基于原子—腔—光纤系统的纠缠态制备和远程量子逻辑门实现方案
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
就腔量子电动力学而言,随着腔中耦合原子的增多,由于原子间的交叉相互作用,使得对原子自身和原子与腔相互作用的操纵变得越来越困难,所以单个腔中可以耦合的原子数目是有物理限制的。但是,一台实用的量子计算机必然包含很多量子比特,并且它的能力会随着所包含量子比特数目的增多而增强。因此人们提出了分布量子计算的方案。它通过量子传输线连接多个空间分离的包含少数量子比特的处理器组成网络来实现量子计算。制备分离子系统间共享的纠缠和构建远程量子逻辑门是实现分布量子计算的核心问题。另一方面,近来在实验上已经能够实现囚禁在光学腔中的单个原子控制、原子与腔及光纤与腔的强耦合。因此,原子-腔-光纤耦合系统逐渐引起了人们的重视,提出了许多基于此类系统完成量子信息处理的方案。本文以此类系统作为研究对象,提出一些制备远程两比特共享纠缠态、多比特W态和三比特Greenberger-Horne-Zeilinger(GHZ)态、实现远程两比特量子控制相位门和交换门、及远程三比特量子控制Z门的理论方案。本文的主要工作包括以下内容:
     1.基于通过光纤连接的三个腔分别与三个原子耦合组成的系统,提出一种通过绝热演化制备远程两比特共享纠缠态的方案。并把它推广到制备多体W态的情况。此外,基于此系统可以通过信息分发实现量子信息共享。这些结果有助于对量子网络和量子密码学方面的研究。并且,这些方案是易于操作的,因为在完成方案的整个过程中只需调节驱动原子的经典场。
     2.基于通过光纤连接的单原子-腔和双原子-腔耦合组成的系统。提出分别通过控制相互作用时间和绝热演化确定性地制备远程三原子共享GHZ态的方案。并且研究原子自发辐射和腔与光纤的光子泄漏等消相干过程带来的影响。结果表明,即使在考虑消相干的情况下,这些方案也能够以比较高的保真度实现。
     3.基于通过光纤连接的两个腔分别与经典光驱动的两个二能级原子耦合组成的系统,提出实现远程两比特量子逻辑门的方案。研究发现,当腔场频率和原子跃迁频率间存在失谐时,在经典场的辅助下可以实现远程两比特量子控制相位门和交换门。此外,分析腔场和光纤的耗散等导致的消相干对此方案的影响;并通过引入八型原子有效地抑制原子自发辐射的影响。
     4.基于通过光纤连接的三个腔分别与三个Λ型原子耦合组成的系统,提出实现远程三比特量子控制Z门的方案。并研究一些消相干过程如原子的自发辐射及光纤和腔的光子泄漏等带来的影响。结果表明,即使在考虑消相干的情况下此方案也能以较高的保真度实现。此结果可以推广到由光纤连接的N个腔分别与N个Λ型原子耦合的情况,进而实现远程N比特量子控制Z门。
As for the cavity quantum electrodynamics, with the increase in the number of the atomic qubits, the manipulations not only on qubit-cavity interaction but also on qubits themselves become difficult. Because some unexpected crossing interactions from qubits which are temporarily out of consideration, might arise and thus influence or spoil the useful interactions. Therefore, there are physical limitations on the number of atomic qubits in a quantum cavity. However, a practical quantum computer involves a large number of qubits, inevitably. And the power of the quantum computer increases as the mumber of qubits increases. Therefore, distributed quantum computing is introduced. It is thought of as a network of spatially separated local processors that contain only a few qubits and are connected via quantum transmission lines. Two of the key problems in the realization of distributed quantum computing are to implement the remote quantum logical gates and prepare the entanglement among the distant nodes. On the other hand, the control of single atom trapped in optical cavities and the perfect fiber-cavity coupling via microfabrication have been realized in experiment. The system, consisting of atoms separately trapped in distant cavities coupled by optical fibers, is very promising for the generation of entanglement shared by distant subsystems and implementing the remote quantum logical gates. And many schemes based on this system for the implementation of quantum information process have been proposed. In this paper, we consider this system and propose some schemes for the generation of entanglement and implementation of the quantum logical gates. Significant new results are shown as following.
