基于小波的网络流量的特性刻画与模型建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
网络流量的特性刻画与模型建立一直是网络技术研究中的一个热点问题。一个具有精确刻画能力的模型的建立,对分析、理解和仿真网络的动态行为,对指导网络流量均衡控制方案的设计,对相关网络路由、交换和管理设备及其支撑软件的开发都具有基础性的重要意义。
     近年来,通信与网络技术得到了飞速发展,其结果是带来了网络流量特征的重大变化,其主要表现为以下几个方面:
     (1)、数据量的急剧增长——Internet用户数以及每一个用户所产生的流量均是以指数形式增长。
     (2)、服务功能的变化——目前,Internet提供越来越多的个性化服务项目,如:多媒体技术的应用,是Internet为用户提供了诸如视频点播等多种新的应用服务。
     (3)、移动及无线网技术的发展——目前,大量的无线用户的接入,改变了原有的Internet流量特性。
     网络技术的发展为网络技术的研究提出了诸多新问题,就网络流量的特性刻画与模型建立等方面,主要有以下问题:
     (1)、网速的提高以及流量的增大,将对网络流量的特性分析方法带来重大变化,其研究的重点将从大尺度(1s及其以上)转移到小尺度(100ms以下)及其在中尺度(100ms—1s)上来。
     (2)、多媒体的广泛应用,为网络流量的特性分析与模型建立提出了新问题。视音频流具有有别于Internet流的自身特点,其特点决定了传统的分析方法和数学模型将无法满足其要求。
     (3)、移动性和无线网技术的实施,会带来信号的多径衰落和频率选择性衰落等诸多问题。
     小波变换是一种信号的时间——尺度分析方法,它具有多分辨率分析的特点,而且在时频两域都具有表征信号局部特征的能力,是一种窗口大小不变,但其形状可以改变,时间窗和频率窗都可以改变的时频局部化分析方法。即在低频部分具有较高的频率分辨率和较低的时间分辨率,在高频部分具有较高的时间分辨率和较低的频率分辨率,很适合于探测正常信号中夹带的瞬态反常现象并展示其成分,被誉为分析信号的显微镜。
     本人基于小波分析的方法和多分形的理论,在网络流量的特性刻画及模型建立等方面进行了以下的研究:
     (1)、对诸如聚类方差法等几种常用的网络流量的Hurst参数估值算法的性能、适用范围以及短相关特性对其的影响进行了分析。
     (2)、对MPEG-4视频流的特性进行了分析,并基于分析的结果,用多分形小波模型对其进行了仿真,对其仿真性能进行了评估,同时探讨了小波基函数及其消失矩的选择对仿真性能的影响。
     (3)、对网络流量特性进行了多尺度分析,对流量在小尺度上的平稳性、泊松性、高斯性、长相关性以及多分形特征进行了全面地分析,并基于Alpha、Beta的流量分解原则,对流量在小尺度上所表现出的非平稳性和非长相关性的原因进行了研究。
     其研究成果可以概括为以下几点:
     (1)、对五种Hurst参数估值算法的鲁棒性进行了分析,给出了在用Hurst参数估值法对流量的LRD特性进行分析时,应遵循的原则。
     (2)、研究了SRD特性对五种Hurst参数估值算法性能的影响,提出了一种有效消除SRD特性的方法——聚类分析法。
     (3)、对MPEG-4视频流的LRD特性进行了研究,指出流量的突发性是造成MPEG-4视频流具有LRD特性的主要原因。并基于上述研究结果,用多分形小波模型对MPEG-4视频流进行仿真并对其性能进行了分析,指出多分形小波模型是一个性能较好的MPEG-4视频流的仿真模型,其很好地刻画了流量的全局特性,但随着流量的突发性的增强,其对流量的局部特性的刻画能力减弱。
     (4)、对小波基的选择和消失矩的选择对多分形小波模型性能的影响进行了研究,指出小波基函数的选择和消失矩的选择对多分形小波模型的性能均有影响,但小波基函数的选择影响更大。
     (5)、对Internet流量在小尺度上(1s及以下)的平稳性、泊松性、高斯性、长相关性和多分形性进行了研究,指出网络流量在小尺度上表现出:非平稳的、非高斯的、非长相关性的泊松分布的特性,同时指出,网络流量的多分形特征具有非一致性,网速为几个kbps的低速网络,其流量表现出多分形的小尺度特性,而网速为几个Gbps的骨干网,其流量表现出单分形的小尺度特性。
     (6)、对流量在小尺度上的非平稳性和非LRD特性的原因进行了研究,指出:流量的非LRD特性主要是由Dense流决定的,即由流量的密度决定的。从全局特性来看,流量的非平稳性是由Dense流决定的,即由流量的密度决定的,而从局部特性来看,流量的非平稳性是由Alpha流决定的,即由流量的包字节数的大小决定的。
     本论文以小波作为主要分析工具,并结合分形理论,对网络流量的多种特性进行了详实的分析,同时,基于分析的结果,用MWM模型对其进行了仿真,此项研究为网络流量的特性分析和建模工作提供了一种切实可行的方法。特别是本文中,在网络流量的特性分析方面,有别于传统的分析方法(研究流量在中和大尺度即:1s及其以上的尺度上的特性),将研究的重点集中于流量在小尺度(1s及其以下)上的特性分析,并找出了网络流量在小尺度上表现出的非平稳性和非LRD特性的原因,此项研究对于目前正在发展的高速网的建设,具有一定的现实指导意义。论文最后总结了网络流量特性分析和建模中亟待解决的问题,并指出了下一步研究的重点。
Network traffic analysis and modeling play a major role in charactering network performance, so it has been a focus of many researches. Models that accurately capture the salient characteristics of the traffic is useful for analysis and simulation, and they further our understanding of network dynamics, so it has a fundamental meaning for many network designs and engineering problems, e.g., the traffic balance scheme, router, switcher designing, the manage devices and its support software developing.
     Recently, communication and network technologies are developing rapidly, it brings the traffic characteristics to change greatly, and the main changes are shown as follow:
     (1) The drastic increasing of the amount of the data-The Internet has beengrowing exponentially. This growth has occurred both in the number of hosts connected to Internet, and the amount of traffic produced by each host.
