其他疾病的常规用药,潜在的毒副作用非常小;且糖尿病患者由于尿Zn分泌增加,肠道Zn的吸收减少以及严格的饮食控制,常伴有Zn的缺乏。因此,补Zn可能有利于糖尿病患者的治疗。最近的Meta分析及临床综述显示,补Zn对糖尿病患者有益。在人群实验中,Zn能降低微量蛋白尿的2型糖尿病患者尿蛋白的分泌。然而Zn是否对DN有治疗作用及其可能的机制,至今尚不明确,为此我们进行了一系列研究。
     首先,我们以3个月龄OVE261型糖尿病小鼠作为自发DN模型及建立补Zn模型,通过检测肾功能、肾脏病理学改变及Akt介导的代谢相关信号、金属硫蛋白、Akt负性调节因子的表达,明确Zn对DN的治疗作用及Zn治疗DN的可能机制,即Zn对Akt介导的代谢相关信号的激活作用。因为Akt2在胰岛素介导的葡萄糖代谢中起关键性作用,随后我们采用2个月龄Akt2基因敲除小鼠建立补Zn模型,明确Zn对DN的治疗作用是否依赖于Akt2。最后,我们用MT基因敲除建立补Zn模型,进一步明确Zn对Akt及其下游相关代谢信号的激活作用与MT表达之间的关系。结果如下:
     1,在OVE261型糖尿病小鼠及Akt2-KO2型糖尿病小鼠中,通过检测补Zn后尿蛋白分泌水平,发现糖尿病小鼠尿蛋白水平明显增加,补Zn后无上述改变,说明Zn能改善DN导致的肾功能异常。通过观察各组小鼠补Zn后肾脏组织纤维化、炎症反应及氧化应激相关指标的变化,结果显示补Zn减轻了DN小鼠肾脏组织炎症反应、氧化应激及纤维化水平,对DN具有保护作用。
     2,通过检测各组小鼠肾脏组织Akt及其介导的代谢相关分子的表达,结果显示糖尿病导致的肾脏组织病理学变化及肾脏Akt磷酸化水平下降,通过补Zn可以得到明显改善,且在OVE26及Akt2-KO糖尿病小鼠中,Zn几乎完全保留了Akt磷酸化水平。Zn提高OVE26及Akt2-KO糖尿病小鼠肾脏组织Akt磷酸化水平的同时,也保存了正常的GSK-3β磷酸化水平及HKII表达。
     3,糖尿病导致Akt负性调节因子PTEN、PTP1B及TRB3上调,补Zn后能够改善糖尿病导致的Akt负性调节因子的变化,但生理状态下补Zn对Akt负性调节因子无影响。
     4,通过检测Akt2-KO小鼠补Zn后肾脏功能、肾脏病理学改变及Akt介导的相关代谢信号,发现Akt2缺失后并不影响Zn对糖尿病导致的肾脏功能异常及肾脏病理学改变的保护作用,也不影响Zn对Akt介导的相关代谢信号的激活作用,即Zn对DN的治疗作用是不依赖于Akt2的。
     5,通过检测MT-KO小鼠补Zn后磷酸化Akt、GSK-3β及HKII表达,结果显示生理条件下MT基因敲除后阻断Zn对磷酸化Akt、GSK-3β及HKII的诱导作用,说明Zn对肾脏的保护作用是MT依赖。
     综上所述,我们得出结论:Zn能够改善OVE26及Akt2-KO糖尿病小鼠肾脏功能,可能的机制是Zn激活了Akt介导的代谢相关分子的表达。Zn对Akt介导的代谢信号的刺激作用不是Akt2依赖的,而是MT依赖的。糖尿病状态下Zn对Akt介导的代谢信号的激活作用可能与其抑制Akt负性调节因子磷酸化PTEN、PTP1B及TRB3有关。糖尿病患者由于尿Zn排泄增加及肠道对Zn的吸收减少,常伴有Zn缺乏。我们的研究说明,常规监测糖尿病患者Zn的水平及给予Zn水平低的患者补充足够的Zn将对减缓DN的进展至关重要。
     创新性:
     (1)明确Zn能够改善糖尿病导致的肾功能异常及肾脏病理学改变,从而保护DN。
     (2)阐明Zn保护DN的可能机制,即Zn激活了DN小鼠肾脏组织Akt介导的代谢相关信号及MT表达;Zn对Akt信号的激活作用与其对Akt负性调节因子PTEN、PTP1B及TRB3的抑制作用有关。
     (3)证明Akt2缺失后,并不影响Zn对糖尿病导致的肾脏功能异常及肾脏病理学改变的保护作用,也不影响Zn对Akt介导的相关代谢信号的激活作用,即Zn对DN的治疗作用是不依赖于Akt2的。
     (4)证明在生理状态下Zn对Akt及其下游相关代谢信号的激活作用是MT依赖的。
Diabetes mellitus (DM) is a clinical syndrome that is hypofuction of islet induced bypathogenic factors included genetic factors and environmental factors. Insulin deficiencyresulting from a defect in insulin secretion, insulin action, or both, in turn leads to chronichyperglycaemia with disturbances of carbohydrate, fat and protein metabolism. As the diseaseprogresses tissue or vascular damage ensues leading to severe diabetic complications, whichwill finally lead to the dysfuction and failure of organs and become the main cause ofmorbidity and mortality. The World Health Organization states that worldwide the number ofindividuals with diabetes is expected to surpass550million by2030. This will bring a heavyfinancial burden to society and family. How to effectively treat diabetes and its complicationswill be an urgent clinical problem need to conquer.
