电能计量的低功耗集成电路实现及采样方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
降低电能计量集成电路的功耗可以减少电能表给电网带来的额外功耗,能够延长电能表中备用供电电池的使用时间,提高电能表防窃电的灵敏度,降低电能表的制造成本。
     本文从结构级设计的低功耗策略出发,给出了普通电能计量中时域积分算法的一种数字集成电路设计实现方法。通过将时域积分算法转化为多速率数据处理,降低了对运算能力的要求,减少了翻转率。针对其运算类型和数据更新率逐级降低的特点,设计了有专用指令集和专用结构的数字信号运算单元。由多数据率运算状态机进行合理调度,通过复用运算单元,在电路翻转率为33.288%的情况下完成了所有的运算任务。针对运算任务设计所需的运算指令集,减少了冗余电路、简化了电路结构,降低了功耗。
     在计量性能测试达到设计指标的前提下,从已知的工艺条件来看,芯片使用0.25μm的工艺,其数字电路消耗的电流与使用0.18μm工艺的当前主流同类芯片的数字电路电流相当,即在同等工艺下,芯片的数字电路功耗将仅有其他芯片的1/2左右。应用此电路设计方法的电能计量集成电路已经商业化并量产数千万片。
     现有的关于谐波电能计量方法的研究工作大都集中在对采样数据的后处理上,需要依赖复杂的算法进而需要强大的数字信号处理能力进行实现,运算量大。即使是同步采样的方法,同样存在运算量大或者生成同步采样时钟的电路结构复杂、设计代价大等不足之处。
     本文从减少运算量、简化电路结构、降低功耗、适合集成电路设计实现的角度,充分结合过采样模数转换器的结构特点,提出了一种用于谐波电能计量的非均匀同步过采样方法;详细介绍了非均匀同步过采样时钟的产生原理,分析了各个设计参数之间的相互关系以及它们对采样结果的影响,确定了采样过程在谐波带宽内带来的采样噪声以及频谱泄漏的分布和幅度,并确定了采样过程对谐波信号的幅值和相位的调制影响,给出了选择快速傅里叶变换运算点数的方法。
     非均匀同步过采样方法利用过采样和时钟的非均匀特性,降低了对过采样时钟频率分辨率的要求,大幅减少了延时单元的个数,简化了电路结构。通过合理设计过采样率、过采样和降采样两个阶段中非均匀采样时钟频率的概率分布以及变化周期,减小了非均匀采样噪声对谐波频谱的调制影响,保证了非均匀过采样时钟是统计意义上跟踪基波频率的同步采样时钟。
     采样数据可以作为均匀同步采样序列直接进行快速傅里叶变换,无需消除非均匀采样噪声或者消除频谱泄漏的额外运算,大幅减小了对后续处理运算能力的要求。各次谐波在频谱上的位置也不再随基波频率变化而波动,可以根据算法带来的增益衰减进行固定补偿,从而降低了对降采样低通滤波器通带设计指标的要求,简化了其电路结构,降低了功耗。
     在延时单元个数ND=11的情况下,非均匀同步过采样和降采样带来的采样噪声和频谱泄漏幅度均接近或者小于∑-△过采样模数转换器量化噪声的幅度-120dB。若增大ND的值,会得到更小的测量误差。
     本文还针对采样时钟的非均匀和同步特性,在传统的正交解调方法的基础上,提出了正交信号恢复环路测量基波频率的方法,消除了非均匀时钟的频率时变等因素的影响。环路控制量不是传统锁相环或者自动频率控制机制中的相位差或者频率差,而是输入信号频率与输出频率值的商。整个测频算法可以等效成为开环系统,提高了环路的稳定性并缩短了环路的响应时间。
     滤除谐波与基波差频的滤波器以及环路中的求相位差运算给基波频率的测量带来了一定的局限性。在今后的工作中将对这些问题进行更深入的研究。
Reducing power consumption of energy metering ICs could decrease extra power loads generated by energy meters on power grid. The life of backup batteries in energy meters could also be extended. Higher level of anti-tampering sensitivity and lower hardware cost of meters could be achieved too.