     (2) The changing of the service functions-Recently, more and more.differentiated services such as multi-media and VOD are widely deployed in Internet.
     (3) The development of mobile and wireless technology-The access ofmany wireless users has changed the original characteristics of the traffic.
     The development of network technology has brought many new problems for the network researches. As for the traffic characterization and modeling, the problems are as follow:
     (1) The high link capacity of the network will allow us to zoom into small-time scale (below 100ms) and middle-time scale (100ms—1s) and perform reliable data analysis. This is different from the traditional analysis method at the large-time scale (1s and above).
     (2) Video and audio traffic has their own characteristics which are different from the Internet traffic, so the widely deployed multi-media technology will lead new problems to traffic characterization and modeling. The traditional analysis method and models need to be modified.
     (3) The access of many mobile and wireless users will lead some new problems such as multi-path shading and frequency selecting.
     Wavelet transform is a time-scale analysis method which has a multi-resolution analysis function. It can capture the local behaviors of the signal both in time and frequency fields. The method can change its window's shape while hold the window's size the same, and it can also change the time window and frequency window at the same time. It is a time-frequency localization analysis method, i.e., at the part of low frequency, it has higher frequency resolution and lower time resolution, and at the part of high frequency, it has lower frequency resolution and higher time resolution. So it is suitable for detecting the burst phenomena in the signal. It is a microscope for signal analysis.
     Based on wavelet analysis method and multi-fractal theory, we have done some research works on traffic characterization and modeling. They are as follow:
     (1) The performance of several Hurst parameter estimate algorithms is studied and the influence of SRD to these algorithms is analyzed.
     (2) The behaviors of MPEG-4 video traces are studied, and based on the results, the video traces are simulated using multi-fractal wavelet model. The performance of the model is evaluated and the influence of mother wavelet selection and vanishing moment selection to the performance of the model is also studied.
     (3) Multi-scale analysis is done to the network traffic. The stationary, Poisson, Gaussian, LRD, and multi-fractal behaviors of the traffic at the small-time scale are studied in detail. Based on the Alpha, Beta separation scheme, some research works are done to identify the potential causing factors of the non-stationary and non-LRD behavior of the traffic at the small-time scale.
     The research results can be summarized in following:
     (1) The robustness of 5 Hurst parameter estimate algorithms is studied and the principle which we should obey when using these methods to study the LRD behavior of traffic is presented.
     (2) The influence of SRD to the performance of 5 Hurst parameter estimate algorithms is studied and a method which can eliminate this influence is presented. The method is called aggregate analysis method.
