核态池沸腾中汽化核心密度和汽化核心处温度波动的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文提出了一种新的基于沸腾壁面微结构分析的预测核态池沸腾中汽化核心密度的方法。通过分析沸腾壁面的二维横断面识别出能够贮藏气体的凹坑以及其尺寸。大量的这些凹坑的开口直径组成一个集合。不同的测量尺度被用以度量这个集合,得到不同的测量结果。对于某一测量尺度,相应的测量结果是上述集合中大于测量尺度的元素的数量除以所考查的二维横断面对应于沸腾壁面上的面积。这里的测量尺度和测量结果可以被分别视为最小成核直径和汽化核心密度。因为根据经典成核理论,只有开口直径大于最小成核直径的贮藏气体的凹坑才能被活化为汽化核心。将上述离散的测量尺度和测量结果的数据回归成一个函数关系式,此关系是用以预测汽化核心密度和最小成核半径之间的关系。基于上面预测方法的预测结果比传统的统计方法预测的结果更接近实验数据,并且预测结果显示出了汽化核心密度和最小成核半径之间的分形关系。
     利用数字图像处理中的边缘检测法对在单组分(R113)和双组(R11-R113)工质高热流密度核态池沸腾实验中用高速CCD摄像仪拍摄到的气泡图像进行了分析,识别出了沸腾中的汽化核心密度。在高热流密度条件下,气泡图像变得很模糊,仅凭人眼去识别气泡图像中所包含的气泡的个数变得很困难。但是在边缘检测方法的帮助下,高热流密度下气泡图像中模糊的气泡的边界被检测出来,使得气泡数量的统计更准确。通过考虑气泡合并这个引起识别出的气泡的数量和这些气泡下面的汽化核心的数量之间存在差异的因素,将识别出的气泡数量加以修正,得到汽化核心的数量。绘制了高热流密度下汽化核心密度随热流密度变化的曲线。
     运用数学形态学对以纯水和掺有三氧化二铝纳米粒子的水作为工质的高热流密度核态池沸腾中反映沸腾壁面温度分布的红外图像进行了分析,识别出了沸腾中的汽化核心密度。在高热流密度下,大量红外图像中对应于汽化核心的暗点像素团聚集在一起,人眼无法识别出汽化核心的数量。但是,在对红外图像进行了形态处理后,汽化核心的数量被成功地检测出来。绘制了高热流密度下汽化核心密度随热流密度变化的曲线。
     以非线性时间序列分析技术为基础,研究了三个不同的核态池沸腾中汽化核心处的温度波动。计算了汽化核心处温度时间序列的熵,其定量描述了汽化核心处温度波动的无序性。重建了汽化核心处温度时间序列对应的二维和三维吸引子,计算了定量反映吸引子自相似特性和复杂特性的关联维数。
A new method has been presented to predict the nucleation site density in nucleate pool boiling based on the investigation of the microstructure of boiling surface. The investigation is made by analyzing the two dimensional cross sections of boiling surface, which leads to the identification of gas trapping cavities and their dimensions as a result. A lot of data of the mouth diameters of the gas trapping cavities constitutes a data set. Many different measurement scales then are used to measure the data set. For a certain measurement scale, there is a corresponding measurement result which is division of the number of the data (in the data set) greater than the measurement scale by the area on the boiling surface the analyzed two dimensional cross sections correspond to. The measurement scale and the measurement result here can be viewed as the critical cavity diameter required for nucleation and the nucleation site density respectively because, according to classical heterogeneous nucleation theory, only those gas trapping cavities whose mouth diameters are greater than the critical cavity diameter can be activated to serve as nucleation sites. The above discrete data of measurement scales and measurement results are fitted by a mathematical formula which is used to predict the relationship between the nucleation site densities and the critical cavity radius. The prediction based on the above method agrees better with the experimental data than that based on traditional statistical method does and shows that it is the fractal relationship between the nucleation site density and the critical cavity radius.
     The edge detection methods in digital image processing have been employed to identify the nucleation site densities in pure component (R113) and binary mixture component (R11-R113) nucleate pool boiling in high heat fluxes through analyzing the bubbles images captured by a high-speed CCD-camera in the boiling experiments. In high heat fluxes, the images become blurring and it is very difficult for the naked eyes of people to identify accurately the number of the bubbles in the images. However, with the help of edge detection method, the blurring boundaries between the bubbles in the images captured in high heat fluxes have been detected; making the counting of the bubbles numbers more accurate. The difference between the numbers of the bubbles in the images and the numbers of the nucleation sites under the bubbles, which is mainly caused by the coalescences of the bubbles, has been considered to correct the detected bubbles numbers to get the actual numbers of the nucleation sites. The change of the nucleation site densities with the high heat fluxes has been plotted.