     Diabetic nephropathy (DN) is the most common microvascular complication of diabetesmellitus. It is a leading cause of end-stage renal disease and a contributor to significantmorbidity and mortality in patients with diabetes. Several mechanisms are thought to beinvolved in the pathogenesis of diabetic nephropathy and its complications, all of themoriginating from hyperglycemia. It induces activation of protein kinase C, increasedproduction of advanced glycosylation end products, and diacylglycerol synthesis.Inflammation, oxidative stress and fibrosis may be activated by hyperglycemia in kidneytissues which eventually leads to basement membranes thickening, extracellular matrixaccumulation and glomerular sclerosis. All these changes plays an important role in thedevelopment and progression of DN. Increasing the sensitivity of insulin signal, andimproving glucose metabolism become a clinical hotspot recently in dealing with diabetickidney disease.
     Zinc (Zn) is a trace element that plays a pivotal role in the proper functioning of manyenzymes and transcription factors. Zn has been used clinically in the treatment of severaldiseases. Its low toxicity profile makes it possible to use in pediatric patients. Diabeticpatients are often Zn deficient owing to elevated urinary Zn excretion,decreased intestinal Znabsorption, and are stricted diet. So Zn supplementation may be beneficial for the treatment ofDN. Recently, meta-analysis and systematic review of clinical data showed the beneficial effects of Zn supplementation for diabetic patients. Human study proves that Znsupplementation reduces albumin excretion in micro albuminuric type2diabetic patients.However, the mechanism by which zinc protects the kidney from diabetes remains unknown,so we conducted a series of research.
     Firstly, we examined whether Zn can provide a therapeutic effect against DN and thepossible mechanism of it using the OVE26type1diabetic mouse model. We have examinedthe renal pathological and functional changes, Akt-mediated molecules related to metabolism,MT and Akt negative regulators in the kidney of OVE26type1diabetic mice. Because of theimportant role of Akt2in insulin-mediated glucose metabolism, We then examined whetherthe therapeutic effect of Zn on the diabetic kidney is dependent on Akt2using an Akt2-KOmouse model. Finally, we examined if MT is required for Zn stimulation of Akt and itsdownstream pathways by using mice with an MT gene deletion (MT-KO). The results ispresented:
     (1) We found ACR continually increase in both the DM group and the DM/Zn group, butit was slightly lower in DM/Zn mice than in DM mice at6months. The renal fibroticresponse, inflammation and oxidative damage were significantly increased in DM mice, butwas significantly prevented by Zn treatment. The above results have shown Znsupplementation can significantly improve diabetes-induced renal functional and pathologicalchanges in OVE26and Akt2-KO diabetic models;
     (2) We demonstrated that decreased renal Akt phosphorylation along with diabetesinduced pathological changes in the kidney which were significantly attenuated by Zntreatment, such that Akt phosphorylation in both OVE26and Akt2-KO diabetic mouse modelswas almost completely preserved. Preservation of renal Akt phosphorylation by Zn treatmentwas associated with normal GSK-3βphosphorylation and HKII expression in both OVE26andAkt2-KO diabetic mice.
     (3) Zn treatment prevents diabetic upregulation of the Akt negative mediators PTEN,PTP1B, and TRB3in OVE26and Akt2-KO diabetic models, but had no effect under normalconditions.
     (4) By detecting renal functional, pathological changes and Akt-mediated moleculesrelated to metabolism in the kidney tissue of Akt2-KO mouse, we found that deletion of theAkt2gene had no effect on Zn’s ability to provide renal protection against diabetes-inducedfunctional and pathologic changes; furthermore, deletion of the Akt2gene had no effect onZn-induced stimulation of Akt-mediated metabolic signaling. we draw the conclusion that zn protection against diabetes-induced renal damage is independent of Akt2.
     (5) We also checked phosphorylation of renal Akt and GSK-3βas well as the expression ofHKII in MT-KO mice after Zn supplementation1month, and found that Zn-inducedstimulation of Akt-related metabolic signaling is MT dependent, at least under normalphysiological conditions.
     In summary, this study shows that Zn stimulation of Akt-mediated renal glucosemetabolism improves renal functionin OVE26and Akt2-KO diabetic models.We furthershowed that the preservation of Akt-mediated metabolic signaling by Zn was not dependenton Akt2, but was dependent on MT. The preservation of Akt-mediated metabolic signalingunder diabetic conditions may be associated with Zn suppression of Akt negative regulators,PTEN phosphorylation, and PTP1B, aswellas TRB3, which needs further investigation.Considering that diabetic patients are often Zn deficient owing to elevated urinary Znexcretion, decreased intestinal Zn absorption, and are stricted diet, this study suggests thatregularly monitoring Zn levels in diabetic patients, as well as adequate Zn supplementation inpatients whose Zn levels are low, would be very important in mitigating the development ofdiabetic nephropathy.
     Innovations:
     (1) We demonstrated that Zn supplementation can significantly improve diabetes-inducedrenal functional and pathological changes in OVE26and Akt2-KO diabetic models and havethe protective effects on DN.
     (2) We elucidated the possible mechanisms of the protective effects of Zn supplementationon DN. The therapeutic effect of Zn treatment on the diabetic kidney is associated with thestimulation of MT expression and Akt-mediated metabolic signaling. Preservation ofAkt-mediated metabolic signaling by Zn treatment may be associated with Zn-mediatedsuppression of Akt negative regulators PTEN phosphorylation and PTP1B and TRB3expression, under diabetic conditions.
     (3) We demonstrated that deletion of the Akt2gene had no effect on Zn’s ability toprovide renal protection against diabetes-induced functional and pathologic changes;furthermore, deletion of the Akt2gene had no effect on Zn-induced stimulation of Akt-mediated metabolic signaling. zn protection against diabetes-induced renal damage isindependent of Akt2.