     An IC implementation of the time-domain integral algorithm of ordinary energy metering was given. Computing capability requirements and circuit flip rates were reduced by converting the algorithm into multirate data processing. According to calculation types and progressively reduced data rates, a digital signal computing unit with specific instructions and architecture was designed. Controlled by the multirate computing FSM besides reusing computing resources, all calculation tasks were completed with circuit flip rate of33.288%. The instruction set was designed just according to calculation tasks, thus there is less redundant circuits and lower power consumption is achieved.
     The result of metering performance test meets the design specifications. The known process implemented by other mainstream MFEs is0.18μm. The designed chip was manufactured in TSMC0.25μm process. The digital current dissipation of the designed chip is comparable with that of the mainstream MFEs. If implemented in same process, the digital current will be half of that of the mainstream MFEs. Some energy metering ICs applying this design method have been in mass production and have been shipped tens of millions of chips.
     Current researches of harmonics energy measurement mostly focused on post process of sampled sequences, depending on sophisticated algorithms, and required powerful digital signal processors to carry out. For synchronous sampling methods, higher calculation requirements or complex sampling clock generation circuit was presented.
     According to oversampling ADC's characteristics, a non-uniform synchronous oversampling method used to measure harmonics was proposed, from the perspective of less computation, simpler circuit, lower power consumption and oriented for IC implementation. Principle of the non-uniform synchronous oversampling clock generation by DDLL was explained. Relationship between each design parameter and their effects on sampling results were analyzed. Distribution and amplitude of sampling noise and spectral leakage introduced by sampling were identified. Modulation on harmonic signal's amplitude and phase was determined. How to choose the number of sample points for FFT was also derived.
     The requirements on frequency resolution of sampling clock are reduced by clock's oversampling and non-uniform property. Number of delay cells in DDLL is significantly reduced and the structure of DDLL is simplified.Oversampling ratio, probability distribution and variation period of sampling clock frequency in both oversampling and down-sampling stages were properly designed to suppress the impact of spectrum modulation by sampling noise. The generated non-uniform clock can be treated as synchronous clock tracking the fundamental in statistical meaning.
     The final down-sampled data can be treated as uniformly sampled and synchronous ones. FFT can be directly applied, no extra work of sampling noise and spectral leakage elimination needed. Position of harmonics in spectrum won't vary any more so that fixed compensation of system attenuation in gain can be carry out, which lowers design requirements on down-sampling low-pass filters. All these characteristics bring low power consumption.
     When ND=11, the overall sampling noise and spectral leakage is nearby or smaller than-120dB which is the quantitative noise floor of ADC.The larger ND is, the smaller measurement error will be got.
     Regarding the non-uniform and synchronous nature of the sampling clock, a QSRL fundamental frequency measurement method based on traditional quadrature demodulation was proposed. The impact of clock frequency variation is eliminated. Contrary to phase or frequency error in PLL and AFC, the loop control variable is input signal frequency over output frequency. QSRL is equivalent to an open-loop system, with higher stability and shorter response time.
     Both the calculation of phase difference and the low-pass filter to cancel beat frequencies between fundamental and harmonics bring limitations to fundamental frequency measurement. These issues will be studied more in future work.
引文
[1]全国电压电流等级和频率标准化技术委员会,欧盟——亚洲电能质量项目中国合作组.电能质量国家标准应用指南.北京:中国标准出版社,2009,5-7.
    [2]袁野.电能计量领域的多功能低功耗设计.电子技术应用,2008,11,8-11.
    [3]全球智能电表导入情况.http://www.21ic.com/wz/CRXDQWHFA/20130501/20130501.htm.
    [4]国家电网公司Q/GDW 1355-2013,单相智能电能表型式规范.北京:国家电网公司,2013.
    [5]国家电网公司Q/GDW 1364-2013,单相智能电能表技术规范.北京:国家电网公司,2013.
    [6]马利人,苏志强.单相电子式电能表窃电方式及对策.仪表技术,2011,8,11-13.
    [7]文俊,涂大石.对负载与谐波及电能计量问题的分析.电测与仪表,2000,12, 12-14.
    [8]申邵东,魏星.谐波对有功电能计量影响的仿真研究.电力自动化设备,2008,2,54-56.
    [9]周莉,刘开培.电能计量误差分析与电能计费问题的讨论.电工技术学报,2005,2,63-68.
    [10]赵丽平,周勇,解绍锋.电能质量监控.北京:机械工业出版社,2011,15-16.