     Mathematical morphology has been used to identify the nucleation site densities in pure water and nanofluid (water plus Al_2O_3 nanoparticles) nucleate
     pool boiling in high heat fluxes through analyzing the infrared images reflecting the temperature distribution on the boiling surfaces. In high heat fluxes, plenty of dark spots (in the infrared images) corresponding to the nucleation sites aggregate together; it is impossible for human naked eyes to identify the spots numbers. However, after the morphological processing of the infrared images, the nucleation sites numbers are successfully identified. And the change of the nucleation site densities with the high heat fluxes has been plotted.
     Based on nonlinear time-series analysis technique, the fluctuations of the temperature at the nucleation sites in three different nucleate pool boiling experiments have been investigated. The entropies of the temperature-time series at the nucleation sites are calculated, which quantitatively describe the disorder character of the temperature fluctuation at the site. The two and three dimensional attractors corresponding to the time series are constructed, the correlation dimensions, quantitatively measuring the self-similar and complex character of the attractors, are calculated.
引文
[1]C.Corty, A.Foust, Surace variables in nucleate boiling, Chem.Eng.Pro.Symp.Ser, 1955, 17(51): 1-12.
    [2]H.B.Clark, P.S.Strenge, J.W.Westwater, Active sites for nucleate boiling,Chem.Eng.Prog.Symp.Ser, 1959, 55(29): 103-110.
    [3]S.G.Bankoff, Entrainment of gas in the spreading of liquid over a rough surface,AIChE J, 1958,4 (1):24-26.
    [4]P.Griffith, J.D.Wallis,The role of surface conditions in nucleate boiling, Chemical Eng. Progr. Symp. Ser, 1960, 56 (30):49-63.
    [5]H.M.Kurihara, J.E.Meyers, The effect of superheat and surface roughness on boiling coefficients, AIChE J, 1960, 6(1): 83-91.
    [6]R.J.Benjamin, A.R.Balakrishnan Experimental Thermal and Fluid Science, 1997,15:32-42.
    [7]A.Luke, Pool boiling heat transfer from horizontal tubes with different surface roughness, Int.J.Refrig, 1997,20(8):561-574.
    [8]A.Luke,D.Gorenflo, Nucleate boiling heat transfer of HFCs and HCs in heat pump application: state of the art and new developments, in: Proceedings of the 6~(th) IEA Heat Pump Conference, Berlin, 1999.
    [9] A.D.Messina, E.L.Park, Effect of precise arrays of pits on nucleate boiling, Int.J.Heat Transfer, 1981,24: 141-145.
    [10]Y.Y.Hsu, On the size range of active nucleation cavities on a heating surface, J.Heat Transfer, 1962, 98c: 207-216.
    [11]Myeong-Gie Kang, Effect of surface roughness on pool boiling heat transfer. Int.J.Heat Transfer, 2000,43: 4073-4085.
    [12]R.F.Gaertner, J.W.Westwater, Population of active sites in nucleate boiling heat transfer, Chem.Eng.Prog.Symp.Ser, 1960, 56(30):39-48.
    [13]D.B.R.Kenning, V.H.Del Valle, Fully-developed nucleate boiling: overlap of areas of influence and interference between bubble sites, Int.J.Heat Mass Transfer, 1981, 24(6):1025-1032.
    