     (3) The LRD behavior of MPEG-4 video traces is studied and the results show that the burstiness is the main causes. Based on the results, the MPEG-4 video trace is simulated using multi-fractal wavelet model and its performance is evaluated. The results show that multi-fractal wavelet model is a good model for characterizing MPEG-4 video trace. It can capture the global behavior of the traffic perfectly, but its ability to capture the local behavior of the traffic become weaker when the burstiness of the traffic become stronger.
     (4) The influence of mother wavelet selection and vanishing moment selection to the performance of the MWM model is studied. The results show that they both have influence to the performance of MWM model. The influence of mother wavelet selection is the bigger.
     (5) The stationary, Poisson, Gaussian, LRD, and multi-fractal behaviors of the traffic at the small-time scale are studied. The results show that the traffic exhibits non-stationary, non-Gaussian, non-LRD and Poisson distribution behaviors at the small-time scale. The results also show that the multi-fractal behavior is not uniform, for the relatively low capacity link (several kbps), the traffic exhibits multi-fractal behavior, but for the high capacity link (several Gbps), the traffic exhibits mono-fractal behavior.
     (6) The non-stationary and non-LRD causing factors are studied at the small-time scale, the results show that Dense flow is the main causing factor of the non-LRD. From the global view, the Dense flow is the main causing factor of non-stationary, but from the local view, the Alpha flow is the main causing factor of non-stationary.
     In this dissertation, combined with the fractal theory, the wavelet is used as a tool, to make a detailed analysis to the traffic. Based on the results, the traffic simulation is made using MWM model. This study provides a useful way for the traffic characterization and modeling. Especially in this dissertation, much more researches are done to the small-time scaling (1s and down) behaviors of the traffic, which is differ from the conventional works which focus on the large-time scaling (1s and above) behaviors, and the non-stationary and non-LRD behaviors causing factors at the small-time scale were found. This study is helpful for the recently construction works of the high-speed network. Finally, the dissertation summarizes the to-be-resolved problems and point out the emphasis of the further research.
引文
[1]. H. Heffes and D. M. Lucantoni, A Markov modulated characterization of packetized voice and data traffic and related statistical multiplexer performance, IEEE Journal on Selected Areas in Communications, SAV-4(6):856-867, September,1986.
    [2]. M. Zukerman and I. Rubin, On multi channel queueing systems with fluctuating parameters, In Proceedings of IEEE Infocom'86, pages 600-608, April, 1986.
    [3]. J. Beran, R. Sherman, M. S. Taqqu and W. Willinger, Long-range dependence in variable-bit-rate video traffic, IEEE Transactions on Communications, 43:1566-1579, 1995.
    [4]. M. W. Garrett, W. Willinger, Analysis, modeling and generation of self-similar VBR video traffic [J], Proc of ACM SIGCOMM, 1994.
    [5]. C. Huang, M. Devetsikiotis, I. Lambardis and A. R. Kaye, Modelling and simulation of self-similar variable bit rate compressed video: A unified approach, Computer Communications Review, 25:114-125, August, 1995.
    [6]. P. R. Jelenkovic and A. A. Lazar, Multiplexing on-off sources with subexponential on periods: PARTII, In Proceedings of Applied Probability, 31:394-421, 1999.
    [7]. W. E. Leland, M. S. Taqqu, W. Willinger and D. V. Wilson. On the self-similar nature of Ethernet traffic, IEEE/ACM Trans, On Networking, vol.2, no.1, pp.1-15, 1994,
    [8]. W. Willinger, M. S.Taqqu, W. E. Leland and D. V. Wilson, Self-similarity in high-speed packet traffic: Analysis and modeling of Ethernet traffic measurements. Statistical Science, 10(1):67-85, 1995.
    [9]. R. G. Addie, M. Zukerman and T. D. Neame, Fractal traffic: Measurements, modeling and performance evaluation, InProceedings of IEEE Infocom'95, pages 977-984, April 1995.
    [10]. V.Paxson and S. Floyd, Wide-area traffic: The failure of Poisson modeling. IEEE/ACM Transactions on Networking, 3:226-244, 1995.
    [11]. V. A. Bolotin, Y. Levy and D. Liu, Characterizing data connection and messages by mixtures of distributions on logarithmic scale, In Proceedings of ITC 16,pages 887-894, June 1999.