     1. A scheme, based on the system composed of three atoms separately trapped in three cavities coupled by optical fibres, for entangling two distant atoms via adiabatic passage is proposed. It is found that the multi-particle W entangled state can also be generated. Moreover, the quantum information sharing can be implemented using this system. These results may be helpful for the implementation of quantum network and useful in quantum cryptography. And this scheme is convenient to operate since only the laser fields applied to the atoms need to be adjusted to accomplish the processes.
     2. A system composed of a single-atom-trapped cavity and a remote two-atom-trapped cavity connected by the optical fibre is considered. It is shown that a shared Greenberger-Horne-Zeilinger (GHZ) state of the three atoms can be deterministically generated by controlling the time of interaction or via the adiabatic passage based on this system. The influence of various decoherence processes such as spontaneous emission and photon loss on the fidelity is also investigated. It is found that these schemes can be realized with high fidelity even when these decoherence processes are considered.
     3. A scheme, based on the two two-level atoms resonantly driven by the classical field separately trapped in two cavities coupled by an optical fibre, for the implementation of remote two-qubit gates is investigated. It is found that the quantum controlled-phase and swap gates can be achieved with the assistance of classical field when there are detunings of the coupling quantum fields. Moreover, the influence of the dissipation of the cavities and the optical fibre is analyzed while the spontaneous emission of the atoms can be effectively suppressed by introducing the∧-type atoms.
     4. A scheme for implementing the three-qubit controlled-Z gate with three atoms separately trapped in three distant cavities coupled by the optical fibres is proposed. The influence of various decoherence processes, such as spontaneous emission of the atoms and photon leakage of the cavities and the optical fibres, on the fidelity is also investigated. It is found that the gate can be implemented with high fidelity even when these decoherence processes are considered. This scheme can be extended to the implementation of remote N-qubit controlled-Z gate with N atoms separately trapped in N distant cavities coupled by the optical fibres.
引文
[1]M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information [M]. Cambridge:Cambridge University Press,2000.
    [2]张永德,量子信息物理原理[M].北京:科学出版社,2006.
    [3]李承祖,量子通信和量子计算[M].长沙:国防科技大学出版社,2001.
    [4]曾贵华,量子密码学[M].北京:科学出版社,2006.
    [5]P. Domokos, J. M. Raimond, M. Brune and S. Haroche, Simple cavity-QED two-bit universal quantum logic gate:The principle and expected performances[J]. Phys. Rev. A 1995,52:3554.
    [6]C. W. Gardiner, Quantum noise[M]. Berlin:Springer-Verlag,1991.
    [7]D. Loss and D. P. Divincenzo, Quantum computation with quantum dots[J]. Phys. Rev.A1998,57:120.
    [8]J. E. Mooij, T. P. Orlando, L. Levitov, L. Tian, C. H. van der Waal and S. Lloyd. Josephson persistent-current qubit[J]. Science 1999,285:1036.
    [9]P. M. Platzman and M. I. Dykman, Quantum computing with electrons floating on liquid helium[J]. Science 1999,284:1967.
    [10]A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin and A. Small, Quantum information processing using quantum dot spins and cavity QED[J]. Phys. Rev. Lett.1999,83:4204.
    [11]W. K. Wootters and W. H. Zurek, A single quantum cannot be cloned[J]. Nature(London) 1982,299:802.
    [12]A. K. Pati and S. L. Braunstein. Impossibility of deleting an unknown quantum state[J]. Nature(London) 2000,404:164.
    [13]D. P. DiVincenzo, Two-bit gates are universal for quantum computation[J]. Phys. Rev. A 1995,51:1015.
    [14]A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, A. Smolin and H. Weinfurter, Elementary gates for quantum computation[J]. Phys. Rev. A1995,52:3457.
    [15]T. Toffoli, Reversible computing[J]. In Automata languages and programming, seventh colloquium, Lecture Notes in Computer Science (J. W. de Bakker and J. van Leeuwen),1980,84:623.
    [16]J. I. Cirac and P. Zoller, A scalable quantum computer with ions in an array of microtraps[J]. Nature (London) 2000,404:579.
    [17]J. I. Cirac, A. K. Ekert, S. F. Huelga and C. Macchiavello, Distributed quantum computation over noisy channels[J]. Phys. Rev. A 1999,59:4249.