    [14]A.Calka,R.L.Judd, Some aspects of the interaction among nucleation sites during saturated nucleate boiling, Int. J. Heat Mass Transfer, 1985,28(120): 2331-2342.
    
    [15]I.Golobic,E.Pavlovic, S.Strgar, D.B.R.Kenning,Y.Y.Yan, Wall temperature variations during bubble growth on a thin plate: computations and experimentations, Euro-thermal Seminar no.48, Paderborn, ETS,Pisa,1996:25-32.
    
    [16]D.B.R.Kenning,Y.Y.Yan, Pool boiling heat transfer on a thin plate: feature revealed by liquid crystal thermography, IntJ.Heat Mass Transfer, 1996,39(3):117-3137.
    [17]V.V.Chekanov, Interaction of centers in nucleate boiling , TeplofzikaVysokikh Temperaur,1977,15: 121-128.
    [18]Lei Zhang, Masahiro Shoji, Nucleation site interaction in pool boiling on the artificial surface, IntJ.Heat Mass Transfer, 2003,46:513-522.
    [19]Surapong Chatoun, Makoto Watanabe, Masahiro Shoji, Nucleation site interaction in pool boiling on a heated surface with triple artificial cavities, Int.J.Heat Mass Transfer,2004,47:3583-3587.
    
    [20]K.O.Pasamehmetoglu, R.A.Nelson, Cavity-to-Cavity interaction in nucleate boiling: the effect of heat conduction within the heater, AICHE Symp.Ser., 1991, 87 (283):342-351.
    
    [21]K.O.Pasamehmetoglu, P.R.Chappidi.C.Unal, R.A.Nelson, Saturated pool nucleate boiling mechanism at high heat fluxes, Int.J.Heat Mass Transfer, 1993,36:3859-3868.
    
    [22]P.Sadasivan, C.Unal, R.A.Nelson, Nonlinear aspects of high heat flux nucleate boiling heat transfer, J.Heat Trasnfer, 1995,117:981-989.
    [23]M.Wienecke, Y.Y.Yan,D.B.R.Kenning, Bubble nucleation and growth during saturated pool boiling on a thin vertical plate, in: M.Lehner, D.Mewes,U.Dinglreiter, R.Tauscher(Eds.), Applied Optical Measurements, Springer Verlag, Berlin,1999:107-120.
    [24]M.H.Chun,M.G.Kang, Effects of heat exchanger tube parameters on nucleate pool boiling heat transfer, ASME Journal of Heat Transfer, 1998,120: 469-476.
    [25]S.T.Hsu, F.W.Schmidt, Measured variations in local surface temperature in pool boiling of water, ASME Journal of Heat Transfer,1961,83: 254-260.
    [26]P.J.Marto, W.M.Rohsenow, Effects of surface conditions on nucleate pool boiling of sodium, ASME Journal of Heat Transfer, 1966, 88:196-204.
    [27]R.K.Young, R.L.Hummel, Improved nucleate boiling heat transfer, Chemical Engineering Progress, 1964, 60(7):53-58.
    [28]K.Nishikawa, Y.Fujita, S.Uchida,H.Ohta, Effect of surface configuration on nucleate boiling heat transfer, International Journal of Heat and Mass Transfer, 1984,27:1559-1571.
    [29]S.K.R.Chowdhury, R.H.S.Winterton, Surface effects in pool boiling, International Journal of Heat and Mass Transfer, 1985, 28(10):1881-1889.
    [30]Z.H.Ayub, A.E.Bergles, Pool boiling enhancement of a modified, GEWA-T surface in water, ASME Journal of Heat Transfer, 1988,110:266-268.
    [31]H.Yamaguchi, D.D.Jarnes, Effect of wire meshes on boiling heat transfer from a plane heating surface, in: R.K.Shah, E.N.Ganic, K.T.Yang(Eds.), Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics, Elsevier, Amsterdam, 1988:587-594.
    [32]E.Hahne, Chen Qiu-Rong, R.Windisch, Pool boiling heat transfer on finned tubes-an experimental and theoretical study, International Journalof Heat and Mass Transfer, 1991,34(8):2071-2079.
     [33]W.Nakayama, T.Daikoku, H.Kuwahara,T.Nakajima, Dynamic model of enhanced boiling heat transfer on porous surfaces, part I: experiment, ASME Journal of Heat Transfer, 1980,102:445-450.
    [34]W.Nakayama, T.Daikoku, H.Kuwahara, et al, Dynamic model of enhanced boiling heat transfer on porous surfaces, part II: analytical model, ASME Journal of Heat Transfer, 1980,102: 451-456.
    [35]K.A.Joudi, D.D.James, Surface contamination, rejuvenation, and the reproducibility of results in nucleate pool boiling, ASME Journal of Heat Transfer, 1981,103: 453-458.
    [36]C.H.Wang, V.K.Dhir, Effect of surface wettability on active nucleation site density during pool boiling of saturated water, Journal of Heat Transfer, 1993,115:659-669.
    