    [12]. E. E. Cohen, A. A. Fredericks and C. D. Pack, The internet & the public switched telephone network—a trouble. marriage, In Proceedings of ITC 16, pages 23-32, June 1999.
    [13]. J. Bern, Statistics for long-range process [M], New York: Chapman and Had, 1994.
    [14]. R. H Riedi and W. Willinger, Self-similar network traffic and performance evaluation [M], New York: Willey, 2000.
    [15]. W. Willinger, V. Paxson, R. H. Riedi, et al, Theory and application of long-range dependence [M], Boston. Birkhauser, 2003.
    [16]. P. Abry and D. Veitch, Wavelet analysis of long-range dependence traffic [J], IEEE Transactions on Information Theory, 44(1):2-15, 1998.
    [17]. R. H. Riedi, MS. Crouse, et al, A multi-fractal wavelet model with application to network traffic[J], IEEE Transactions on Information Theory, 45(3):992-1018, 1999.
    [18]. T. D. Neame, M. Zukerman and R. G. Addie, Modeling bursty multi-media traffic streams using the M/Pareto model, ACM Transactions on Modeling and Computer Simulation, 2002.
    [19]. F. Xue and L. Trajkovic, Performance analysis of wavelet-based Hurst parameter estimator for self-similar traffic, In Proceedings of SPECTS 2K, July, 2000.
    [20]. Chuanshan Gao, Sue Cong and Gangsha Wu, Traffic Measurement, Simulation and Analysis, In Proceedings of FTF'99, pp. 106-110, Beijing, Dec.7-8,1999.
    [21]. Zhiwei Cen, Chuanshan Gao, Sue Cong and Liangxiu Han, Measurement and Analysis of IP Network Traffic, In Proceedings of 3rd Asia-Pacific Web Conference, Xi'an, China, pp.46-50,Oct.27-29,2000.
    [22]. Chuanshan Gao, Liangxiu Han, Zhiwei Cen and Chunbo Chu, A New Multifractal Traffic Model Based on the Wavelet Transform. In proceedings of the ISCA 14th International Conference: Parallel and Distributed, Computing Systems, Pdchardson, Texas USA, August.8-10,2001.
    [23]. Xue Fei, Shu Yantai, et al, Analysis of Self-similarity and Queuing Performance for CERNET Traffic. In Proceedings 4th CERNET Academic Conference, Xi'an, China, pp.88-93, 1997.
    [24].张连芳、薛飞、舒炎泰等,CERNET网络业务的自相似性及其性能分析,天津大学学报:自然科学与工程技术版,2000,Vol.33,No.3,pp.367-370.
    [25].舒炎泰、王雷、张连芳、薛飞等,基于FARIMA模型的Internet网络业务预报,计算机学报》,2001,Vol.24,No.1,pp.46-54.
    [26].洪飞、吴志美,基于小波的Hurst指数自适应估计方法,软件学报,2005,Vol.16,No.9,pp.1685-1689.
    [27].洪飞、吴志美,基于小波的多尺度网络流量预测模型,计算机学报,2006,Vol.29,No.1,pp.166-170.
    [28].洪飞、吴志美,MPEG-4视频业务的多重分形分析与建模,通信学报,2003,Vol.24,No.12,pp.52-57.
    [29]. Telcordia Netsizer, Internet Growth Forecasting Tool, 2000, URL http://www.netsizer.com
    [30].中国互联网信息中心,http://www.cnnic.net.cn
    [31]. W. Willinger and V. Paxson, Where Mathematics meets the Internet, Notices of the American Mathematical Society, vol.45,no.8, pp.961-970, Aug. 1998.
    [32]. Zhi-Li Zhang, Vinay J. Ribeiro, Sue Moon, Christophe Diot, Small-time scaling behaviors of Interact backbone traffic: an empirical study, IEEE INFOCOM Vol. 3, pp. 1826-1836, 2003.
    [33]. Steve Uglig, Non-stationarity and high-order scaling in TCP flow arrivals: a methodological analysis, ACM SIGCOMM, computer communications review, Vol. 34, 2004.
    [34]. M. Krunz, S. K. Tripathi, On the characterization of VBR MPEG Streams[M], ACM SIGMETRICS Performance Evaluation Review, ACM Press, New York vol. 25, 1997.
    [35]. M. Frey, S. Nguyen-Quang, A gamma-based framework for modeling variable-rate MPEG video sources: the GOP GBAR Model[J], IEEE/ACM Trans. on Networking, vol. 8, 2000.