    [18]M. Paternostro, M. S. Kim and G. M. Palma, Non-local quantum gates:A cavity-quantum-electrodynamics implementation[J]. J. Mod. Opt.2003,50:2075.
    [19]A. Einstein, B. Pdolsky and N. Rosen, Can quantum-mechanical description of physical reality be considered complete?[J]. Phys. Rev.,1935,47:777.
    [20]R. F. Werner, Quantum states with Einstein-Pdolsky-Rosen correlations admitting a hidden-variable model[J]. Phys. Rev. A 1989,40:4277.
    [21]A. Peres, Separability criterion for density mareices[J]. Phys. Rev. Lett.1996,77: 1413.
    [22]M. Horodecki, P. Horodecki, R. Horodecki, Separability of mixed states: necessary and sufficient conditions[J]. Phys. Lett. A 1996,223:1.
    [23]M. Horodecki and P. Horodecki, Reduction criterion of separability and limits for a class of distillation protocols[J]. Phys. Rev. A 1999,60:898.
    [24]N. J. Cerf, C. Adami and R. M. Gingrich, Reduction criterion for separability[J]. Phys. Rev. A 1999,59:4206.
    [25]M. A. Nielsen and J. Kempe, Separable states are more disordered globally than locally[J]. Phys. Rev. Lett.2001,86:51845.
    [26]张永德,吴盛俊,侯广等编著量子信息论物理原理和某些进展[M].武汉:华中师范大学出版社,2002.
    [27]B. M. Terhal, Bell inequalities and the separability criterion[J]. Phys. Lett. A 2000,271:319.
    [28]J. von Neumann, Mathematical foundations of quantum mechanics(translated by R. T. Beyer)[M]. Princeton:Princeton University Press,1955.
    [29]S. Hill and W. K. Wootters, Entanglement of a pair of quantum bits[J]. Phys. Rev. Lett.1998,78:5022.
    [30]K. Zyczkowski, Volume of the set of separable states. Ⅱ [J], Phys. Rev. A 1999,60: 3496.
    [31]W. K. Wootters, Entanglement of formation of an arbitrary state of two qubits[J]. Phys. Rev. Lett.1998,80:2245.
    [32]H. K. Lo and S. Popescu, Concentrating entanglement by local actions:Beyond mean values[J]. Phys. Rev. A 2001,63:022301.
    [33]G. Vidal and J.1. Cirac, Irreversibility in asymptotic manipulations of entanglement[J]. Phys. Rev. Lett.2001,86:5803.
    [34]V. Vedral and M. B. Plenio, Entanglement measures and purification procedures[J], Phys. Rev. A 1998,57:1619.
    [35]G. Vidal and R. F. Werner, Computable measure of entanglement[J]. Phys. Rev. A 2002,65:032314.
    [36]K. Zyczkowski, P. Horodecki, A. Sanpera and M. Lewenstein. Volume of the set of separable states[J]. Phys. Rev. A 1998,58:883.
    [37]F. Verstraete, K. Audenaert, J. Dehaene and B. De Moor, A comparison of the entanglement measures negativity and concurrence[J]. J. Phys. A:Math. Gen. 2001,34:10327.
    [38]V. Coffman, J. Kundu, W. K. Wotters, Distributed Entanglement[J], Phys. Rev. A 2000,61:052306.
    [39]C. S. Yu, H. S. Song, Mutipartite entanglement measure[J], Phys. Rev. A 2005,71: 042331.
    [40]S. Lee, J. Joo, J. Kim, Entanglement of three-qubit pure states in terms of teleportation capability[J], Phys. Rev. A 2005,72:024302.
    [41]C. Sabin and G. Garcia-Alcaine, A classification of entanglement in three-qubit systems[J]. Eur. Phys. J. D.2008,48:435.
    [42]J. Schlienz and G. Mahler, Description of entanglement[J]. Phys. Rev. A 1995,52: 4396.
    [43]苏晓琴,郭光灿.量子隐形传态[J],物理学进展2004,24:268.
    [44]C. H. Bennett, G. Brassard, C. Crepeau et al, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen Channels[J]. Phys. Rev. Lett. 1993,70:1895.
    [45]D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter and A. Zeilinger, Experimental quantum teleportation[J]. Nature(London),1997,390:575.
    [46]H. W. Lee, Total teleportation of an entangled state[J], Phys. Rev. A 2001,64: 014302.