    [11]ATT7053AU数据手册.http://www.hitrendtech.com/download/210-SD-125_V1.6%20ATT7053AU%E7 %94%A8%E6%88%B7%E6%89%8B%E5%86%8C.pdf.
    [12]ATT7053BU数据手册.http://www.hitrendtech.com/download/210-SD-139_V0.1%20ATT7053BU%20 User%20Manual.pdf.
    [13]ATT7059BU数据手册. http://www.hitrendtech.com/download/ATT7059BU%E7%94%A8%E6%88%B 7%E6%89%8B%E5%86%8CV 1.0.pdf.
    [14]RN8207G产品介绍.http://www.renergy-me.com/html/Products/Single/pages/2010/11/11/25.html.
    [15]RN8208G产品介绍.http://www.webaic.com/Product.aspx?cpxiangqing=%E5%8D%95%E7%9B%B 8%E7%94%B5%E8%83%BD%E8%AE%A1%E9%87%8F%E8%8A%AF%E7 %89%87RN8208G.
    [16]RN8209G产品介绍.http://www.renergy-me.com/html/Products/Single/pages/2010/10/25/7.html.
    [17]BL6523B数据手册.http://www.belling.com.cn/2013p/BL6523B_V 1.0_en.pdf.
    [18]ADE7753 Datasheet. http://www.analog.com/static/imported-files/data_sheets/ADE7753.pdf.
    [19]ADE7763 Datasheet. http://www.analog.com/static/imported-files/data_sheets/ADE7763.pdf.
    [20]ATM90E21/22/23/24 Datasheet. http://www.atmel.com/Images/Atmel-Meter-ATM90E21-22-23-24-Datasheet-En g_0402.pdf.
    [21]CS5480 Datasheet. http://www.cirrus.com/cn/pubs/proDatasheet/C S 5480_F3.pdf.
    [22]http://dolphin-ip.com/jazz.
    [23]高云鹏,滕召胜,刘鹏,等.三相多功能谐波电能表设计.湖南大学学报(自然科学版),2008,9,53-57.
    [24]吴福炜.数字电路低功耗设计方法研究[博士学位论文].北京:中国科学院研究生院,2003,8-28.
    [25]徐勇军.集成电路功耗估计及低功耗设计[博士学位论文].北京:中国科学院研究生院,2006,12-17.
    [26]胡广书.数字信号处理——理论、算法和实现.北京:清华大学出版社,1997,84-84.
    [27]胡广书.数字信号处理——理论、算法和实现.北京:清华大学出版社, 1997,55-99.
    [28]温和,滕召胜,卿柏元.Hanning自卷积窗及其在谐波分析中的应用.电工技术学报,2009,2,164-169.
    [29]高云鹏,滕召胜,卿柏元.基于Kaiser窗双谱线插值FFT的谐波分析方法.仪器仪表学报,2010,2,287-292.
    [30]陈国志,陈隆道,蔡忠法.基于Nuttall窗插值FFT的谐波分析方法.电力自动化设备,2011,4,27-31.
    [31]牛胜锁,梁志瑞,张建华,等.基于多时段同步测量信息的T接线路参数在线测量.电工技术学报,2012,5,238-244.
    [32]王继东,杨官庆,文晶.基于改进复调制细化法和加窗插值快速傅里叶变换的电力系统谐波分析.电网技术,2012,2,64-69.
    [33]牛胜锁,梁志瑞,张建华,等.基于三谱线插值FFT的电力谐波分析算法.中国电机工程学报,2012,6,130-136.
    [34]滕召胜,罗志坤,高云鹏,等.基于虚拟仪器的平方检测法电压闪变测量实现.仪器仪表学报,2011,8,1803-1809.
    [35]曾博,滕召胜,温和,等.莱夫——文森特窗插值FFT谐波分析方法.中国电机工程学报,2009,4,115-120.
    [36]林达斌,江亚群,黄纯,等.一种新的谐波、间谐波参数估计算法.电网技术,2012,6,170-174.
    [37]吴静,金海彬.电网信号高准确度频谱插值测量算法.北京航空航天大学学报,2010,4,495-499.
    [38]Dai X, Gretsch R. Quasi-synchronous sampling algorithm and its applications. IEEE Transactions on Instrumentation and Measurement,1994,43(2),204-209.