    [36]. D. Liu, E. I. Sara, W. Sun, Nested autoregressive processes for MPEG-eneoded video traffic modeling[J], IEEE Trans. on CSVT, vol. 11, 2001.
    [37]. A. Lombardo, G. Morabito, G. Schembra, An accurate and treatable Markov model of MPEG-video traffic[J], Proc of INFOCOM, 1998.
    [38]. U. K. Sarkar, S. Ramakrishnan, D. Sarkar, Modeling full-length video using Markov-moduiated gamma-based framework[J], IEEE/ACM Trans. on Networking, vol. 11, 2003.
    [39]. S. Ma, C. Ji, Modeling video traffic inthe wavelet domain[J], Proe of 17th Annual IEEE Conf. on Comp. Comm, INFOCOM. 1998.
    [40]. W. Willinger and V. Paxson, Discussion of heavy tail modeling and teletraffic data, The Annals of Statistics, 25, 1997.
    [41]. W. Willinger, M. S. Taqqu, W. E. Leland, and D. V. Wilson, Self-similarity in high-speed packet traffic: Analysis and modeling of Ethernet traffic measurements. Statistical Science, 10(1): 67-85, 1995.
    [42]. W. Willinger, M. S. Taqqu, R, Sherman and D. Wilson, Self-similarity through high-variability: Statistical analysis of Ethernet LAN traffic at the source level, IEEE/ACM Transactions on Networking, 5(1): 71-86, 1997.
    [43]. B. B. Mandelbrot, The fractal geometry of the nature, New York, NY: W. H. Freeman, 1982.
    [44]. Edgar E. Peter, Chaos and order in the capital market, New York: John Willey and sons Inc, 1991.
    [45]. N. Lilhanov, B. Tsybakov and N. D. Georganas, Analysis of an ATM buffer with self-similar input traffic, In Proceedings of IEEE Infocom'95, 1995.
    [46]. W. Willinger, Traffic modeling for high-speed networks: Theory versus practice, In F. P. Kelly and R. J. Williams, editors, Stochastic Networks, pages 395-409.
    [47]. W. Willinger, V. Paxson and M. S. Taqqu, Self-similarity and heavy Riles: Structural modeling of network traffic. In R. J. Adler, R. E. Feldman, and M. S. Taqqu, editors, A Practical Guide To Heavy Tails: Statistical Techniques and Applications, pages 26-53. Birkhauser, 1998.
    [48]. F. Brichet, J. W. Roberts, A. Simonian and D. Veitch, Heavy traffic analysis of a storage model with long range dependent on/off sources, Queueing Systems, 23: 197-216, 1996.
    [49]. I. Norros, On the use of fractional Brownian motion in the theory of connectionless networks, IEEE Journal on Selected Areas in Communications,13(6):953-962,August, 1995.
    [50]. A. Adas and A. Mukherjee, On resource management and QoS guarantees for long-range dependent traffic, In Proceedings ofIEEE Infocom'95, 1995.
    [51]. M. S. Taqqu and V. Teverovsky, On estimating the intensity of long-range dependence in finite and infinite variance time series, In R. J. Adler, R. E. Feldman, and M. S. Taqqu, editors, A Practical Guide to Heavy Tails: Statistical Techniques and Applications, pages 177-217, Birkhauser, 1998.
    [52]. M. S. Taqqu, V. Teverovsky, and W. Willinger, Is network traffic self-similar or multi-fractal? Fractals, 5(1):63-73, 1997.
    [53]. A. Feldmann, A. C. Gilbert, W. Willinger and T. G. Kurtz, The changing nature of network traffic: Scaling phenomena, Computer Communications Review, 28:5-29, 1998.
    [54]. V. J. Ribeiro, M. S. Crouse, R. H. Riedi and R. G. Baraniuk, A multi-fractal wavelet model with application to network traffic, IEEE Transactions on Information Theory, 45:992-1018,1999.
    [55]. V. J. Ribeiro, M. S. Crouse, R. H. Riedi and R. G. Baraniuk, Simulation of non-Gaussian long-range-dependent traffe using wavelets, In Proceedings of ACM SIGMETRICS'99, pages 1-12, May, 1999.
