自由视点视频信号处理中的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机、通信及网络技术的发展,实时的2D视频可视通信已经走向成熟,基于各种国际标准的视频产品已经进入了人们的生活、学习、工作等各个方面。然而,人们对于数字视频的要求日益提高,人们希望看到表征自然景物的数字视频能够更加地清晰、更加地真实,而2D视频在真实性上存在很大的局限。相比之下,自由视点视频可以使用户自由选择观看的视点和方向,来享受更加真实的3D图像,基于这样的交互性与3D图像真实感,自由视点视频在远程教育、远程监视、虚拟现实系统等各方面将有良好应用前景。因此,自由视点视频技术作为当前的一个研究热点,已经吸引了越来越多的国内外学者。
     本文主要从构建自由视点视频系统的角度出发,进行其中的关键技术研究。首先,自由视点视频是通过多相机系统进行捕获,其数据量通常几倍于目前普通视频,因此在第三章对自由视点视频编码技术进行了研究,在第二节重点对光线空间相关性及数据特性进行了分析,在此基础上提出了包括快速自适应块匹配、基于直线方向搜索的光线空间数据压缩算法,实验结果分析表明,与传统的只利用了片内相关性的数据压缩方法相比,编码性能有了明显的提高,这是本文的一个创新点。在第三节对3DAV的多视点视频编码方案在压缩效率、计算复杂度、内存消耗及随机访问性等方面进行了性能比较。
     然后,由于采集过程中场景光照、相机校准、相机噪声等方面的影响,各视点视频的颜色值会差别很大,给后续的处理带来很大的困难,因此在第四章研究了多视点视频颜色校正技术。对多视点视频进行颜色校正首先由我们提出,其基本思想是:根据图像间的颜色信息,构造其颜色映射关系,根据此映射关系进行颜色校正,此映射可以是基于全局的、区域的或像素的。我们提出了一系列的颜色校正算法:基于规正参数调节的算法,从象素均值和直方图均值匹配的角度出发,通过迭代操作,构造了源图像与目标图像间映射关系;基于区域分割与跟踪的算法,从区域匹配的角度出发来构造一维线性映射关系,并且通过对区域进行跟踪,实现了对视频图像的校正;基于主成分分析的多视点视频自动颜色校正算法,则从主成分分析的角度出发来构造三维线性映射关系,同样通过对主成分进行跟踪实现对视频图像的校正;并且对噪声情况下的校正进行了讨论。基于动态规划的多视点视频非线性颜色校正算法,则从非线性映射的角度出发,通过动态规划思想在源图像与目标图像的直方图间寻找一条最佳匹配路径,同样通过对路径进行跟踪实现对视频图像的校正。实验结果分析表明,各算法对特定颜色变化情况下的校正十分有效,这是本论文的又一创新。
     然后,为了将颜色校正与数据压缩或虚拟视点绘制更好地进行结合,在第五章中提出了多视点图像亮度补偿方法和基于视差矢量的多视点视频颜色校正和虚拟视点绘制方法,在实现颜色校正的同时,取得了较高的编码效率和较好的虚拟视点绘制质量,这是本论文的又一创新。
     最后,在第六章,将各项关键技术进行结合,提出了三种自由视点视频系统框架,本文对其中一种系统进行了实验模拟。
As the development of computer, communication and network technology, real-time 2D video visual communication has become mature, and all video products have already entered into our lift, study and work, and so on. However, with the requirements of high definition and realistic video quality, traditional 2D video is no longer entirely satisfying the requirements. Free viewpoint video allows the users to change his/her viewing point and viewing direction freely and enjoy more photorealistic 3D images. With these functions, free viewpoint video will have good application in remote education, remote control, virtual reality system, and so on. Therefore, as current research hotspot, free viewpoint video technologies have attracted increasing researcher inside and outside country.
     In this paper, key technologies are studied from perspective of constructing free viewpoint video system. Firstly, because free viewpoint video is captured by multi-camera system, the data amount is several times of general video. In chapter 4 free viewpoint video coding technologies are researched. In second section, based on the analyzing of ray-space data correlation and data characteristic, fast adaptive block matching and rectilinear direction search data compression algorithms are proposed. Experimental results show the proposed algorithms can improve coding efficiency obviously compared with only inter-slice correlation based coding methods. This is one contribution of the thesis. Then in third section, 3DAV multi-view video coding schemes are compared in compression efficiency, computation complexity, memory consumption, random access and so on.