    [39]胡海兵,祁才君,吕征宇.一种基于非同步采样的FFT算法.中国电机工程学报,2004,12,13-17.
    [40]易立强,邝继顺.一种基于FFT的实时谐波分析算法.电力系统及其自动化学报,2007,4,98-102.
    [41]蔡忠法,陈隆道,周箭.非同步采样的同步化谐波分析算法.浙江大学学报(工学版),2008,4,682-685.
    [42]蔡菲娜,左伍衡.改进的双速率同步采样法及其傅里叶变换.浙江大学学报(工学版),2005,3,414-417.
    [43]梅永,王柏林.电力系统谐波分析的同步校正法.电力自动化设备,2011,1,34-36.
    [44]陈隆道,钱照明,张圣训.周期域分析中非同步取样数据的同步化.电子学报,2001,7,950-953.
    [45]黄纯,彭建春,刘光晔,等.周期电气信号测量中软件同步采样方法的研究.电工技术学报,2004,1,75-79.
    [46]门长有,王荣华,谭年熊.一种用于谐波测量的全数字同步采样算法.电力系统自动化,2008,22,83-86.
    [47]郭敏,赵成勇,曹东升.同步采样和谐波分析方法的实现.电测与仪表,2011,4,13-17.
    [48]倪伟,张粤,倪桑晨.智能电参数测控系统的设计.电力自动化设备,2011,1,126-129.
    [49]Michel Misiti, Yves Misiti, Georges Oppenheim, et al.. Chapter 6, Wavelet Toolbox User's Guide. The Math Works Inc.,2002,20-35.
    [50]Michel Misiti, Yves Misiti, Georges Oppenheim, et al.. Chapter 6, Wavelet Toolbox User's Guide. The Math Works Inc.,2002,132-132.
    [51]Michel Misiti, Yves Misiti, Georges Oppenheim, et al.. Chapter 6, Wavelet Toolbox User's Guide. The Math Works Inc.,2002,122-122,131-131.
    [52]陈亦文,邱公伟,魏勇.基于小波包分解的时变谐波分析.仪器仪表学报,2005,5,457-459.
    [53]张鹏,李红斌.一种基于离散小波变换的谐波分析方法.电工技术学报,2012,3,252-259.
    [54]赵勇,王学伟.小波Mallat谐波测量的带内泄漏误差分析与算法改进.电力自动化设备,2009,8,59-62.
    [55]Barros, J, Diego, R I. Analysis of harmonics in power systems using the wavelet-packet transform. IEEE Transactions on Instrumentation and Measurement,2008,57(1),63-69.
    [56]赵丽平,周勇,解绍锋.电能质量监控.北京:机械工业出版社,2011,35 -35.
    [57]赵丽平,周勇,解绍锋.电能质量监控.北京:机械工业出版社,2011,36-36.
    [58]Dammak H, Ben-Romdhane M, Grati K. Software embedded implementation of real time non-uniform sampling filter. The 4th International Conference on Design & Technology of Integrated Systems in Nanoscale Era,2009,86-89.
    [59]Nguyen C M, Moisseev D N, Chandrasekar V. A time domain clutter filter for staggered PRT and dual-PRF measurements. IEEE International Geoscience and Remote Sensing Symposium,2007,3325-3328.
    [60]Yang Wei, Li Chunsheng, Wang Pengbo, et al.. Performance analysis and data processing of space-borne multi-channel ScanSAR mode for high-resolution wide-swath. IET International Radar Conference,2009,1-4.
    [61]Miletiev R, Arnaudov R. On the estimation of the optimal sampling sequence. The 7th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services,2005,131-134.
    [62]Jenq Y C. Digital spectra of nonuniformly sampled signals:a robust sampling time offset estimation algorithm for ultra high-speed waveform digitizers using interleaving. IEEE Transactions on Instrumentation and Measurement,1990, 39(1),71-75.
    [63]Jenq Y C. Digital spectra of nonuniformly sampled signals:theories and applications-measuring clock/aperture jitter of an A/D system. IEEE Transactions on Instrumentation and Measurement,1990,39(6),969-971.
    [64]高玉凯,张维.非均匀采样信号的频谱分析方法.电测与仪表,2009,2,8-11.