    [47]B. S. Shi, Y. K. Jiang and G. C. Guo, Probabilistic teleportation of two-particle entangled state[J], Phys. Lett. A 2000,268:161.
    [48]F. G. Deng, C. Y. Li, Y. S Li et al, Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement[J]. Phys. Rev. A 2005,72:022338.
    [49]X. G Wang, Quantum teleportation of entangled coherent states[J]. Phys. Rev. A 2001,64:022302.
    [50]H. Y. Fan, X. T. Liang, Teleportation of a kind of three-mode entangled states of continuous variables[J]. Commun. Theor. Phys.2005,44:833.
    [51]W. L. Li, C. F. Li and G.C. Guo, Probabilistic and entanglement matching[J]. Phys. Rev. A 2000,61:034301.
    [52]M. Cola Mary and G A. Paris Matteo, Teleportation of bipartite states using a single entangledpair[J]. Phys. Lett. A 2005,337:10.
    [53]C. H. Bennett and S. J. Wiesner, Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states[J]. Phys. Rev. Lett.1992,69:2881.
    [54]A. Barenco and A. K. Ekert, Dense coding based on quantum entanglement[J], J. Mod. Opt.1995,42:1253.
    [55]A.Shamir, How to share a secret[J]. Communications of the ACM 1979,22:612.
    [56]G. R. Blakley, Safeguarding cryptographic keys[J]. In Proceeding of Proceedings of the National Computer Conference AFIPS Press, New York 1979:313-317.
    [57]M. Hillery, V. Buzek and A. Berthiaume, Quantum secret sharing[J]. Phys. Rev. A 1999,59:1829.
    [58]A. Karlsson, M. Koashi and N. Imoto, Quantum entanglement for secret sharing and secret splitting[J]. Phys. Rev. A 1999,59:162.
    [59]R. Cleve, D. Gottesman and H. K. Lo, How to share a quantum secret[J] Phys. Rev. Lett. 1999,83:648.
    [60]S. B. Zheng, Splitting quantum information via W states[J]. Phys. Rev. A 2006,74: 054303.
    [61]P. R. Berman, Cavity Quantum Electrodynamics[M],1994, San Diego:Academic Press.
    [62]T. Pellizzari, S. A. Gardiner, J. I. Cirac and P. Zoller, Decoherence, continuous observation, and quantum computing:a cavity QED model[J], Phys. Rev. Lett. 1995,75:3788.
    [63]T. Sleator and H. Weinfurter, Realizable universal quantum logic gates[J]. Phys. Rev. Lett.1995,74:4087.
    [64]S. B. Zheng, Efficient scheme for two-atom entanglement and quantum information processing in cavity QED[J]. Phys. Rev. Lett.2000,85:2392.
    [65]H. Walther, B. T. H. Varcoe, B. G. Englert and T. Becker, Cavity quantum electro-dynamics[J] Rep. Prog. Phys.2006,69:1325.
    [66]C. K. Law and J. H. Eberly, Arbitrary control of a quantum electromagnetic field[J]. Phys. Rev. Lett.1996,76:1055.
    [67]P. B. Li, Generation of two-mode field squeezing through selective dynamics in cavity QED[J]. Phys. Rev. A 2008,77:015809.
    [68]M. J. Hartmann, F. G. S. L. Brandao and M. B. Plenio, Strongly interacting polaritons in coupled arrays of cavities[J]. Nat. Phys.2006,2:849.
    [69]B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala and H. J. Kimble, A photon turnstile dynamically regulated by one atom[J]. Science 2008,319:1062.
    [70]J. H. An, M. Feng and C. H. Oh, Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities[J]. Phys. Rev. A 2009,79:032303.
    [71]J. I. Cirac and P. Zoller, Quantum computation with cold trapped ions[J]. Phys. Rev. Lett.1994,74:4091.
    [72]D. Leibfried, R. Blatt, C. Monroe and D. Wineland, Quantum dynamics of single trapped ions[J]. Rev. Mod. Phys.2003,75:281.
    [73]N. A. Gershenfeld and I. L. Chuang, Bulk spin-resonance quantum computation [J]. Science 1997,275:5298.
    [74]J. A. Jones, M. Mosca and R. H. Hansen, Implementation of a quantum search algorithm on a quantum computer[J]. Nature(London) 1998,393:344.