     Next, because of scene illumination, camera calibration, CCD noise, the color difference between different viewpoints may be very large, which brings much difficulty to the following processing. In chapter 5, multi-view video color correction technologies are researched. The basic correction steps are as follows: Color mapping relations are first constructed based on color information from different viewpoints, and then image is corrected based on the mapping. Global, region or pixel informations can all be use to construct the mapping. A series of algorithms are proposed in this paper. Correction parameter adjusting algorithm constructs pixel mapping relations through dynamic region segmentation. Region segmentation and tracking based algorithm constructs one dimension linear mapping relation based on region matching, and then implement video correction by region tracking. Principal componet analysis based automatic correction algorithm constructs three dimensions linear mapping relations based on principal component analysis, also implement video correction based on principal component tracking. Correction in noise cast is also discussed. Dynamic programming based nonlinear correction algorithm constructs best mapping route by dynamic programming, also implement video correction based on route tracking. Experiment results show the algorithms can reach well correction result for certain color change case. This is another contribution of the thesis.
     Next, in order to further combine color correction with data compression or virtual viewpoint rendering, multi-view luminance compensation and vector disparity based multi-view video color correction and virtual viewpoint rendering method are proposed in chapter 6. High coding efficiency and well rendering quality are realized as well as color correction. This is another contribution of the thesis.
     Finally, in section 6, three system frameworks are proposed combined with three key technologies. Experimental simulation is performed for one system.
引文
[1] G. Miller, A. Hitton, J. Starck. Interactive free-viewpoint video[C]. The 2nd IEE European Conference on Visual Media Production, 2005, 52-61.
    [2] A. Smolic, H. Kimata, A. Vetro. Development of MPEG standards for 3D and free viewpoint video[J]. Proceedings of SPIE: Three-Dimensional TV, Video, and Display Ⅳ, 2005, vol.6016: 262-273.
    [3] A. Smolic, K. Muller, P. Merkle, et al. 3D video and free viewpoint video - technologies, applications and MPEG standards[C]. IEEE International Conference on Multimedia & Expo, 2006.
    [4] C. Theobalt, G. Ziegler, M. Magnor, et al. Model-based free-viewpoint video acquisition, rendering and encoding[C]. Picture Coding Symposium, 2004, 78-82.
    [5] Cha Zhang, Tsuhan Chen. A survey on image-based rendering[R]. USA, Carnegie Mellon University: Electrical and Computer Engineering, 2003.
    [6] T. Fujii, T. Kimoto, M. Tanimoto. Ray space representation for 3D image processing[J]. Proceedings of SPIE, 1997, vol.3012: 330-336.
    [7] Kimata H, Kitahara M, Kamikura K, et al. Multi-view video coding using reference picture selection for free-viewpoint video communication[C], Picture Coding Symposium, 2004.
    [8] ISO/IEC JTC1/SC29/WGll, M12487: Luminance and chrominance compensation for multi-view sequences using histogram matching. Nice, France, 2005.
    [9] A. Smolic, C. Fehn, K. Muller. MPEG 3DAV-video-based rendering for interactive TV applications[C]. Proceedings of the 10th Dortmunder Fernsehseminar, 2003, 183-188.
    [10] ISO/IEC JTC1/SC29/WGll, N5169: Description of exploration experiments in 3DAV. Shanghai, China, 2002.
    [11] ISO/IEC JTC1/SC29/WGll, N5558: Report on status of 3DAV explorztion. Pattaya, Thailand, 2003.
    [12] ISO/IEC JTCl/SC29/WG11, N5678: Report on 3DAV exploration. Trondheim, Norway, 2003.
    [13] P. Na, T. Fujii, M. Tanimoto. Experimental system of free viewpoint television[J]. Proceedings of SPIE-IS&T Electronic Imaging, 2003, 5006: 554-563.
    [14] Bennett W, Neel J. Vaibhav V, et al. High performance imaging using large camera arrays[J]. Proceedings ofACMS1GGRAPH, 2005, 24(3): 765-776.
    [15] Smolic A, McCutchen D. 3DAV exploration of video-based rendering technology in MPEG[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2004, 14(3): 348-356.
    [16] L. Onural. An overview of a new European consortium: integrated three-dimensional television - capture, transmission and display(3DTV)[J]. Proceedings of European Workshop on the Integration of Knowledge Workshop on the Integration of Knowledge, Semantics and Digital Media Technology, 2004.
    [17] Mei Yu, Feng Shao, Gangyi Jiang, et al. Fast adaptive block matching for ray-space coding in FTV system[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, 2006, 2: 473-476.