    [56] 彭玉华,小波分析与工程应用,科学出版社,1999。
    [57] 杨福生,小波变换的工程分析与应用,科学出版社,1999。
    [58] 李弼程,罗建书,小波分析及其应用,电子工业出版社,3003,5。
    [59] 胡昌华,张军波,夏军,张伟,基于MATLAB的系统分析与设计——小波分析,西安电子科技大学出版社,1999,12。
    [60] 程正兴,小波分析算法与应用,西安交通大学出版社,1998。
    [61] 李弼程等,基于小波变换的图像矢量量化,信号处理,2000,16(1):32-36。
    [62] 章国宝等,基于正交小波变换的多尺度边缘提取,中国图形图像学报,1998,3(8):651-654。
    [63] 李水根,吴纪桃,分形与小波,科学出版社,2002,10。
    [64] 谢文录,谢维信,分形噪声中的信号检测,电子科学学刊,1998,20(2):175-180。
    [65] 吴敏金,分形与图像压缩编码,通信学报,1993,14(2):78-83。
    [66] 王东生,曹磊,混沌、分形及其应用,合肥:中国科技大学出版社,1995。
    [67] 陈凌,分形几何学,北京:地震出版社,1998。
    [68] 陈守吉等,分析与图像压缩,上海:上海科技教育出版社,1998。
    [69] 爱德加.E.彼得斯著,王小东译,资本市场的混沌与秩序,北京:经济科学出版社,1999。
    [70]. Leland W, et al, On the self_similar nature of Ethernet traffic [J], IEEE/ACM Transactions on Networking, 1994,2(1): 1~15.
    [71]. Edgar E. Peters, Chaos and order in the Capital Market, page 211. John Willey and Sons, New York, 1991
    [72]. M. S. Taqqu and V. Teverovsky, On estimating the intensity of long-range dependence in finite and infinite variance time series, In R. Adler, et al. editors, A practical guide to heavy tails: Statistical techniques and application, Boston, 1998.
    [73]. G. Samorodnitsky, M. S. Taqqu, Linear models with long-range dependence and finite or infinite variance, In D. Brillinger et al. editors, New directions in time series analysis, Part Ⅱ, pages 325-340, New York, 1992.
    [74]. Beran J, Statistics for long-range process, Chapman and Had, New york, 1994.
    [75]. P. Abry, D. Veitch, Wavelet analysis of long-range dependence traffic, IEEE Transactions on Information Theory, vol.44, No.1, 1998.
    [76]. Vern Paxson, Fast approximation of self-similar network traffic, Technical Report LBL-36750, 1995.
    [77]. W. Willinger, V. Paxson, R. H. Riedi, et al, Theory and application of long-range dependence[M], Boston: Birkhauser, 2003.
    [78]. R. H. Riedi and W. Willinger, Self-similar network traffic and performance evaluation [M], New York: Willey, 2000.
    [79]. K. Park and W. Willinger, Self-similar network Waffle: An overview self-similar network traffic and performance evaluation [M], New York: John Willey & Sons, 2000.
    [80]. O. Rose, Discrete-time analysis of a finite buffer with VBR MPEG Video traffic input [J], In proceedings of ITC 15, pp. 413-422, 1997.
    [81]. P. Abry and D. Veitch, Wavelet analysis of long-range dependent traffic[J], IEEE Trans. Information Theory, vol.44, pp.2-15,1998.
    [82]. F. Xue and L. Trajkovic, Performance analysis of wavelet-based Hurst parameter estimator for self-similar traffic [J], Proceedings of SPECTS 2K, July, 2000.
    [83]. M. S. Taqqu and Stalian Stoev, Simulation methods for linear fractional stable motion and FARIMA using the fast Fourier Transform[J], Fractals, vol.12, pp. 95-121, 2004.
    [84].林福宗,多媒体技术基础,清华大学出版社,2002,9。
    [85].张春田,数字图像压缩编码,清华大学出版社,2006,9。
    [86]. ISO/IEC working group, Available in http://drogo.cselt.stet.it/mpeg/.
    [87]. O Rose, Statistical properties of MPEG video traffic and their impact on traffic modeling in ATM, Wuerzburg: University of Wuerzburg, Institute of Computer Science, 1995.
    [88]. M Krunz, R Sass, Huges, Statistical characteristic and multiplexing of MPEG streams, Proceedings of IEEE Inform' 95, 1995.
    [89]. W_CFeng, Video_on_demand services: Efficient transportation and decompression of variable bit rate video, Michigan, University of Michigan, I996.
    [90]. W_C Feng, Buffering techniques for delivery of compressed video in video_on_demand systems, New York: Kluwer academic, 1997.