    [75]E. Biolatti, R. C. lotti, P. Zanardi and F. Rossi, Quantum information processing with semiconductor macroatoms[J]. Phys. Rev. Lett.2000,85:5647.
    [76]W. G. van der Wiel, S. De Franceschi, T. Fujisawa, S. Tarucha and L. P. Kouwenhoven, Electron transport through double quantum dots[J]. Rev. Mod. Phys.2003,75:1.
    [77]Y. Makhlin, G. Schon and A. Shnirman, Quantum-state engineering with Josephson-junction devices[J]. Rev. Mod. Phys.2001,73:357.
    [78]E. Lucero, M. Hofheinz, M. Ansmann, R. C. Bialczak, N. Katz, M. Neeley, A. D. O'Connell, H. Wang, A. N. Cleland and J. M. Martinis, High-fidelity gates in a single Josephson qubit[J]. Phys. Rev. Lett.2008,100:247001.
    [79]孙昌璞,王颖丹,李勇,张秋,微腔量子电动力学的基本概念与方法,量子力学新进展(第三辑)[M].p.139,北京:清华大学出版社2003.
    [80]G. Rempe, H. Walther and N. Klein, Observation of quantum collapse and revival in a one-atom maser[J]. Phys. Rev. Lett.1986,58:353.
    [81]G. Rempe, R. T. Thompson, R. J. Brecha, W. D. Lee and H. J. Kimble, Optical bistability and photon statistics in cavity quantum eletrodynamics[J]. Phys. Rev. Lett.1991,67:1727.
    [82]G. Rempe, F. Schmidt-Kaler and Walther, Observation of sub-Poissonian photon statistics in a micromaser[J]. Phys. Rev. Lett.1990,64:2783.
    [83]R. J. Thompson, G. Rempe and H. J. Kimble, Observation of normal-mode splitting for an atom in an optical cavity[J]. Phys. Rev. Lett.1992,68:1132.
    [84]E. T. Jaynes and E. W. Cummings, Comparison of quantum and semiclassical radiation theories with application to the beam maser[J]. Proc. IEEE 1963,51:89.
    [85]M. Tavis and F. W. Cummings, Exact solution for an N-molecule-radiation-field Hamiltonian[J]. Phys. Rev.1968,170:379.
    [86]S. B. Zheng and G. C. Guo, Efficient Scheme for two-atom entanglement and quantum information processing in cavity QED[J]. Phys. Rev. Lett.2000,85: 2392.
    [87]J. G. P. de Faria and M. C. Nemes, Dissipative dynamics of the Jaynes-Cummings model in the dispersive approximation:Analytical results[J]. Phys. Rev. A 1999, 59:3918.
    [88]S. B. Zheng and G. C. Guo, Teleportation of atomic states within cavities in thermal states[J]. Phys. Rev. A2001,63:044302.
    [89]S. B. Zheng, Quantum-information processing and multiatom-entanglement engineering with a thermal cavity[J]. Phys. Rev. A 2002,66:060303(R).
    [90]S. B. Zheng, Generation of entanglement states for many multilevel atoms in a thermal cavity and ions in thermal motion[J]. Phys. Rev. A 2003,68:035801.
    [91]S. B. Zheng, Unconventional geometric quantum phase gates with a cavity QED system[J], Phys. Rev. A 2004,70:052320.
    [92]C. H. Bennett, D. P. DiVincenzo, P. W. Shor and J. A. Smolin, Remote state pre-paration[J]. Phys. Rev. Lett.2001,87:077902.
    [93]A. M. Wang, Combined and controlled remote implementations of partially unknown quantum operations of multiqubits using Greenberger-Horne-Zeilinger states[J]. Phys. Rev. A 2007,75:062323.
    [94]J. Eisert, K. Jacobs, P. Papadopoulos and M. B. Plenio, Optimal local implementation of nonlocal quantum gates[J]. Phys. Rev. A 2000,62:052317.
    [95]M. Murao, D. Jonathan, M. B. Plenio and V. Vedral, Quantum telecloning and multipartite entanglement[J]. Phys. Rev. A 1999,59:156.
    [96]Y. L. Li, J. Feng, X. G. Meng and Y. F. Yu, Universal quantum tele-flipping and tele-cloning of an arbitrary qubit[J]. Physica A.2008,387:717.