    [18] Liangzhong Fan, Mei Yu, Yu Zhou, et al. Quality and performance evaluation of ray-space interpolation for free viewpoint video systems[J]. Lecture Notes in Computer Science, 2006, vol.3992: 367-370.
    [19] 范良忠,郁梅.一种新的光线空间插值方法研究[J].计算机工程,2006,32(1):215-217.
    [20] Liangzhong Fan, Mei Yu, Gangyi Jiang, et al. New ray-space interpolation method for free viewpoint video system [C]. International Conference on Parallel and Distributed Computing, Applications and Technologies, 2005, 684-688.
    [21] Gangyi Jiang, Yu Mei, Qiumin Xu, et al. A new multi-view video coding scheme for 3DAV systems[C]. Picture Coding Symposium, 2006, Beijing, China.
    [22] Yun Zhang, Gangyi Jiang, Wenjuan Yi, et al. An approach to multi-mode multi-view video coding[C]. IEEE 8th International Conference on Signal Processing, 2006, 1405-1408.
    [23] Feng Shao, Mei Yu, Gangyi Jiang, et al. New approach to color correction of multi-view images for 3DAV systems[C]. Picture Coding Symposium, 2006, Beijing, China.
    [24] Feng Shao, Gangyi Jiang, Mei Yu, et al. A new image correction method for multiview video systemiC]. 1EEE International Conference on Multimedia and Expo, 2006, 205-208.
    [25] 金智鹏,郁梅,蒋刚毅等.一种密集相机阵列的低复杂度视频压缩方法[J].中国图象图形学报,2006,11(11):1592-1595.
    [26] Zhipeng Jin, Mei Yu, Gangyi Jiang, et al. ROI-based Wyner-Ziv coding with low encoding complexity for wireless multiview video sensor array[C]. Picture Coding Symposium, 2006, Beijing, China.
    [27] Xu Dong, Dai Qionghai, Xu Wenli. Light field compression based on prediction propagating and wavelet packet[C]. IEEE International Conference on Image Processing, 2004, 3515-3518.
    [28] 孙立峰,李放,钟玉琢等.基于多视点视频的虚拟会议显示与合成[J].电子学报,2005,33(2):193-196.
    [29] Zhibo Chen, Jianfeng Xu, Yun He, et al. Fast integer-pel and fractional-pel motion estimation for H.264/AVC[J]. Journal of Visual Communication and Image Representation, 2006, 17(2): 264-290.
    [30] 石旭利,张兆扬.一种基于运动对象的形状编码新算法[J].电子学报,2004,32(1):42-45.
    [31] 侯春萍,俞斯乐.一种平面图像立体化的新方法[J].电子学报,2002,30(12):1861-1864.
    [32] Ahmed M, KarmouchA. New architecture for multi-format video browsing and cut detection[C]. IEEE Canadian Conference on Electrical and Computer Engineering, 1999, 2(2): 821-826.
    [33] 陈岭,田美红,陈根才等.利用立体摄像系统在虚拟环境中实现真实感视频化身[J].浙江大学学报(工学版),2003,37(3):295-298.
    [34] Zhang Z Y. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334.
    [35] 李世平.面向网络的立体视频编码和传输技术研究[D].北京:中科院计算所硕士学位论文,2006.
    [36] Sutherland I E. The ultimate display[C]. Proceedings of the 1FIPS Conference, 1965, 506-508.
    [37] 沈沉,沈向洋,马颂德.基于图像的光照模型研究综述[J].计算机学报,2000,23(12):1261-1269.
    [38] Adelson E and Bergen J. The plenoptic function and the elements of early vision[J]. Computational Models of Visual Processing, 1991, 3-20.
    [39] McMillan L and Bishop L. Plenoptic modeling: an image-based rendering system[J]. Proceedings of ACM SIGGRAPH, 1995, 39~46
    [40] Levoy M, Hanrahan P. Light field rendering[J]. Proceedings of ACM SIGGRAPH, 1996, 31~42.
    [41] Gortler S, Grzeszczuk R, Szeliski R. The lumigraph[J]. Proceedings of ACM SIGGRAPH, 1996, 43~54.
    [42] Zhun Han, Qionghai Dai. Overview of sample and compression techniques in light field[C]. 10th International Symposium on Broadcasting Technology, 2005, 445-448.
    [43] Yebin Liu, Qionghai Dai, Wenli Xu. A real time interactive dynamic light field transmission system[C]. IEEE International Conference on Multimedia and Expo, 2006, 2173-2176.