    [37]C.H.Wang, V.K.Dhir, On the gas entrapment and nucleation site density during pool boiling of saturated water, Journal of Heat Transfer,1993,115:670-679.
    [38]S.RYang, R.H.KIM, A mathematical model of the pool boiling nucleation site density in terms of the surface characteristics, Int.J.Heat Mass Transfer,1988,31(6):1127-1135.
    [39]Yusen Qi, James F.Klausner, Renwei Mei, Role of surface structure in heterogeneous nucleation, International Journal of Heat and Mass Transfer, 2004,47:3097-3107.
    [40]S.R.Yang,Z.M.Xu, J.W.Wang, On the fractal description of active nucleation site density for pool boiling, Int. J. Heat and Mass Transfer, 2001,44:2783-2786.
    [41]Takayasu H. Differential fractal dimension of random-walk and its application to physical system, Journal of the physical society of Japan, 1982, 51 (9):3057-3064.
    [42]T.G.Theofanous, J.P.Tu, A.T.Dinh, The boiling crisis phenomenon, Part Ⅰ: nucleation and nucleate boiling heat transfer, International Journal of Heat and Mass Transfer 2002, 26: 775-792.
    [43]M. G. Cooper, The microlayer in nucleate pool boiling, International Journal of Heat and Mass Transfer, 1969, 12: 895-913.
    [44]M. G. Cooper, The microlayer and bubble growth in nucleate pool boiling, International Journal of Heat and Mass Transfer, 1969, 12(8):915-933.
    [45]Yao-Hua Zhao, Takashi Masuoka, Takaharu Tsuruta,Unified theoretical prediction of fully developed nucleate boiling and critical heat flux based on a dynamic microlayer model, International Journal of Heat and Mass Transfer, 2002,45:3189-3197.
    [46]Horatio M. González-Velasco, Carlos J. Garcia-Orellana, Miguel Macías-Macías, Neural-networks-based edges selector for boundary extraction problems, Image and Vision Computing, 2004,22(13):1129-1135.
    [47]Scott Konishi, Alan Yuille, James Coughlan, A statistical approach to multi-scale edge detection, Image and Vision Computing, 2003,21 (1):37-48.
    [48]Ming-Yu Shih, Din-Chang Tseng, A wavelet-based multiresolution edge detection and tracking, Image and Vision Computing,2005, 23 (4):441-451.
    [49]Horatio M. González-Velasco, Carlos J. Garcia-Orellana, Miguel Macías-Macías, Neural-networks-based edges selector for boundary extraction problems, Image and Vision Computing, 2004, 22 (13):1129-1135.
    [50]Jian Ye, Gongkang Fu, Upendra P. Poudel, High-accuracy edge detection with Blurred Edge Model, Image and Vision Computing, 2005,23(5):453-467.
    [51]Y.Shan, G.W.Boon, Sub-pixel location of edges with non-uniform blurring: a finite closed-form approach, Image and Vision Computing, 2000,18 (13):1015-1023.
    [52]M. García-Silvente, J. A. García, J. Fdez-Valdivia and A. Garrido, A new edge detector integrating scale-spectrum information, Image and Vision Computing, 1997,15 (12):913-923.
    [53]Jun-Wei Hsieha, Ming-Tat Kob, Hong-Yuan Mark Liaob,Kuo-Chin Fan, A new wavelet-based edge detector via constrained optimization, Image and Vision Computing, 1997, 15 (7):511-527.
    [54]Qiurning Zhu, Efficient evaluations of edge connectivity and width uniformity, Image and Vision Computing, 1996,14 (1):21-34.
    [55]Ardeshir Goshtasby and Hai-Lun Shyu, Edge detection by curve fitting, Image and Vision Computing, 1995,13 (3): 169-177.
    [56]Shyi-Chyi Cheng, Tian-Luu Wu, Subpixel edge detection of color images by principal axis analysis and moment-preserving principle, Pattern Recognition, 2005, 38 (4):527-537.
    [57]Siwei Lu, Ziqing Wang,Jun Shen, Neuro-fuzzy synergism to the intelligent system for edge detection and enhancement, Pattern Recognition, Volume 36, 2003(10): 2395-2409.
    [58]Zujun Hou, T. S. Koh, Robust edge detection, Pattern Recognition,,2003,36(9):2083-2091.
    [59]T. Chen, Q. H. Wu, R. Rahmani-Torkaman, et al, A pseudo top-hat mathematical morphological approach to edge detection in dark regions, Pattern Recognition, 2002,35(1): 199-210.
    [60]Xiuwen Liu,DeLiang L. Wang,J. Raul Ramirez, Boundary detection bycontextual non-linear smoothing, Pattern Recognition, 2000,33 (2):263-280.
    