    [97]H. J. Kimble, The quantum internet[J]. Nature(London) 2008,453:1023.
    [98]L. M. Duan and H. J. Kimble, Efficient engineering of multiatom entanglement through single-photon detections[J]. Phys. Rev. Lett.2003,90:253601.
    [99]B. Kraus and J.I. Cirac, Discrete entanglement distribution with squeezed light[J]. Phys. Rev. Lett.2004,92:013602.
    [100]J. Busch, E. S. Kyoseva, M. Trupke and A. Beige, Entangling distant quantum dots using classical interference[J]. Phys. Rev. A 2008,78:040301(R).
    [101]T. Pellizzari, Quantum networking with optical fibres[J]. Phys. Rev. Lett.1997, 79:5242.
    [102]S. Bose, P. L. Knight, M. B. Plenio and V. Vedral, Proposal for teleportation of an atomic state via cavity decay[J]. Phys. Rev. Lett.1999,83:5158.
    [103]W. Son, M. S. Kim, J. Lee and D. Ahn, Entanglement transfer from continuous variables to qubits[J]. J. Mod. Opt.2002,49:1739.
    [104]P. J. dos Reis and S. S. Sharma, Genenration of field-mediated three-qubit entangled state shared by Alice and Bob[J]. Phys. Rev. A 2009,79:012326.
    [105]M. J. Hartmann, F. G. S. L. Brandao and M B Plenio, Effective spin system in coupled microcavities[J]. Phys. Rev. Lett.2007,99:160501.
    [106]C. D. Ogden, E. K. Irish and M. S. Kim, Dynamics in a coupled-cavity array[J]. Phys. Rev. A 2008,78:063805.
    [107]D. G. Angelakis and A. Kay, Cluster state quantum computation in coupled arrays[J]. New J. Phys.2008,10:023012.
    [108]P. B. Li, Y. Gu, Q. H. Gong and G. C. Guo, Quantum-information transfer in a coupled resonator waveguide[J]. Phys. Rev. A 2009,79:042339.
    [109]J. Cho, D. G. Angelakis and S. Bose, Heralded generation of entanglement with coupled cavities[J]. Phys. Rev. A 2008,78:022323.
    [110]Z. Q. Yin and F. L. Li, Multiatom and resonant interaction scheme for quantum state and logical gate between two remote cavities via an optical fiber[J]. Phys. Rev. A 2007,75:012324.
    [111]P. Peng and F. L. Li, Entangling two atoms in spatially separated cavities through both photon emission and absorption processes[J]. Phys. Rev. A 2007, 75:062320.
    [112]L. B. Chen, M. Y. Ye, G. W. Lin, Q. H. Du and X. M. Lin, Generation of entangle -ment via adiabatic passage[J]. Phys. Rev. A 2007,76:062304.
    [113]J. Song, Y. Xia and H. S. Song, Entangled state generation via adiabatic passage in two distant cavities[J]. J. Phys. B:At. Mod. Opt. Phys.2007,40:4503.
    [114]S. Y. Ye, Z. R. Zhong and S. B. Zheng, Deterministic generation of three-dimensional entanglement for two atoms separately trapped in two optical cavities[J]. Phys. Rev. A 2008,77:014303.
    [115]X. Y. Lu, J. B. Liu, C. L. Ding and J. H. Li, Dispersive atom-field interaction scheme for three-dimensional entanglement between two spatially separated atoms[J]. Phys. Rev. A 2008,78:032305.
    [116]X. Y. Lu, L. G. Si, X. Y. Hao and X. X. Yang, Achieving multipartite entangle-ment of distant atoms through selective photon emission and absorption processes[J]. Phys. Rev. A 2009,79:052330.
    [117]S. B. Zheng, Generation of Greenberger-Horne-Zeilinger states for multiple atoms trapped in separated cavities[J]. Eur. Phys. J. D 2009,54:719.
    [118]A. Serafini,.S Mancini and S. Bose, Distributed quantum computation via optical fibres[J]. Phys. Rev. Lett.2006,96:010503.
    [119]S. Y. Ye and S. B. Zheng, Scheme for reliable realization of quantum logic gates for two atoms separately trapped in two distant cavities via optical fibers[J]. Opt. Commun.2008,281:1306.