    [44] T. Naemura, M. Kaneko, H. Harashima. 3D visual data compression based on ray-space projection[J]. Proceedings of SPIE, 1997, vol.3024: 413-424.
    [45] T. Naemura, H. Harashima. Ray-based approach to integrated 3D visual communication[J]. Proceedings of SPIE, 2000, CR76: 282-305.
    [46] H. Takahashi, K. Yamada, E. Shimizu. Ray-space based 3D image input method for a color 3D display using a method of the reconstruction of parallax rays[J]. Proceedings of SPIE, 2002, vol.4864: 72-79
    [47] T. Naemura, H. Harashima. Real-time video-based rendering for augmented spatial communication[J]. Proceedings ofSPIE, 1999, vol.3653: 620-631.
    [48] 范良忠,蒋刚毅,郁梅.自由视点电视的光线空间实现方法[J].计算机辅助设计与图形学学报,2005,18(2):170-179.
    [49] Gangyi Jiang, Liangzhong Fan, Mei Yu, et al. Fast ray-space interpolation based on occlusion analysis and feature points detection[C]. Intelligence and Security, International Conference, 2005, 935-940.
    [50] Gangyi Jiang, Liangzhong Fan, Mei Yu, et al. Fast ray-space interpolation with depth discontinuity preserving for free viewpoint system[C]. Pacific-Rim Conference on Multimedia, 2005, 408-419.
    [51] T. Fujii, M. Tanimoto. Acquisition and display systems of FTV(Free-viewpoint television)[J]. Proceedings of SPIE, 2003, vol.5243: 96-103.
    [52] Matusik W, Pfister H. 3DTV: A scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes[J]. Proceeding of ACM SIGGRAPH, 2004, 23(3): 814-824.
    [53] Smoic A, Mueller K, Merkle P. 3D video and free viewpoint video - Technologies, applications and MPEG standards[C]. IEEE International Conference on Multimedia and Expo, 2006, 2161-2163.
    [54] Jian-Guang Lou, Hua Cai, Jiang Li. A real-time interactive multi-view video system[C]. 13th ACM International Conference on Multimedia, 2005, 161-171.
    [55] Cha Zhang, Tsuhan Chen. A self-reconfigurable camera array[C]. Eurographics symposium Rendering, 2004, 243-254.
    [56] ITU-T. ITU-T Recommendation H.261. Video codec for audiovisual services at p×64 kbit/s, 1993.
    [57] ISO/IEC JCT1/SC29, CD1172-2 MPEG1, International standard for coding of moving pictures and associated audio for digital storage media at up to about 1.5Mb/s, 1991.
    [58] ISO/IEC JCT1/SC29, CD13818-2 MPEG2, Coding of moving pictures and associated audio, 1993.
    [59] ITU-T. ITU-T Recommendation H.263. Video coding for low bit rate communication, 1996.
    [60] ITU-T. ITU-T Recommendation H.263 Version 2. Video coding for low bit rate communication, 1998.
    [61] ISO/IEC JTC1/SC29/WG11/N4668, Overview of the MPEG-4 Standard, 2002.
    [62] ITU-T Rec. H.264 | ISO/IEC 11496-10 AVC. Document JVT-G050, 2003.
    [63] ITU-T. ITU-T Recommendation H.264. Advanced video coding for generic audiovisual services, 2005.
    [64] Yu L, Yi F, Dong J, et al. Overview of AVS-Video: tools, performance and complexity[C]. Proceeding of SPIE: Visual Communications and Image Processing, 2005, vol.5960: 679-690.
    [65] T. Fujii, M. Tanimoto. Free-viewpoint TV system based on ray-space representation[J]. Proceedings of SPIE, 2002, vol.4864: 175-189.
    [66] T. Fujii, H. Harashima. Data compression and interpolation of muiti-view image set[J]. 1EICE Transaction on Information and System, 1994, E77-D: 985-995.
    [67] T. Fujii, T. Kimoto, M.Tanmoto. Ray space coding based on arbitrary-shaped DCT[J]. SPIE Electronic Imageing, 1998.
    [68] M. Kawaura, T. Ishigami, T. Fujii, et al. Efficient vector quantization of epipolar plane images of ray space by dividing into oblique blocks[C]. Picture Coding Symposium, 2001, 203-206.
    [69] Y. Hayashi, T. Fujii, M. Tanimoto. Coding for ray space based on SPECK[C]. Picture Coding Symposium, 2003, 339-342.
    [70] 邵枫,蒋刚毅,郁梅等.基于片内特征分析的光线空间数据压缩算法[J],浙江大学学报(理学版),2005,32(4):407-411.