    [61]Shivprakash Iyer , Sunil K. Sinha, A robust approach for automatic detection and segmentation of cracks in underground pipeline images, Image and Vision Computing, 2005,23 (10):921-933.
    [62]J. N. Ellinas, M. S. Sangriotis, Stereo image compression using wavelet coefficients morphology , Image and Vision Computing, 2004, 22 (4):281-290.
    
    [63]Ali K. Hocaoglu , Paul D. Gader, Domain learning using Choquet integral-based morphological shared weight neural networks , Image and Vision Computing, 2003,21 (7):663-673.
    
    [64]V. Zapater, Classifying human endothelial cells based on individual granulometric size distributions,Image and Vision Computing, 2002,20 (11):783-791.
    [65]P. Soille, Morphological image analysis applied to crop field mapping,
    Image and Vision Computing, 2000,18 (13): 1025-1032.
    [66]Rein van den Boomgaard, Affine invariant deformation curves a tool for shape characterization, Image and Vision Computing, 1999,17 (5):375-380.
    
    [67]Maria Vanrell, Jordi Vitria, Optimal 3×3 decomposable disks for morphological transformations, Image and Vision Computing, 1997,15 (11):845-854.
     [68]Piotr Jasiobedzki, Chris J Taylor,John NH Brunt, Automated analysis of retinal images, Image and Vision Computing, 1993,11(3):139-144.
    
    [69]L. D. Griffin, A. C. F. Colchester, G P. Robinson, Scale and segmentation of grey-level images using maximum gradient paths, Image and Vision Computing, 1992,10, (6):389-402.
    [70]Kendall Preston, Three-dimensional mathematical morphology, Image and Vision Computing, 1991,9 (5):285-295.
    [71]Olivier Cuisenaire, Locally adaptable mathematical morphology using distance transformatio, Pattern Recognition, 2006,39 (3): 405-416.
    [72]Frank Y. Shih,Yi-Ta Wu, Decomposition of arbitrary gray-scale morphological structuring elements, Pattern Recognition,2005,38 (12):2323-2332.
    [73]Shigueo Nomura, A novel adaptive morphological approach for degraded character image segmentation, Pattern Recognition, 2005, 38 (11):1961-1975.
    [74]Alina Sobania, J. Paul O. Evans, Morphological corner detector using paired triangular structuring elements, Pattern Recognition, 2005, 38 (7):1087-1098.
    [75]Andrei C. Jalba, Michael H.F. Wilkinson,Jos B.T.M. Roerdink, Morphological hat-transform scale spaces and their use in pattern classification, Pattern Recognition, 2004,37 (5):901-915.
    [76]Petr Dokladal, Isabelle Bloch, Michel Couprie, Topologically controlled segmentation of 3D magnetic resonance images of the head by using morphological operators, Pattern Recognition, 2003,36(10):2463-2478.
    [77]D. Chetverikov, A. Hanbury, Finding defects in texture using regularity and local orientation, Pattern Recognition, 2002,35 (10):2165-2180.
    [78]Joachim Weickert, Efficient image segmentation using partial differential equations and morphology, Pattern Recognition, 2001,34(9):1813-1824.
    [79]Isabelle Bloch, On links between mathematical morphology and rough sets, Pattern Recognition, 2000, 33 (9): 1487-1496.
    [80]J. G. M. Schavemaker, Image sharpening by morphological filtering, Pattern Recognition, 2000,33 (6):997-1012.
    