    [91]. Frank, H. P Fitzek, Martin Reisslein, MPEG_4 and H. 263 video traces for network performance evaluation, IEEE Network, 2001,15(6): 40~45.
    [92]. Edgar, E Peters, Chaos and order in the capital market, New York: John Willey and Sons, 1991.
    [93]. Abry P, Veitch D, Wavelet Analysis of Long_Range_Dependent Traffic, IEEE Transactions on Information Theory, VOL 44, No.1, January 1998.
    [94]. Beran. J, Sherman. R, Taqqu. M. S, Willing. W, Longe_Range Dependence in Variable_Bit_Rate Video Traffic, IEEE Transactions on Communications, Vol 43, No 2, 1998.
    [95]. Karagiannis. T, Faloutsos. M, Riedi. R. H, Long_range dependence: now you see it, now you don't, Global Telecommunications Conference, 2002, GLOBECOM'02, IEEE Volume 3, 17~21 Nov. 2.002.
    [96]. Oliveria. C, Jaime Bae Kim, Suda. T, Long__range dependence in IEEE 802.11b wireless LAN traffic: an empirical study, Computer Communications, 2003.
    [97]. Roughan, M, Veitch D, Measuring long_range dependence under changing traffic conditions, INFOCOM'98, Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies, Proceedings, IEEE, Volume 3, 21~25 March 1999.
    [98]. Veitch. D, Abry. P, A wavelet_based joint estimator of the parameters of long_range dependence, Information Theory, IEEE. Transactions on Vol 45, Issue 3, April 1999.
    [99]. http://www.tkn.tu_berlin.de/research/trace/trace.html.
    [100]. M. Frey, S. Nguyen-Quang, A gamma-based framework for modeling variable-rate MPEG video sources: the GOP GBAR Model[J], IEEE/ACM Trans. on Networking, vol.8, 2000.
    [101]. D. Liu, E. I. Sara, W. Sun. Nested autoregressive processes for MPEG-encoded video traffic modeling [J], IEEE Trans. on CSVT, vol. 11, 2001.
    [102]. A. Lombardo, G. Morabito, G. Schembra, An accurate and treatable Markov model of MPEG-video traffic[J], Froc of INFOCOM, 1998.
    [103]. U. K. Sarkar, S. Ramakrishnan, D. Sarkar, Modeling full-length video using Markov-modulated gamma-based framework [J], IEEE/ACM Trans. on Networking, vol. 11, 2003.
    [104]. M. W. Garrett, W. Willinger, Analysis, modeling and generation of self-similar VBR video traffic[J], Proc ofACM SIGCOMM, 1994.
    [105]. S. Ma, C. Ji, Modeling video traffic in the wavelet domain [J], Proc of 17th Annual IEEE Conf. on Comp. Comm, INFOCOM, 1998.
    [106]. R. H. Riedi, M. S. Crouse, et al, A multi-fractal wavelet model with application to network traffic[J], IEEE Trans. on Theory, vol.45, 1999.
    [107]. Vinay J. Ribeiro, Rudolf H. Riedi, et al, Wavelet and multi-fractal for network traffic modeling and inference [J], ICASSP 2001.
    [108]. M. Krunz, S. K. Tripathi, On the characterization of VBR MPEG Streams [M], ACM SIGMETRICS Performance Evaluation Review, ACM Press, New York vol.25, 1997.
    [109]. MPEG-4 and H. 263 video traces for network performance evaluation, Berlin, Berlin University, 2003.
    [110]. Vinay J. Ribeiro, Zhi-Li Zhang, Sue Moon, Christophe Diot, Small-time scaling behavior of Internet backbone traffic[M], Computer Networks, Elsevier North-Holland, Inc., New York, vol.48, 2005.
    [111]. Steve Uglig, Non-stationarity and high-order scaling in TCP flow arrivals: a methodological analysis [M], ACM SIGCOMM Computer Communication Review, ACM Press, New York, Vol.34, 2004.
    [112]. Thomas Karagiannis, Michalis Faloutsos, Rudolf H. Riedi, Long-range dependence: Now you see it, now yon don't![J], Proc. GLOBECOM 2002.
    [113]. Abry P, Veitch P, Wavelet Analysis of Long-Range-Dependent Traffic, IEEE Transactions on Information Theory, vol 44, No. 1, January 1998.
    [114]. Bruno Lashermes, Wavelet Leader Based Multifractal Analysis.