     (4) We elucidated that Zn-induced stimulation of Akt-related metabolic signaling is MT dependent, at least under normal physiological conditions.
引文
[1] Suksomboon, N., N. Poolsup, and Y.L. Nge, Impact of phone call intervention on glycemic control indiabetes patients: a systematic review and meta-analysis of randomized, controlled trials. PLoS One,2014.9(2): p. e89207.
    [2] Migdalis, I., et al., Diabetes mellitus. Int J Endocrinol,2014.2014: p.108419.
    [3] Naughton, M.J., et al., Longitudinal Associations between Sex, Diabetes Self-Care, and Health-RelatedQuality of Life among Youth with Type1or Type2Diabetes Mellitus. J Pediatr,2014.
    [4] Polonsky, K.S., The past200years in diabetes. N Engl J Med,2012.367(14): p.1332-40.
    [5] Burke, S.D., D. Sherr, and R.D. Lipman, Partnering with diabetes educators to improve patient outcomes.Diabetes Metab Syndr Obes,2014.7: p.45-53.
    [6] Ferreira, M.M., E. Carrilho, and F. Carrilho,[Diabetes mellitus and its influence on the success ofendodontic treatment: a retrospective clinical study]. Acta Med Port,2014.27(1): p.15-22.
    [7] Harris, M.I., Classification and diagnostic criteria for diabetes mellitus and other categories of glucoseintolerance. Prim Care,1988.15(2): p.205-25.
    [8] Atkinson, M.A. and N.K. Maclaren, The pathogenesis of insulin-dependent diabetes mellitus. N Engl JMed,1994.331(21): p.1428-36.
    [9] Betterle, C., et al., Clinical and subclinical organ-specific autoimmune manifestations in type1(insulin-dependent) diabetic patients and their first-degree relatives. Diabetologia,1984.26(6): p.431-6.
    [10] Shulman, L.M., et al., Antibodies to islet cell autoantigens, rotaviruses and/or enteroviruses in cord bloodand healthy mothers in relation to the2010-2011winter viral seasons in Israel: a pilot study. Diabet Med,2014.
    [11] Ahren, B. and C.B. Corrigan, Intermittent need for insulin in a subgroup of diabetic patients in Tanzania.Diabet Med,1985.2(4): p.262-4.
    [12] Lin, J.D., et al., The first and second phase of insulin secretion in naive Chinese type2diabetes mellitus.Metabolism,2010.59(6): p.780-6.
    [13] Imam, K., Management and treatment of diabetes mellitus. Adv Exp Med Biol,2012.771: p.356-80.
    [14] Rylander, C., et al., Consumption of lean fish reduces the risk of type2diabetes mellitus: a prospectivepopulation based cohort study of norwegian women. PLoS One,2014.9(2): p. e89845.
    [15] Okuno, A., et al., Role of insulin resistance in the pathogenesis and development of type2diabetes inWBN/Kob-Lepr(fa) rats. J Vet Med Sci,2013.75(12): p.1557-61.
    [16] Ye, J., Mechanisms of insulin resistance in obesity. Front Med,2013.7(1): p.14-24.
    [17] Cleland, S.J., et al., Insulin resistance in type1diabetes: what is 'double diabetes' and what are the risks?Diabetologia,2013.56(7): p.1462-70.
    [18] Siewko, K., et al., Insulin resistance and fasting plasma glucose in first degree relatives of patients withtype1diabetes. J Diabetes Complications,2013.27(6): p.593-6.
    [19] Bulum, T. and L. Duvnjak, Insulin resistance in patients with type1diabetes: relationship with metabolicand inflammatory parameters. Acta Clin Croat,2013.52(1): p.43-51.
    [20] Pawlak, J. and R.A. Derlacz,[The mechanism of insulin resistance in peripheral tissues]. PostepyBiochem,2011.57(2): p.200-6.
    [21] Makinen, S., et al.,[Mechanisms of insulin resistance]. Duodecim,2013.129(20): p.2115-22.
    [22] Rasmussen, S., L. Irgens, and J. Espinoza, Maternal obesity and excess of fetal growth in pre-eclampsia.BJOG,2014.
    [23] Alberico, S., et al., The role of gestational diabetes, pre-pregnancy body mass index and gestationalweight gain on the risk of newborn macrosomia: results from a prospective multicentre study. BMCPregnancy Childbirth,2014.14: p.23.
    [24] Chu, S.Y., et al., Maternal obesity and risk of gestational diabetes mellitus. Diabetes Care,2007.30(8): p.2070-6.
    [25] Garnock-Jones, K.P. and G.L. Plosker, Insulin glulisine: a review of its use in the management of diabetesmellitus. Drugs,2009.69(8): p.1035-57.
    [26] Svensson, M., J.W. Eriksson, and G. Dahlquist, Early glycemic control, age at onset, and development ofmicrovascular complications in childhood-onset type1diabetes: a population-based study in northernSweden. Diabetes Care,2004.27(4): p.955-62.
    [27] Saely, C.H., et al., Cardiovascular complications in Type2diabetes mellitus depend on the coronaryangiographic state rather than on the diabetic state. Diabetologia,2004.47(1): p.145-6.
    [28] Summaries for patients: Oral drug treatment of type2diabetes mellitus: a clinical practice guideline fromthe American College of Physicians. Ann Intern Med,2012.156(3): p. I36.
    [29] Tielmans, A., et al.,[Drug treatment of type2diabetes]. Presse Med,2007.36(2Pt2): p.269-78.