    [65]Bland D M, Laakso T I, Tarczynski A. Analysis of algorithms for nonuniform-time discrete Fourier transform. IEEE International Symposium on Circuits and Systems,1996,2,453-456.
    [66]Jenq Y C. Perfect reconstruction of digital spectrum from nonuniformly sampled signals. IEEE Transactions on Instrumentation and Measurement,1997, 46(3),649-652.
    [67]Carni D L, Grimaldi D. Characterization of high resolution DAC by DFT and sine fitting. IEEE Instrumentation and Measurement Technology Conference, 2009,1244-1249.
    [68]Thong T, McNames James, Aboy M. Lomb-Wech periodogram for non-uniform sampling. The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society,2004,271-274.
    [69]Tao Ran, Li Bingzhao, Wang Yue. Spectral analysis and reconstruction for periodic nonuniformly sampled signals in fractional fourier domain. IEEE Transactions on Signal Processing,2007,55(7),3541-3547.
    [70]Stoica Petre, Jian Li, Hao He. Spectral analysis of nonuniformly sampled data: a new approach versus the periodogram. IEEE Transactions on Signal Processing,2009,57(3),843-858.
    [71]Huang B, Lai E M, Vinod A P. Demodulation of UWB impulse radio signals using b-splines. The 10th IEEE International Conference on Communication Systems,2006,1-5.
    [72]Wang Zhigang, Zhu Zhaoxuan, Tian Shulin, et al. Filter design added transition band of periodic non-uniform samples reconstruction. IEEE International Conference on Circuits and Systems Testing and Diagnosis,2009, 1-4.
    [73]Babic D, Renfors M. Reconstruction of non-uniformly sampled signal using transposed farrow structure. Proceedings of International Symposium on Circuits and Systems,2004,3,221-224.
    [74]陈涵,刘会金,李大路,等.非均匀采样和最小二乘法在间谐波检测中的应用.中国电机工程学报,2009,29(10),109-114.
    [75]国家质量监督检验检疫总局,国家标准化管理委员会.GB/T 17215.321—2008,交流电测量设备特殊要求第21部分:静止式有功电能表(1级和2级).北京:中国标准出版社,2008.
    [76]Zhao Yan, Tan Nianxiong, et al.. A single-phase energy metering SoC with IAS-DSP and ultra low power metering mode. IEEE International SOC Conference,2011,354-358.
    [77]门长有.电能计量算法及其SoC实现[博士学位论文].杭州:浙江大学研究生院,2009,50-50.
    [78]国家质量监督检验检疫总局,国家标准化管理委员会.GB/T 17215.301—2007,多功能电能表特殊要求.北京:中国标准出版社,2007.
    [79]门长有.电能计量算法及其SoC实现[博士学位论文].杭州:浙江大学研究 生院,2009,25-36.
    [80]赵岩,孙玲玲,谭年熊.适合集成电路实现的非均匀同步过采样谐波测量算法.电力系统自动化,2013,37(7),102-107.
    [81]Walden R H. Analog-to-digital converter survey and analysis. IEEE Journal on Selected Areas in Communications,1999,17(4),539-550.
    [82]Schreier R, Temes G C. Understanding delta-sigma data converters. New York: John Wiley & Sons,2004.
    [83]Medeiro F, Perez-Verdu B, Manuel de la Rosa, J, et at. Fourth-order cascade SC ∑Δ modulators:a comparative study. IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications,1998,45(10),1041-1051.
    [84]Walt Kester. ADC architectures IV:sigma-delta ADC advanced concepts and applications. Analog Devices, Inc.,2009,1-11.
    [85]Richard Schreier. Delta-Sigma toolbox. Analog Devices, Inc.,2009,33-40.
    [86]Hogenauer E. An economical class of digital filters for decimation and interpolation. IEEE Transactions on Acoustics, Speech and Signal Processing, 1981,29(2),155-162.
    [87]Saramaki T. Design of FIR filters as a tapped cascaded interconnection of identical subfilters. IEEE Transactions on Circuits and Systems,1987,34,1011-1029.
    [88]侯世英,张诣.新型数字锁相环在三相电压型SVPWM整流器中的应用.电力自动化设备,2011,31(7),48-51.
    [89]赵品志,杨贵杰.基于FPGA的全数字轴角变换算法.哈尔滨工业大学学报,2010,42(12),1911-1915.