    [71] Feng Shao, Gangyi Jiang, Mei Yu, et al. Analysis of inter-slice correlations in ray space and its application to data compression[C]. IEEE 7th International Conference on Signal Processing, 2004, 2: 1219-1222.
    [72] 邵枫,郁梅,蒋刚毅.Ray Space中的片间预测方法研究.第13届全国多媒体技术学术会议(NCME2004),2004.
    [73] Feng Shao, Gangyi Jiang, Ken Chen, et al. Ray-space data compression based on prediction technique[C]. International Conference on Computer Graphics, Imaging and Visualization, 2006, 347-350.
    [74] 邵枫,蒋刚毅,郁梅等.Ray-space数据片内和片间相关性压缩分析[J],光电工程,2006,33(2):85-89.
    [75] 邵枫,蒋刚毅,郁梅等.基于直线方向搜索的光线空间数据数据压缩方法[J],浙江大学学报(工学版),2006,40(9):1498-1502.
    [76] Gangyi Jiang, Feng Shao, Mei Yu, et al. Efficient block matching for ray-space predictive coding in free-viewpoint television systems[J]. Lecture Notes in Computer Science, 2006, vol.3980: 307-316.
    [77] Chien S, Yu S. Efficient stereo video coding system for immersive teleconference with two-stage hybrid disparity estimation algorithm[C]. Proc. of IEEE Int. Conf. on Image Processing, 2004, 749-752
    
    [78] Guoping L, Yun H. A novel multi-view video coding scheme based on H.264 information[C]. Communications and Signal Processing, 2003, 1: 15-18.
    [79] M. Oliveira, G. Bishop, and D. McAllister. Relief texture mapping[J]. In Proceedings of SIGGRAPH, 2000, 259-268.
    [80] N. L. Chang and A. Zakhor. Constructing a multivalued representation for view synthesis[C]. International Journal of Computer Vision, 2001, 45(2):157-190.
    [81] Seung-Uk Yoon, Eun-Kyung Lee, Sung-Yeol Kim, et al. A framework for multi-view video coding using layered depth images[C]. Pacific-Rim Conference on Multimedia, 2005, vol.3767: 431-442.
    [82] J.-R. Ohm. Stereo/Multiview encoding using the MPEG family of standards[C]. In Proceedings of Electronic Imaging, 1999.
    [83] ISO/IEC JTC1/SC29/WG11, M3178: Core Experiments on Multiview Objects. February 1998.
    [84] ISO/IEC JTC1/SC29/WG11, N4030: MPEG-4 Overview. March 2001.
    [85] ISO/IEC JTC1/SC29/WG11, M10929: Transposed picture ordering for dynamic light field coding. Redmond, USA, 2004.
    [86] U. Fecker, A. Kaup, H.264/AVC-compatible coding of dynamic light fields using transposed picture ordering[C], EUSIPCO, 2005.
    [87] ISO/IEC JTC1/SC29/WG11, N6909: Survey of algorithms used for MVC. Hong Kong, Jan. 2005.
    [88] J.E. Lim, K. N. Ngan and W. Yang et al, A multiview sequence CODEC with view scalability[C]. SPIC04, 2004,19: 239-256.
    [89] S. Oka, P. N. Bangchang, T. Fujii. Dynamic ray-space coding for FTV (in Japanese)[C]. Proc. 3D Image Conference, 2004, 139-142.
    [90] S. Oka, T. Endo, T. Fujii, Dynamic ray-space coding using multi-directional picture[J]. IEICE Technical Report, 2004, 104(493): 15-20.
    [91] H. Kimata, M. Kitahara and K. Kamikura. System design of free viewpoint video communication[C]. The Fourth International Conference on Computer and Information Technology, 2004, 52-59.
    [92] U. Fecker and A. Kaup. Statistical analysis of multi-reference block matching for dynamic light field coding[C]. VMV, 2005, 16-18.
    [93] H. Schwarz, D. Marpe, and T. Wiegand, Hierarchical B pictures[C]. Joint Video Team, Doc. JVT-P014, Poznan, Poland, Jul. 2005.
    [94] K. Mueller, P. Merkle and H. Schwarz et al, Multi-view video coding based on H.264/MPEG4-AVC using hierarchical B pictures[C]. Picture Coding Symposium, 2006, Beijing, China.
    [95] ISO/IEC JTC1/SC29/WG11, W8019: Description of Core Experiments in MVC. Montreux, Switzerland, Apr. 2006.