    [30] Vasavada, N. and R. Agarwal, Role of oxidative stress in diabetic nephropathy. Adv Chronic Kidney Dis,2005.12(2): p.146-54.
    [31] Vivian, E. and C. Mannebach, Therapeutic approaches to slowing the progression of diabetic nephropathy-is less best? Drugs Context,2013.2013: p.212249.
    [32] Kang, E.S., et al., Lithospermic acid B ameliorates the development of diabetic nephropathy in OLETFrats. Eur J Pharmacol,2008.579(1-3): p.418-25.
    [33] Schena, F.P. and L. Gesualdo, Pathogenetic mechanisms of diabetic nephropathy. J Am Soc Nephrol,2005.16Suppl1: p. S30-3.
    [34] Beisswenger, P.J., et al., Detection of diabetic nephropathy from advanced glycation endproducts (AGEs)differs in plasma and urine, and is dependent on the method of preparation. Amino Acids,2014.46(2): p.311-9.
    [35] Zhang, M.H., et al., Antioxidative and anti-inflammatory activities of paeoniflorin and oxypaeoniflora onAGEs-induced mesangial cell damage. Planta Med,2013.79(14): p.1319-23.
    [36] Chilelli, N.C., S. Burlina, and A. Lapolla, AGEs, rather than hyperglycemia, are responsible formicrovascular complications in diabetes: a "glycoxidation-centric" point of view. Nutr Metab CardiovascDis,2013.23(10): p.913-9.
    [37] Satirapoj, B., Nephropathy in diabetes. Adv Exp Med Biol,2012.771: p.107-22.
    [38] Tripathi, Y.B. and D. Yadav, Diabetic nephropathy: causes and managements. Recent Pat Endocr MetabImmune Drug Discov,2013.7(1): p.57-64.
    [39] Kashihara, N., et al., Oxidative stress in diabetic nephropathy. Curr Med Chem,2010.17(34): p.4256-69.
    [40] Thallas-Bonke, V. and M.E. Cooper, Tandem inhibition of PKC in Dialphabetaetic nephropathy: it takestwo to tango? Diabetes,2013.62(4): p.1010-1.
    [41] Zhou, L., et al., Hu-Lu-Ba-Wan Attenuates Diabetic Nephropathy in Type2Diabetic Rats through PKC-alpha/NADPH Oxidase Signaling Pathway. Evid Based Complement Alternat Med,2013.2013: p.504642.
    [42] Lagranha, C.J., et al.,[Molecular bases of diabetic nephropathy]. Arq Bras Endocrinol Metabol,2007.51(6): p.901-12.
    [43] Rosario, R.F. and S. Prabhakar, Lipids and diabetic nephropathy. Curr Diab Rep,2006.6(6): p.455-62.
    [44] Bonnet, F. and M.E. Cooper, Potential influence of lipids in diabetic nephropathy: insights fromexperimental data and clinical studies. Diabetes Metab,2000.26(4): p.254-64.
    [45] Rossing, P., P. Hougaard, and H.H. Parving, Risk factors for development of incipient and overt diabeticnephropathy in type1diabetic patients: a10-year prospective observational study. Diabetes Care,2002.25(5): p.859-64.
    [46] Hadjadj, S., et al., Serum triglycerides are a predictive factor for the development and the progression ofrenal and retinal complications in patients with type1diabetes. Diabetes Metab,2004.30(1): p.43-51.
    [47] Obermayr, R.P., et al., Predictors of new-onset decline in kidney function in a general middle-europeanpopulation. Nephrol Dial Transplant,2008.23(4): p.1265-73.
    [48] Iacobini, C., et al., Advanced lipoxidation end-products mediate lipid-induced glomerular injury: role ofreceptor-mediated mechanisms. J Pathol,2009.218(3): p.360-9.
    [49] Siddiqui, S., et al., Protective effects of tocotrienols against lipid-induced nephropathy in experimentaltype-2diabetic rats by modulation in TGF-beta expression. Toxicol Appl Pharmacol,2013.273(2): p.314-24.
    [50] Chen, H.C., et al., Role of lipid control in diabetic nephropathy. Kidney Int Suppl,2005(94): p. S60-2.
    [51] Dubois, D., et al., Remission of proteinuria following correction of hyperlipidemia in NIDDM patientswith nondiabetic glomerulopathy. Diabetes Care,1994.17(8): p.906-8.
    [52] Decleves, A.E., et al., Regulation of lipid accumulation by AMK-activated kinase in high fat diet-inducedkidney injury. Kidney Int,2014.85(3): p.611-23.
    [53] Jun, H., et al., In vivo and in vitro effects of SREBP-1on diabetic renal tubular lipid accumulation andRNAi-mediated gene silencing study. Histochem Cell Biol,2009.131(3): p.327-45.
    [54] Shiojima, I. and K. Walsh, Role of Akt signaling in vascular homeostasis and angiogenesis. Circ Res,2002.90(12): p.1243-50.
    [55] Zdychova, J., et al., Renal activity of Akt kinase in experimental Type1diabetes. Physiol Res,2008.57(5):p.709-15.
    [56] Hakonen, E., et al., In vivo activation of the PI3K-Akt pathway in mouse beta cells by the EGFR mutationL858R protects against diabetes. Diabetologia,2014.
    [57] Cseh, A., et al.,[Akt enzyme: new therapeutic target in cancer and diabetes?]. Orv Hetil,2009.150(8): p.373-8.
    [58] Heljic, M. and D.P. Brazil, Protein kinase B/Akt regulation in diabetic kidney disease. Front Biosci (ScholEd),2011.3: p.98-104.