    [115]. Ingrid Daubechies, Ten Lectures on Wavelets.
    [116]. B. Lashermes, P. Abry, and P. Chainais, New insights of estimation of scaling exponents, International Journal of Wavelet, Multi-resolution and Information Processing, vol.2, pp.497-523,2004.
    [117]. N. Hohn, D. Veitch, and P. Abry, Multi-fractality in tcp/ip traffic: the case against, Computer Networks, vol.48, pp293-313, 2005.
    [118]. V. Paxson and S. Floyd, Wide-area traffic: The failure of Poisson modeling, IEEE/ACM transactions on networking, Vol.3, pp.226-244, 1995.
    [119]. M. Crovella and A. Bestavros, Self-similarity in world wide web traffic: Evidence and possible causes, IEEE/ACM transactions on networking, Vol.5, pp.835-846, 1997.
    [120]. W. Leland, M. Taqqu, W. Willinger, and D. Wilson, On the self-similar nature of Ethernet traffic (extended version), IEEE/ACM transactions on networking, Vol.2, pp.1-15, 1994.
    [121]. R. Riedi, M. S. Crouse, V. Ribeiro, and R. G. Barraniuk, A multi-fractal wavelet model with application to TCP network traffic, IEEE transactions on information theory, special issue on multiscale statistical signal analysis and its applications, Vol.45,pp.992-1018,1999.
    [122]. A. Arvidsson and P. Karlsson, On traffic models for TCP/IP, in Tele traffic engineering in a competitive world, Proc, ITC-16, P. Key, D. Smith(Eds), Edinburgh, U. K, North-Holland, Amsterdam, 1999, pp.457-466.
    [123]. C. Fraleigh, F. Tobagi, and C. Diot, Provisioning IP backbone networks to support delay-based service level agreements, IEEE INFOCOM, Vol.1, pp. 375-385, 2003.
    [124]. Steve Uglig, Non-stationarity and high-order scaling in TCP flow arrivals: a methodological analysis, ACM SIGCOMM, computer communications review, Vol.34, 2004.
    [125]. Thomas Karagiannis, Mart Molle, Michalis Faloutsos, and Andre Broido, A nonstationary Poisson view of Internet traffic, IEEE INFOCOM, Hongkong, March, 2004.
    [126]. Zhi-Li Zhang, Vinay J. Ribeiro, Sue Moon, and Christophe Diot, Small-time scaling behaviors of Internet backbone traffic: an empirical study, IEEE INFOCOM Vol.3, pp. 1826-1836, 2003.
    [127]. Internet traffic archive, http://ita.ee.lbl.gov/
    [128]. P. Arbry, P. Flandrin, M. S. Taqqu, and D. Veitch, Wavelets for the analysis, estimation, and synthesis of scaling data, In Self-similar network traffic and performance evaluation, K. Park, W. Willinger (Eds), Wiley Interscience, New york, 2000.
    [129]. Y. Zhang, N. Duffield, V. Paxson and S. Shenker, On the constancy of Internet path properties, In ACM SIGCOMM, Internet workshop, 2001.
    [130]. J. Cao, W. Cleveland, D. Lin and D. Sun, On the Nonstationadty of Internet Traffic, SIGMETRICS/Performance, 2001.
    [131]. J. Cao, W. Cleveland, D. Lin, and D. Sun, Internet Traffic tends to Poisson and Independent as the load increase, Bell Labs Technical Report, 2001.
    [132]. Y. Zhang, V. Paxson and S. Shenker, The stationarity of Internet path properties: Routing, loss and throughout, ACIRI Technical Report, 2000.
    [133]. Shriram Sarvotham, Rudolf Riedi, and Richard Baraniuk, Connection-level analysis and modeling of network traffic, ACM SIGCOMM Vol.1, pp.99-103, 2001.
    [134]. W. Willinger, S. Taqqu, R. Sherman and. V. Wilson, Self-similarity through high-variability: Statistical analysis of Ethernet LAN truffic at the source level, Computer-Communication-Review, vol.25, pp. 100-13, 1995.
    [135]. K. Park and W. Willinger, Self-similar network traffic and performance evaluation, Wiley Inter-science, New York, 2000.
    [136]. M. Crovella and A. Bestavros, Self-similarity in world-wide web traffic, Evidence and possible causes, IEEE/ACM transactions on networking, Vol.5, pp.835-846, 1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700