    [90]庞浩,俎云霞,李东霞,等.基于Hilbert移相滤波的全数字锁相环.电网技术,2003,27(11),55-59.
    [91]肖帅,孙建波,耿华,等.基于FPGA实现的可变模全数字锁相环.电工技术学报,2012,27(4),153-158.
    [92]付志红,熊学海,侯兴哲,等.基于dSPACE平台的电能计量实时仿真系统.仪器仪表学报,2011,32(8),1763-1770.
    [93]单长虹,王彦,陈文光,等.基于FPGA的高阶全数字锁相环的设计与实现.电路与系统学报,2005,10(3),76-79.
    [94]邓耀华,吴黎明,张力锴,等.基于FPGA的双DDS任意波发生器设计与杂散噪声抑制方法.仪器仪表学报,2009,30(11),2255-2261.
    [95]刘林,田进军,刘朝辉.基于DDS和直接频率合成技术的超宽带捷变频源设计与实现.兵工学报,2010,31(12),1648-1652.
    [96]A technical tutorial on digital signal synthesis, http://www.analog.com/static/ imported-files/tutorials/450968421DDS_Tutorial_rev12-2-99.pdf.
    [97]谭聪,卜海祥,唐璞山.一种改进的用于FPGA的快速数字锁相环电路设计.复旦学报(自然科学版),2009,48(4),470-476.
    [98]Jenq Y C. Digital spectra of non-uniformly sampled signals:theories and applications, I, Fundamentals and high speed waveform digitizers. Conference Record of the 5th IEEE Instrumentation and Measurement Technology Conference,1988,391-398.
    [99]Poulton D, Herrero O C, Oksman J. Non uniformly sampled power control scheme for TCP-based data transfers on a faded satellite link. The 10th International Conference on Telecommunications,2003,2,1590-1595.
    [100]门长有.电能计量算法及其SoC实现[博士学位论文].杭州:浙江大学研究生院,2009,73-82.
    [101]Routray A, Pradhan A K, Rao K P. A novel Kalman filter for frequency estimation of distorted signals in power systems. IEEE Transactions on Instrumentation and Measurement,2002,51(3),469-479.
    [102]Dash P K, Jena R K, Panda G, et al. An extended complex Kalman filter for frequency measurement of distorted signals. IEEE Transactions on Instrumentation and Measurement,2000,49(4),746-753.
    [103]Dash P K, Pradhan A K, Panda G. Frequency estimation of distorted power system signals using extended complex Kalman filter. IEEE Transactions on Power Delivery,1999,14(3),761-766.
    [104]Borkowski D, Bien A. Improvement of accuracy of power system spectral analysis by coherent resampling. IEEE Transactions on Power Delivery,2009, 24(3),1004-1013.
    [105]Pradhan A K, Routray A, Basak A. Power system frequency estimation using least mean square technique. IEEE Transactions on Power Delivery,2005,20(3), 1812-1816.
    [106]Xue S Y, Yang S X. Power system frequency estimation using Supervised Gauss-Newton algorithm. IEEE International Conference on Systems, Man and Cybernetics,2007,3761-3766.
    [107]Chudamani R, Vasudevan K, Ramalingam C S. Real-time estimation of power system frequency using nonlinear least squares. IEEE Transactions on Power Delivery,2009,24(3),1021-1028.
    [108]Chudamani R, Vasudevan K, Ramalingam C S. Power system frequency estimation method. Electronics Letters,2008,44(17),1030-1032.
    [109]Dawei Fan, Centeno V. Least-squares estimation in phasor-based synchronized frequency measurements. IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century,2008,1-6.
    [110]Sadinezhad I, Joorabian M, Nowbakht A. A novel adaptive power systems frequency estimation algorithm based on complex artificial neural network. IEEE the 2nd International Power and Energy Conference,2008,890-894.
    [111]Hart D, Novosel D, Yi Hu, et al.. A new frequency tracking and phasor estimation algorithm for generator protection. IEEE Transactions on Power Delivery,1997,12(3),1064-1073.
    [112]Yang Junzhe, Chih-Wen Liu. A precise calculation of power system frequency. IEEE Transactions on Power Delivery,2001,16(3),361-366.