    [59] Hay, N., Akt isoforms and glucose homeostasis-the leptin connection. Trends Endocrinol Metab,2011.22(2): p.66-73.
    [60] Seong, H.A., et al.,3-Phosphoinositide-dependent PDK1negatively regulates transforming growthfactor-beta-induced signaling in a kinase-dependent manner through physical interaction with Smadproteins. J Biol Chem,2007.282(16): p.12272-89.
    [61] Dummler, B. and B.A. Hemmings, Physiological roles of PKB/Akt isoforms in development and disease.Biochem Soc Trans,2007.35(Pt2): p.231-5.
    [62] Wu, Y., et al., PTEN2, a Golgi-associated testis-specific homologue of the PTEN tumor suppressor lipidphosphatase. J Biol Chem,2001.276(24): p.21745-53.
    [63] Zarelli, V.E., et al., PTP1B dephosphorylates N-ethylmaleimide-sensitive factor and elicits SNAREcomplex disassembly during human sperm exocytosis. J Biol Chem,2009.284(16): p.10491-503.
    [64] Du, K., et al., TRB3: a tribbles homolog that inhibits Akt/PKB activation by insulin in liver. Science,2003.300(5625): p.1574-7.
    [65] Krook, A., et al., Improved glucose tolerance restores insulin-stimulated Akt kinase activity and glucosetransport in skeletal muscle from diabetic Goto-Kakizaki rats. Diabetes,1997.46(12): p.2110-4.
    [66] Carvalho, E., C. Rondinone, and U. Smith, Insulin resistance in fat cells from obese Zucker rats--evidencefor an impaired activation and translocation of protein kinase B and glucose transporter4. Mol CellBiochem,2000.206(1-2): p.7-16.
    [67] Song, X.M., et al., Muscle fiber type-specific defects in insulin signal transduction to glucose transport indiabetic GK rats. Diabetes,1999.48(3): p.664-70.
    [68] Bernal-Mizrachi, E., et al., Islet beta cell expression of constitutively active Akt1/PKB alpha inducesstriking hypertrophy, hyperplasia, and hyperinsulinemia. J Clin Invest,2001.108(11): p.1631-8.
    [69] Contreras, J.L., et al., Simvastatin induces activation of the serine-threonine protein kinase AKT andincreases survival of isolated human pancreatic islets. Transplantation,2002.74(8): p.1063-9.
    [70] Rane, M.J., et al., Interplay between Akt and p38MAPK pathways in the regulation of renal tubular cellapoptosis associated with diabetic nephropathy. Am J Physiol Renal Physiol,2010.298(1): p. F49-61.
    [71] Tejada, T., et al., Failure to phosphorylate AKT in podocytes from mice with early diabetic nephropathypromotes cell death. Kidney Int,2008.73(12): p.1385-93.
    [72] Canaud, G., et al., AKT2is essential to maintain podocyte viability and function during chronic kidneydisease. Nat Med,2013.19(10): p.1288-96.
    [73] Schultze, S.M., et al., PI3K/AKT, MAPK and AMPK signalling: protein kinases in glucose homeostasis.Expert Rev Mol Med,2012.14: p. e1.
    [74] Koo, S.H., et al., PGC-1promotes insulin resistance in liver through PPAR-alpha-dependent induction ofTRB-3. Nat Med,2004.10(5): p.530-4.
    [75] Lee, Y.J. and H.J. Han, Troglitazone ameliorates high glucose-induced EMT and dysfunction of SGLTsthrough PI3K/Akt, GSK-3beta, Snail1, and beta-catenin in renal proximal tubule cells. Am J PhysiolRenal Physiol,2010.298(5): p. F1263-75.
    [76] Bussolati, B., et al., Statins prevent oxidized LDL-induced injury of glomerular podocytes by activatingthe phosphatidylinositol3-kinase/AKT-signaling pathway. J Am Soc Nephrol,2005.16(7): p.1936-47.
    [77] Jansen, J., W. Karges, and L. Rink, Zinc and diabetes--clinical links and molecular mechanisms. J NutrBiochem,2009.20(6): p.399-417.
    [78] Miao, X., et al., Zinc homeostasis in the metabolic syndrome and diabetes. Front Med,2013.7(1): p.31-52.
    [79] Maret, W., Zinc coordination environments in proteins as redox sensors and signal transducers. AntioxidRedox Signal,2006.8(9-10): p.1419-41.
    [80] Maret, W., Cellular zinc and redox states converge in the metallothionein/thionein pair. J Nutr,2003.133(5Suppl1): p.1460S-2S.
    [81] Maret, W., Zinc and human disease. Met Ions Life Sci,2013.13: p.389-414.
    [82] Park, J.H., et al., Effect of pure zinc deficiency on glucose tolerance and insulin and glucagon levels. Am JPhysiol,1986.251(3Pt1): p. E273-8.
    [83] Jou, M.Y., A.F. Philipps, and B. Lonnerdal, Maternal zinc deficiency in rats affects growth and glucosemetabolism in the offspring by inducing insulin resistance postnatally. J Nutr,2010.140(9): p.1621-7.
    [84] Singh, R.B., et al., Current zinc intake and risk of diabetes and coronary artery disease and factorsassociated with insulin resistance in rural and urban populations of North India. J Am Coll Nutr,1998.17(6): p.564-70.
    [85] Haglund, B., et al., Evidence of a relationship between childhood-onset type I diabetes and lowgroundwater concentration of zinc. Diabetes Care,1996.19(8): p.873-5.
    [86] Zhao, H.X., et al., Drinking water composition and childhood-onset Type1diabetes mellitus in Devon andCornwall, England. Diabet Med,2001.18(9): p.709-17.