    [81]R. Romanowicz,P. Young,P. Brown,P. Diggle, A recursive estimation approach to the spatio-temporal analysis and modelling of air quality data .Environmental Modelling & Software, 2006,21(6): 759-769.
    
    [82]L. J. Lane, M. H. Nichols and H. B. Osborn,Time series analyses of global change data,Environmental Pollution,1994,83(1-2): 63-68.
    [83]Mohamed A. Atmane,Darina B. Murray,The effect of the liquid motion induced by air and vapor bubbles on heat transfer around a cylinder, International Journal of Heat and Mass Transfer, 2005,48(6): 1084-1095.
    [84]Masahiro Shoji, Yuto Takagi, Bubbling features from a single artificial cavity, International Journal of Heat and Mass Transfer, 2001,44(14): 2763-2776.
    [85]Masahiro Shoji, Studies of boiling chaos: a review, International Journal of Heat and Mass Transfer, 2004,47:1105-1128.
    
    [86]R. Mosdorf, M. Shoji, Chaos in nucleate boiling—nonlinear analysis and modeling, International Journal of Heat and Mass Transfer, 2004, 47 (6): 1515-1524.
    [87]Tomasz Stachowia, Toshio Okada, A numerical analysis of chaos in the double pendulum, Chaos, Solitons & Fractals, 2006,29(2):417-422.
    [88]Irina Bashkirtseva, Lev Ryashko, Sensitivity and chaos control for the forced nonlinear oscillations, Chaos, Solitons & Fractals, 2005, 26(5):1437-1451.
    [89]Zhi-Min Chen,W.G. Price, Transition to chaos in a fluid motion system, Chaos, Solitons & Fractals, 2005,26(4): 1195-1202.
    
    [90]J. D. Lee,Chin Pan, Dynamics of multiple parallel boiling channel systems with forced flows, Nuclear Engineering and Design, 1999, 192, (1):31-44.
    [91]Turcotte, Doald L. Fractals and chaos in geology and geophysics, England, Cambridge University Press, 1997: 2-10.
    [92]Rafael C.Gonzalez, Richard E.Woods, Digital Image Processing (Second Edition),BEIJING: Publishing House of Electronics Industry,2002.519-532.
    [93]Jianping Tu, Nam Dinh, T.GTheofanous, 6~(th) International Symposium on Heat Transfer, Beijing, China, 2004, 6: 441-446.
    [94]Holger Kantz, Thomas Schreiber, Nonlinear time series analysis, England: Cambridge University Press, 1997: 40-41.
    [95]Masahiro Shoji, Studies of boiling chaos: a review, International Journal of Heat and Mass Transfer 2004, 47(1): 1105-1128.
    [96]Takens F, Detecting strange attractors in turbulence, Lecture Notes in Mathematics, Springer, New York, 1980, 898:366-381.
    [97]D.B.R.Kenning, T.Kono, M.Wienecke, Investigation of boiling heat transfer by liquid crystal thermography, Experimental Thermal and Fluid Science, 2001, 25(1):219-229.
    [98]Christophe Letellier, Luis Aguirre and Jean Maquet, How the choice of the observable may influence the analysis of nonlinear dynamical systems, Communications in Nonlinear Science and Numerical Simulation, 2006, 11(5):555-576.
    [99]N. Laskin,G. Zaslavsky, Nonlinear fractional dynamics on a lattice with long range interactions, Physica A: Statistical Mechanics and its Applications, 2006,368(1):38-54.
    [100]Eric R. Kaufmann,Youssef N. Raffoul, Periodic solutions for a neutral nonlinear dynamical equation on a time scale, Journal of Mathematical Analysis and Applications, 2006,319(1):315-325.
    [101]E. Capiez-Lernout, M. Pellissetti, H. Pradlwarter, G.I. Schueller, Data and model uncertainties in complex aerospace engineering systems Journal of Sound and Vibration, 2006,295(3-5):923-938.
    [102]F. Brouers and O. Sotolongo-Costa, Generalized fractal kinetics in complex systems Physica A: Statistical Mechanics and its Applications, 2006,368(1):165-175.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700