    [113]Agrez D. Power system frequency estimation in the shortened measurement time. Proceedings of the 18th IEEE Instrumentation and Measurement Technology Conference,2001,2,1094-1098.
    [114]Nguyen T T, Li X J. Application of a z-transform signal model and median filtering for power system frequency and phasor measurements. IET Generation, Transmission & Distribution,2007,1,1,72-79.
    [115]Zhao Zhenyu, Brown L. Fast estimation of power system frequency using adaptive internal-model control technique. The 43rd IEEE Conference on Decision and Control,2004,1,845-850.
    [116]Canteli M M, Fernandez A O, Eguiluz L I, et al.. Three-phase adaptive frequency measurement based on Clarke's transformation. IEEE Transactions on Power Delivery,2006,21(3),1101-1105.
    [117]Tsuji M, Hamasaki S, Korogi M. Characteristics of power series type wavelet transform for online frequency estimation. Power Conversion Conference,2007, 177-182.
    [118]Lin T, Tsuji M, Yamada E. A wavelet approach to real time estimation of power system frequency. Proceedings of the 40th SICE Annual Conference,2001,58-65.
    [119]Sarkar A, Sengupta S. A novel digital signal processing algorithm for on-line assessment of power system frequency. International Conference on Power Electronics, Drives and Energy Systems,2006,1-6.
    [120]Sezi, T. A new method for measuring power system frequency. IEEE Transmission and Distribution Conference,1999,1,400-405.
    [121]Abu-El-Haija A I. Fast and accurate measurement of power system frequency. Proceedings of the 17th IEEE Instrumentation and Measurement Technology Conference,2000,2,941-946.
    [122]Soliman S A. A simple and reliable algorithm for frequency estimation with application to power systems frequency relaying. Large Engineering Systems Conference on Power Engineering,2007,154-158.
    [123]Lobos T, Rezmer J. Real-time determination of power system frequency. IEEE Transactions on Instrumentation and Measurement,1997,46(4),877-881.
    [124]Lopez A, Montano J-C, Castilla M, et al. Power system frequency measurement under nonstationary situations. IEEE Transactions on Power Delivery,2008,23(2),562-567.
    [125]Yang J Z, Liu C W. An effective method for power system frequency estimation. IEEE Power Engineering Society General Meeting,2005,1347-1350.
    [126]Dawei Fan, Centeno V. Phasor-based synchronized frequency measurement in power systems. IEEE Transactions on Power Delivery,2007,22(4),2010-2016.
    [127]El-Naimi M I, Soliman S A. Derivative-based power system frequency estimation. Large Engineering Systems Conference on Power Engineering,2006, 119-124.
    [128]Sidhu T S, Zhang Xudong, Balamourougan V. A new half-cycle phasor estimation algorithm. IEEE Transactions on Power Delivery,2005,20(2),1299-1305.
    [129]Sidhu T S, Accurate measurement of power system frequency using a digital signal processing technique. IEEE Transactions on Instrumentation and Measurement,1999,48(1),75-81.
    [130]Karimi-Ghartemani M, Karimi H, Iravani M R. A magnitude/phase-locked loop system based on estimation of frequency and in-phase/quadrature-phase amplitudes. IEEE Transactions on Industrial Electronics,2004,51(2),511-517.
    [131]Karimi H, Karimi-Ghartemani M, Iravani M R. Estimation of frequency and its rate of change for applications in power systems. IEEE Transactions on Power Delivery,2004,19(2),472-480.
    [132]Karimi-Ghartemani M, Bakhshai A R, Mojiri M. Estimation of power system frequency using adaptive notch filter. Proceedings of the IEEE Instrumentation and Measurement Technology Conference,2005,2,1494-1497.
    [133]Mojiri M, Karimi-Ghartemani M, Bakhshai A. Estimation of power system frequency using an adaptive notch filter. IEEE Transactions on Instrumentation and Measurement,2007,56(6),2470-2477.
    [134]Winek T, Staroszczyk Z. Real-time accurate power system frequency meter and its quality evaluation based on simulations and large area system observations. Proceedings of the 17th IEEE Instrumentation and Measurement Technology Conference,2000,2,935-940.
    [135]Gardner R M, Wei Li, West J, et al. Power system frequency oscillation characteristics. IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century,2008,1-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700