    [87] Goldberg, E.D., V.A. Eshchenko, and V.D. Bovt, Diabetogenic activity of chelators in some mammalianspecies. Endocrinologie,1990.28(2): p.51-5.
    [88] Goldberg, E.D., V.A. Eshchenko, and V.D. Bovt, The diabetogenic and acidotropic effects of chelators.Exp Pathol,1991.42(1): p.59-64.
    [89] Kechrid, Z., N. Bouzerna, and M.S. Zio, Effect of low zinc diet on (65)Zn turnover in non-insulindependent diabetic mice. Diabetes Metab,2001.27(5Pt1): p.580-3.
    [90] Takita, S., et al., Altered tissue concentration of minerals in spontaneous diabetic rats (Goto-Kakizakirats). J Toxicol Sci,2004.29(3): p.195-9.
    [91] Canfield, W.K., K.M. Hambidge, and L.K. Johnson, Zinc nutriture in type I diabetes mellitus: relationshipto growth measures and metabolic control. J Pediatr Gastroenterol Nutr,1984.3(4): p.577-84.
    [92] Overbeck, S., L. Rink, and H. Haase, Modulating the immune response by oral zinc supplementation: asingle approach for multiple diseases. Arch Immunol Ther Exp (Warsz),2008.56(1): p.15-30.
    [93] Wastney, M.E. and W.A. House, Development of a compartmental model of zinc kinetics in mice. J Nutr,2008.138(11): p.2148-55.
    [94] Aguilar, M.V., et al., Plasma mineral content in type-2diabetic patients and their association with themetabolic syndrome. Ann Nutr Metab,2007.51(5): p.402-6.
    [95] Huber, A.M. and S.N. Gershoff, Effect of zinc deficiency in rats on insulin release from the pancreas. JNutr,1973.103(12): p.1739-44.
    [96] Adachi, Y., et al., Oral administration of a zinc complex improves type2diabetes and metabolicsyndromes. Biochem Biophys Res Commun,2006.351(1): p.165-70.
    [97] Sakurai, H. and Y. Adachi, The pharmacology of the insulinomimetic effect of zinc complexes. Biometals,2005.18(4): p.319-23.
    [98] Ohly, P., et al., Zinc sulphate induces metallothionein in pancreatic islets of mice and protects againstdiabetes induced by multiple low doses of streptozotocin. Diabetologia,2000.43(8): p.1020-30.
    [99] Chen, H., et al., Overexpression of metallothionein in pancreatic beta-cells reduces streptozotocin-inducedDNA damage and diabetes. Diabetes,2001.50(9): p.2040-6.
    [100] Hollander, P.H., et al., Beta-cell dysfunction in nondiabetic HLA identical siblings of insulin-dependentdiabetics. Diabetes,1982.31(2): p.149-53.
    [101] Chen, M.D., Y.M. Song, and P.Y. Lin, Zinc effects on hyperglycemia and hypoleptinemia instreptozotocin-induced diabetic mice. Horm Metab Res,2000.32(3): p.107-9.
    [102] Song, M.K., et al., Anti-hyperglycemic activity of zinc plus cyclo (his-pro) in genetically diabeticGoto-Kakizaki and aged rats. Exp Biol Med (Maywood),2003.228(11): p.1338-45.
    [103] Shidfar, F., et al., Effects of combination of zinc and vitamin A supplementation on serum fasting bloodsugar, insulin, apoprotein B and apoprotein A-I in patients with type I diabetes. Int J Food Sci Nutr,2010.61(2): p.182-91.
    [104] Khan, M.I., et al., Effect of high-dose zinc supplementation with oral hypoglycemic agents on glycemiccontrol and inflammation in type-2diabetic nephropathy patients. J Nat Sci Biol Med,2013.4(2): p.336-40.
    [105] Rutter, G.A., Think zinc: New roles for zinc in the control of insulin secretion. Islets,2010.2(1): p.49-50.
    [106] Jayawardena, R., et al., Effects of zinc supplementation on diabetes mellitus: a systematic review andmeta-analysis. Diabetol Metab Syndr,2012.4(1): p.13.
    [107] Taylor, C.G., Zinc, the pancreas, and diabetes: insights from rodent studies and future directions.Biometals,2005.18(4): p.305-12.
    [108] Faure, P., et al., Lipid peroxidation in insulin-dependent diabetic patients with early retina degenerativelesions: effects of an oral zinc supplementation. Eur J Clin Nutr,1995.49(4): p.282-8.
    [109] Song, Y., et al., Zinc and the diabetic heart. Biometals,2005.18(4): p.325-32.
    [110] Hayee, M.A., Q.D. Mohammad, and A. Haque, Diabetic neuropathy and zinc therapy. Bangladesh MedRes Counc Bull,2005.31(2): p.62-7.
    [111] Gupta, R., et al., Oral zinc therapy in diabetic neuropathy. J Assoc Physicians India,1998.46(11): p.939-42.
    [112] Li, B., et al., Zinc is essential for the transcription function of Nrf2in human renal tubule cells in vitroand mouse kidney in vivo under the diabetic condition. J Cell Mol Med,2014.
    [113] Zhang, X., et al., Zinc Modulates High Glucose-Induced Apoptosis by Suppressing Oxidative Stress inRenal Tubular Epithelial Cells. Biol Trace Elem Res,2014.
    [114] Tang, Y., et al., Zinc supplementation partially prevents renal pathological changes in diabetic rats. J NutrBiochem,2010.21(3): p.237-46.