    [96] ISO/IEC JTC1/SC29/WG11, N6999: Report of the subjective quality evaluation for MVC Call for Evidence. Hong Kong, China, January 2005.
    [97] ISO/IEC JTC1/SC29/WG11, MVC camera position parameters coding, JVT-138.doc, 20th Meeting: Klagenfurt, Austria, July 2006.
    [98] Tektronix, 图像质量分析系统, www.tektronix.com.cn/download/docs/PQA300.pdf
    [99] Xun Guo, Yan Lu, Wen Gao, Qingming Huang, Viewpoint switching in multi-view video streaming[J]. IEEE Trans. Circuits Syst. Video Technol, 2005,3471-3474.
    [100] ISO/IEC JTC1/SC29/WG11, N8018: Technologies under study for reference picture management and high-level syntax for multiview video coding. Montreux, Switzerland, April 2006.
    [101] ISO/IEC JTC1/SC29/WGll and ITU-T SG16 Q.6, MVC high-level syntax for random access[C], doe. JVT-T131. doe, 20th Meeting: Klagenfurt, Austria, July 2006.
    [102] ISO/IEC JTC1/SC29/WGll and ITU-T SG16 Q.6, On MVC high-level syntax for picture management[C], doe. JVT-T131.doc, 20th Meeting: Klagenfurt, Austria, July 2006.
    [103] ISO/IEC JTC1/SC29/WGll and ITU-T SG16 Q.6, NTT Corporation, Nagoya University, Proposal on a coding scheme for Free viewpoint Scalability (MVC) [C], JVT-T138.doc, 20th Meeting: Klagenfurt, Austria, July 2006.
    [104] ISO/IEC JTC1/SC29/WGI1, M13169: Requirements for FTV and 3DTV to Multi-view video coding. Montreux, April 2006.
    [105] 陶霖密,徐光祜.机器视觉中的颜色问题及应用[J].科学通报,2001,3(46):178-190.
    [106] D. Bourgin. Color spaces FAQ. http://www.scarse.org/docs/-color_faq.html.
    [107] Palus H. Representatins of colour images in different colour space[M]. The colour image processing handbook. London: Chapman & Hall, 1998, 67-92.
    [108] Berns R S, Alman D H, Reniff L, et al. Visual determination of suprathreshold color difference tolerances unsing probit analysis[J]. Color Research and Application, 1991, 16(5): 297-316.
    [109] D. L. Ruderman, T. W. Cronin, C. C. Chiao. Statistics of cone responses to natural images: implications for visual coding[J]. Journal of Optical Society of America A, 1998, 15: 2036-2045.
    [110] I. Tastl, M. Bhachech, N. Moroney, et al. ICC color management and CIECAM02[R]. USA, HP Labs, 2005. http://www.hpl.hp.com/news/2005/oct-dec/CIC05_CIECAMICC_final.pdf
    [111] R. Gershon, A.D. Jepson, J.K. Tsotsos. From [R, G, B] to surface reflectance: Computing color constant descriptors in images[J]. Perception, 1988, 755-758.
    [112] J. J. McCann, J. A. Hall, and E. H. Land. Color mondrian experiments: The study of average spectral distributions[J]. Journal of the Optical Society of America, 1977, A(67): 1380..
    [113] E H Land. Recent advance in retinex theory[J]. Vision Res, 1986, 26: 7-22.
    [114] Munteanu C, Rosa A. Color image enhancement using evolutionary principles and the retinex theory of color constancy[C]. Processing of the IEEE Signal Processing Society Workshop, 2001, 393-402.
    [115] Zia-ur Rahman, Daniel J. Jobson. Multi-scale retinex for color image enhancement[C]. Proceedings of International Conference on Image Processing, 1996, 1003-1006.
    [116] Daniel J. Jobson, Zia-ur Rahman. A multiscale retinex for bridging the gap between color images and the human observation of scenes[J]. IEEE Transactions on Image Processing, 1997, 6(7): 965-976.
    [117] R. Kimmel, D. Shaked and M. Elad, A variational framework for retinex[J]. International Journal of Computer Vision, 2003, 52(1): 7-23.
    [118] D. Forsyth. A novel algorithm for color constancy[J]. International Journal of Computer Vision, 1990, 5: 5-36.
    [119] Kobus Barnnard. Improvements to gamut mapping colour constancy algorithm[C]. Proceedings of European Conference on Computer Vision, 2000, 390-402.