    [115] Ozcelik, D., et al., Zinc supplementation attenuates metallothionein and oxidative stress changes in kidneyof streptozotocin-induced diabetic rats. Biol Trace Elem Res,2012.150(1-3): p.342-9.
    [116] Tamaki, M. and Y. Fujitani,[Role of zinc in type2diabetes]. Nihon Eiseigaku Zasshi,2014.69(1): p.15-23.
    [117] Evans, S.A., et al., Regulation of metabolic rate and substrate utilization by zinc deficiency. Metabolism,2004.53(6): p.727-32.
    [118] Simon, S.F. and C.G. Taylor, Dietary zinc supplementation attenuates hyperglycemia in db/db mice. ExpBiol Med (Maywood),2001.226(1): p.43-51.
    [119] Chen, M.D., Y.M. Song, and P.Y. Lin, Zinc may be a mediator of leptin production in humans. Life Sci,2000.66(22): p.2143-9.
    [120] Haase, H. and W. Maret, Intracellular zinc fluctuations modulate protein tyrosine phosphatase activity ininsulin/insulin-like growth factor-1signaling. Exp Cell Res,2003.291(2): p.289-98.
    [121] Miranda, E.R. and C.S. Dey, Effect of chromium and zinc on insulin signaling in skeletal muscle cells.Biol Trace Elem Res,2004.101(1): p.19-36.
    [122] May, J.M. and C.S. Contoreggi, The mechanism of the insulin-like effects of ionic zinc. J Biol Chem,1982.257(8): p.4362-8.
    [123] Chen, M.D., et al., Effects of zinc supplementation on the plasma glucose level and insulin activity ingenetically obese (ob/ob) mice. Biol Trace Elem Res,1998.61(3): p.303-11.
    [124] Ilouz, R., et al., Inhibition of glycogen synthase kinase-3beta by bivalent zinc ions: insight into theinsulin-mimetic action of zinc. Biochem Biophys Res Commun,2002.295(1): p.102-6.
    [125] Chanoit, G., et al., Exogenous zinc protects cardiac cells from reperfusion injury by targetingmitochondrial permeability transition pore through inactivation of glycogen synthase kinase-3beta. Am JPhysiol Heart Circ Physiol,2008.295(3): p. H1227-H1233.
    [126] Lee, S., et al., Molecular mechanism underlying Akt activation in zinc-induced cardioprotection. Am JPhysiol Heart Circ Physiol,2009.297(2): p. H569-75.
    [127] Haase, H. and W. Maret, Protein tyrosine phosphatases as targets of the combined insulinomimetic effectsof zinc and oxidants. Biometals,2005.18(4): p.333-8.
    [128] Haase, H. and W. Maret, Fluctuations of cellular, available zinc modulate insulin signaling via inhibitionof protein tyrosine phosphatases. J Trace Elem Med Biol,2005.19(1): p.37-42.
    [129] Wu, W., et al., Zinc-induced PTEN protein degradation through the proteasome pathway in human airwayepithelial cells. J Biol Chem,2003.278(30): p.28258-63.
    [130] Prasad, A.S., et al., Antioxidant effect of zinc in humans. Free Radic Biol Med,2004.37(8): p.1182-90.
    [131] Kakkar, R., et al., Increased oxidative stress in rat liver and pancreas during progression ofstreptozotocin-induced diabetes. Clin Sci (Lond),1998.94(6): p.623-32.
    [132] Bray, T.M. and W.J. Bettger, The physiological role of zinc as an antioxidant. Free Radic Biol Med,1990.8(3): p.281-91.
    [133] Anderson, R.A., et al., Potential antioxidant effects of zinc and chromium supplementation in people withtype2diabetes mellitus. J Am Coll Nutr,2001.20(3): p.212-8.
    [134] Hagay, Z.J., et al., Prevention of diabetes-associated embryopathy by overexpression of the free radicalscavenger copper zinc superoxide dismutase in transgenic mouse embryos. Am J Obstet Gynecol,1995.173(4): p.1036-41.
    [135] Zhao, Y., et al., Exacerbation of diabetes-induced testicular apoptosis by zinc deficiency is most likelyassociated with oxidative stress, p38MAPK activation, and p53activation in mice. Toxicol Lett,2011.200(1-2): p.100-6.
    [136] Zhao, Y., et al., Zinc deficiency exacerbates diabetic down-regulation of Akt expression and function in thetestis: essential roles of PTEN, PTP1B and TRB3. J Nutr Biochem,2012.23(8): p.1018-26.
    [137] Li, B., et al., Prevention of diabetic complications by activation of Nrf2: diabetic cardiomyopathy andnephropathy. Exp Diabetes Res,2012.2012: p.216512.
    [138] Cortese, M.M., et al., Zinc protects endothelial cells from hydrogen peroxide via Nrf2-dependentstimulation of glutathione biosynthesis. Free Radic Biol Med,2008.44(12): p.2002-12.
    [139] Ha, K.N., et al., Increased glutathione synthesis through an ARE-Nrf2-dependent pathway by zinc in theRPE: implication for protection against oxidative stress. Invest Ophthalmol Vis Sci,2006.47(6): p.2709-15.
    [140] Mehta, A.J., et al., Zinc supplementation restores PU.1and Nrf2nuclear binding in alveolar macrophagesand improves redox balance and bacterial clearance in the lungs of alcohol-fed rats. Alcohol Clin ExpRes,2011.35(8): p.1519-28.
    [141] Song, Y., et al., Cardiac metallothionein synthesis in streptozotocin-induced diabetic mice, and itsprotection against diabetes-induced cardiac injury. Am J Pathol,2005.167(1): p.17-26.
    [142] Wang, Y., et al., Inactivation of GSK-3beta by metallothionein prevents diabetes-related changes incardiac energy metabolism, inflammation, nitrosative damage, and remodeling. Diabetes,2009.58(6): p.1391-402.
    [143] Xu, J., et al., Diabetes-and angiotensin II-induced cardiac endoplasmic reticulum stress and cell death:metallothionein protection. J Cell Mol Med,2009.13(8A): p.1499-512.
    [144] Cai, L., et al., Attenuation by metallothionein of early cardiac cell death via suppression of mitochondrialoxidative stress results in a prevention of diabetic cardiomyopathy. J Am Coll Cardiol,2006.48(8): p.1688-97.
    [145] Aguilar, M.V., et al., Effect of diabetes on the tissular Zn/Cu ratio. J Trace Elem Med Biol,1998.12(3): p.155-8.
    [146] Zargar, A.H., et al., Copper, zinc, and magnesium levels in non-insulin dependent diabetes mellitus.Postgrad Med J,1998.74(877): p.665-8.
    [147] Maldonado Martin, A., et al., Zinc levels after intravenous administration of zinc sulphate ininsulin-dependent diabetes mellitus patients. Klin Wochenschr,1991.69(14): p.640-4.
    [148] Rad, G.S., et al., Importance of social support in diabetes care. J Educ Health Promot,2013.2: p.62.
    [149] Lobo, J.C., et al., Zinc deficiency in chronic kidney disease: is there a relationship with adipose tissue andatherosclerosis? Biol Trace Elem Res,2010.135(1-3): p.16-21.
    [150] Tomat, A.L., et al., Zinc deficiency during growth: influence on renal function and morphology. Life Sci,2007.80(14): p.1292-302.
    [151] Baltaci, A.K., et al., Effect of zinc deficiency and supplementation on lipid peroxidation of renal tissue inovariectomized rats. Biol Trace Elem Res,2004.101(3): p.231-9.
    [152] Kistler, A.D.,[Albuminuria in the diabetic patient: practical management]. Praxis (Bern1994),2013.102(20): p.1229-35.
    [153] Okada, S., et al., Intercellular adhesion molecule-1-deficient mice are resistant against renal injury afterinduction of diabetes. Diabetes,2003.52(10): p.2586-93.
    [154] Chow, F., et al., Macrophages in mouse type2diabetic nephropathy: correlation with diabetic state andprogressive renal injury. Kidney Int,2004.65(1): p.116-28.
    [155] Mima, A., et al., Protective effects of GLP-1on glomerular endothelium and its inhibition by PKCbetaactivation in diabetes. Diabetes,2012.61(11): p.2967-79.
    [156] Karatug, A., et al., Alterations in kidney tissue following zinc supplementation to STZ-induced diabeticrats. J Trace Elem Med Biol,2013.27(1): p.52-7.
    [157] Parham, M., et al., Effect of zinc supplementation on microalbuminuria in patients with type2diabetes: adouble blind, randomized, placebo-controlled, cross-over trial. Rev Diabet Stud,2008.5(2): p.102-9.
    [158] O'Halloran, T.V., et al., Zinc, insulin, and the liver: a menage a trois. J Clin Invest,2013.123(10): p.4136-9.
    [159] Ho, C., et al., Sustained Wnt/beta-catenin signaling rescues high glucose induction of transforminggrowth factor-beta1-mediated renal fibrosis. Am J Med Sci,2012.344(5): p.374-82.
    [160] Popova, A.P., et al., Glycogen synthase kinase-3beta/beta-catenin signaling regulates neonatal lungmesenchymal stromal cell myofibroblastic differentiation. Am J Physiol Lung Cell Mol Physiol,2012.303(5): p. L439-48.
    [161] Pysher, M.D., et al., Increased hexokinase II expression in the renal glomerulus of mice in response toarsenic. Toxicol Appl Pharmacol,2007.224(1): p.39-48.
    [162] Palsamy, P. and S. Subramanian, Modulatory effects of resveratrol on attenuating the key enzymesactivities of carbohydrate metabolism in streptozotocin-nicotinamide-induced diabetic rats. Chem BiolInteract,2009.179(2-3): p.356-62.
    [163] Lehman, J.J., et al., The transcriptional coactivator PGC-1alpha is essential for maximal and efficientcardiac mitochondrial fatty acid oxidation and lipid homeostasis. Am J Physiol Heart Circ Physiol,2008.295(1): p. H185-96.
    [164] Cui, W., et al., Magnolia extract (BL153) ameliorates kidney damage in a high fat diet-induced obesitymouse model. Oxid Med Cell Longev,2013.2013: p.367040.
    [165] Dummler, B., et al., Life with a single isoform of Akt: mice lacking Akt2and Akt3are viable but displayimpaired glucose homeostasis and growth deficiencies. Mol Cell Biol,2006.26(21): p.8042-51.
    [166] Sakamoto, K., et al., Role of Akt2in contraction-stimulated cell signaling and glucose uptake in skeletalmuscle. Am J Physiol Endocrinol Metab,2006.291(5): p. E1031-7.
    [167] Sun, C., et al., SIRT1improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B.Cell Metab,2007.6(4): p.307-19.
    [168] Liu, J., et al., Mammalian Tribbles homolog3impairs insulin action in skeletal muscle: role inglucose-induced insulin resistance. Am J Physiol Endocrinol Metab,2010.298(3): p. E565-76.
    [169] Fang, C.X., et al., Metallothionein antagonizes aging-induced cardiac contractile dysfunction: role ofPTP1B, insulin receptor tyrosine phosphorylation and Akt. Aging Cell,2006.5(2): p.177-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700