    [120] Watanabe T, Kojima A, Kuwahara Y, et al. High quality color correction method combining neural networks with genetic algorithms[C]. IEEE International Conference on Image Processing, 2001, 553-556.
    [121] F. Gasparini, R. Schettini. Color correction for digital photographs [C]. IEE International Conference on Image Analysis and Processing, 2003, 646-651.
    [122] Pham B, Pringle G. Color correction for an image sequence[C]. IEEE Computer Graphics and Application, 1995, 15(3): 38-42.
    [123] Jackowshi M, Goshtasby A, Biness S. Correcting the geometry and color of digital images [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19: 1152-1158.
    [124] Gui Yun Tian, Duke Gledhill, Dave Taylor. Colour correction for panoramic imaging[C]. Proceedings of Sixth International Conference on Information Visualisation, 2002.
    [125] Reinhard E, Ashikhmin M, Gooch B, et al. Color transfer between images[C]. IEEE Computer Graphics and Applications, 2001, 21(4): 34-41.
    [126] Maojun Zhang, Nicolas D. Georganas. Fast color correction using principal regions mapping in different color spaces [J]. Real-Time Imaging, 2004, 10(1): 23-30.
    [127] Clement Fredembach, Michael Schroder, Sabine Siisstrunk. Region-based image classification for automatic color correction[C]. Proc. IS&T/SID 11th Color Imaging Conference, 2003, 11: 59-65.
    [128] Yu-Wing Tai, Jiaya Jia, Chi-keung Tang. Local color transfer via probabilistic segmentation by expectation-maximization[C]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1(1): 747-754.
    [129] Jianfeng Yin, Jeremy R. Cooperstock. Color correction methods with applications to digital projection environments[C]. International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, 2004.
    [130] Jiaya Jia, Jiang Sun, Chi-Keung Tang, et al. Bayesian correction of image intensity with spatial consideration[C]. 8th European Conference on Computer Vision, 2004, 3: 342-354.
    [131] Xuemei Zhang, David H. Brainard. Bayesian color correction method for non-colorimetric digital image sensors[C]. Proceedings of the 12th IS&T/SID Color Imaging Conference, 2004, 308-314
    [132] Mark Grundland, Neil A. Dodgson. Color histogram specification by histogram warping, Proc. Of SPIE-IS&T Electronic Imaging, vol. 5667: 610-621.
    [133] U. Fecker, M. Barkowsky, A. Kaup. Improving the prediction efficiency for multi-view video coding using histogram matching[C], Picture Coding Symposium, 2006, China.
    [134] 邵枫,蒋刚毅,郁梅等.基于规正参数调节的多视点图像规正算法[J].光电工程,2006,已录用.
    [35] J. Duan and G. Qiu. Fast tone mapping for high dynamic range image[C]. 17th International Conference on Pattern Recognition, 2004, 2(2): 847-850.
    [136] 邵枫,蒋刚毅,郁梅等.一种基于区域分割的多视点图像校正算法,光子学报,2006,已录用.
    [137] Gangyi Jiang, Feng Shao, et al., New color correction approach to multi-view images with region correspondence [J]. Lecture Notes in Computer Science, 2006, vol.4113: 1224-1228.
    [138] Lee Vincent, Pierre Soille. Watershed in digital space: An efficient algorithm based on immersion simulations [C]. IEEE PAMI, 1991, 13(6): 583-598.
    [139] 邵枫,蒋刚毅,郁梅等.一种多视点图像自动颜色校正系统[J].光学学报,2007,27(5):830-834..
    [140] Feng Shao, Gangyi Jiang, Zhidi Jiang, et al. A new multi-view color correction method[C]. IEEE 8th International Conference on Signal Processing Proceeding, 2006, 2: 978-981.
    [141] Feng Shao, Gangyi Jiang, Mei Yu. A content-adaptive multi-view video color correction algorithm[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, 2007, 1: 969-972.
    
    [142] Smith LI. A tutorial on principal components analysis. 2002. http://www.cs.otago.ac.nz/cosc453/student tutorials/principal_components.pdf
    [143] 邵枫, 蒋刚毅, 郁梅等. A color correction algorithm for noisy multi-view images[J]. Chinese Optical Letters, 2007, 5(1): 28-30..
    [144] U. Barnhofer, J. DiCarlo, B. Olding, et al. Color estimation error trade-offs. Proceeding of the SPIE Electronic Imaging Conference, 2003, vol.5017: 263-271.
    [145] S. H. Lim and A. Silverstein. Spatially varying color correction (SVCC) matrices for reduced noise[J]. Proceedings of the 12 Color Imaging Conference, 2004, 76-81.
    [146] S. H. Lim. Characterization of noise in digital photographs for image processing[J]. Proceeding of SPIE - The International Society for Optical Engineering, 2006, vol.6069: 219-228.
    [147] K. Rank, M. Lendl, R. Unbehauen. Estimation of image noise variance[C]. IEE Proceedings on Vision, Image and Signal Processing, 1999, 146: 80-84.
    [148] I. W. Selesnick, R. G. Baraniuk, and N. Kingsbury. The Dual-tree complex wavelet transform - A coherent framework for multiscale signal and image processing[C]. IEEE Signal Processing Magazine, 2005, 22(6):123-151.
    [149] Dijkstra, E.W. A note on two problems in connexion with graphs[J]. Numerische mathematik, 1959, 269-271.
    [150] Sang Hyun Kim, Rae-Hong Park. Fast local motion-compensation algorithm for video sequence with brightness variation[J]. IEEE Trans. Circuits and Systems for Video Technology, 2003, 13(4): 289-299.
    [151] K. Kamikura, H. Watanabe, H. Jozawa, et al. Global brightness-variation compensation for video coding[J]. IEEE Trans. Circuits and Systems for Video Technology, 1998, 8(8): 988-1000.
    [152] Joaquin Lopez, Jae Hoon Kim, Antonio Ortega, et al. Block-based illumination compensation and search techniques for multiview video coding[C]. Picture Coding Symposium, 2004, San Francisco, USA.
    [153] Guaragnella C, Di Sciascio E. Improving block-based motion estimation in the presence of illumination variation[C]. International Conference on Digital Signal Processing, 2002, 2(2): 555-558.
    [154] Y. Joen, B. Jeon. Intensity compensation for disparity estimation[J]. Proc. of ITC-CSCC, 2003.
    [155] Young-Su Mun, In-So Kweon. A hybrid pyramid-based motion estimation algorithm under illumination variations[C]. 12th Workshop on Image Processing and Image Understanding, 2000.
    [156] ISO/IEC JTC1/SC29/WG11, W8019: Description of Core Experiments in MVC. Montreux, Switzerland, April 2006.
    [157] ISO/IEC JTC1/SC29/WG11, M13143: Result of CE2 on Multi-view Video Coding. Montreux, Switzerland, January 2006.
    [158] ISO/IEC JTC1/SC29/WG11, M13498: Result of CE2 on Multi-view Video Coding. Klagenfurt, Austria, July 2006.
    [159] ISO/IEC JTC1/SC29/WG11, M13720: Results of CE2 on Multi-view Video Coding. Klagenfurt, Austria, July 2006.
    [160] ISO/IEC JTC1/SC29/WG11, M13194: Preliminary results on CE2 for multi-view video coding. Montreux, Switzerland, April 2006.
    [161] ISO/IEC JTC1/SC29/WG11, M13543: Results on CE2 using IBDE for multi-view video coding. Klagenfurt, Austria, July 2006.
    [162] ISO/IEC JTC1/SC29/WG11, M13507: Core experiment results on CE2 for multi-view video coding. Klagenfurt, Austria, July 2006.
    [163] ISO/IEC JTC1/SC29/WGll, M13621: Results on CE2 in Multiview Video Coding. Klagenfurt, Austria, July 2006.
    [164] Anat Levin, Dani Lischinski, Yair Weiss. Colorization using optimization[J]. ACM Trans. Graph, 23(3): 689-694, 2004.
    [165] Kobayashi T, Fujii T, Kimoto T, et al. Interpolation of ray-space data by adaptive filtering[C]. Proceedings of SPIE Electronic Imaging, 2000, vol.3958: 252-259.
    [166] Kawaura M, Ishigami T, Fujii T, et al. Efficient vector quantization of epipolar plane images of ray space by dividing into oblique blocks[C]. Picture Coding Symposium, 2001, 203-206.
    [167] M. P. Tehrani, T. Fujii, M. Tanimoto. Offset block matching of multi-view images for ray-space interpolation[J]. The journal of the Institute of Image Information and Television Engineers, 2004, 540-548.
    [168] Gangyi Jiang, Xien Ye, Mei Yu, et al. New approach to ray-space interpolation for free viewpoint television[C]. Proceedings of SPIE: Visual Communications and Image Processing, 2005, vol.5960, 1275-1285.
    [169] 郁梅,蒋刚毅.基于特征点方向的光线-空间插值方法[J].计算机辅助设计与图形学学报,2005,17(11):2545-2551.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700