    [120]Z. B. Yang, H. Z. Wu, W. J. Su and S. B. Zheng, Quantum phase gates for two atoms trapped in separate cavities within the null-and single-excitation subspace[J]. Phys. Rev. A 2009,80:012305.
    [121]S. B. Zheng, Virtual-photon-induced quantum phase gates for two distant atoms trapped in separated cavities[J]. Appl. Phys. Lett.2009,94:154101.
    [122]Y. L. Zhou, Y. M. Wang, L. M. Liang and C. Z. Li, Quantum state transfer between distant nodes of a quantum network via adiabatic passage[J]. Phys. Rev. A 2009,79:044304.
    [123]A. Boca, R. Miller, K. M. Birnbaum, A. D. Boozer, J. McKeever and H. J. Kimble, Observation of the vacuum rabi spectrum for one trapped atom[J]. Phys. Rev. Lett.2004,93:233603.
    [124]M. Trupke, E. A. Hinds, S. Eriksson and E. A. Curtis, Microfabricated high-finesse opyical cavity with open access and small volume[J]. Appl. Phys. Lett. 2005,87:211106.
    [125]W. Dur, G. Vidal and J. I. Cirac, Three qubits can be entangled in two in-equivalent ways[J]. Phys. Rev. A 2000,62:062314.
    [126]A. Karlsson and M. Bourennane, Quantum teleportation using three-particle entanglement[J]. Phys. Rev. A1998,58:4394.
    [127]P. Agrawal and A. Pati, Perfect teleportation and superdense coding with W states[J]. Phys. Rev. A 2006,74:062320.
    [128]P. Lougovski, F. Casagrande, A. Lulli and E. Solano, Strongly driven one-atom and decoherence monitoring[J]. Phys. Rev. A 2007,76:033802.
    [129]E. Solano, G. S. Agarwal and H. Walther, Strong-driving-assisted multipartite entanglement in cavity QED[J]. Phys. Rev. Lett.2003,90:027903.
    [130]T. Werlang, R. Guzman, F. O. Prado and C. J. Villas-Boas, Genenration of decoherence-free displaced squeezed states of radiation fields and a squeezed reservoir for atoms in cavity QED[J]. Phys. Rev. A 2008,78:033820.
    [131]P. W. Shor, Algorithms for quantum computation:discrete logarithms and factoring[J]. In Proc.35th Ann. Symp. Foundations of Computer Science (ed. S. Goldwasser) (IEEE Computer Society Press, Los Alomitos) 1994,124.
    [132]L. K. Grover, Quantum computers can search rapidly by using almost any transformation[J]. Phys. Rev. Lett.1998,80:4329.
    [133]P. W. Shor, Scheme for reducing decoherence in quantum computer memory[J]. Phys. Rev. A 1995,52:R2493.
    [134]A. M. Steane, Error correcting codes in quantum theory[J]. Phys. Rev. Lett. 1996,77:793.
    [135]D. P. DiVincenzo, Two-bit gates are universal for quantum computation[J]. Phys. Rev. A 1995,51:1015.
    [136]H. Z. Wu, Z. B. Yang and S. B. Zheng, Entanglement assisted quantum logic gates for two remote qubits[J]. Phys. Lett. A 2008,372:2802.
    [137]C. P. Yang, A scheme for realizing a distant two-qubit controlled-U gate with nearest qubit-qubit interaction[J]. Phys. Lett. A 2008,372:3168.
    [138]L. M. Duan, M. J. Madsen, D. L. Moehring, P. Maunz, R. N. Kohn, Jr., and C. Monroe, Probabilistic quantum gates between remote atoms through interference of optical frequency qubits[J]. Phys. Rev. A 2006,73:062324.
    [139]Y. X. Tang, X. M. Lin, G. W. Lin, L. B. Chen and X. H. Huang, Direct imple-mentation of a scalable non-local multi-qubit controlled phase gate via optical fibres and adiabatic passage[J]. Chin. Phys. B 2008,17:4388.
    [140]M. Yonac, T. Yu and J. H. Eberly, Sudden death of entanglement of two Jaynes-Cummings atoms[J]. J. Phys. B:Mol. Opt. Phys.2006,39:S621
    [141]A. B. Klimov and L. L. Sanchez-Soto, Method of small rotations and effective Hamiltonians in nonlinear quantum optics[J]. Phys. Rev. A 2000,61:063802.
    [142]P. Lougovski, E. Solano and H. Walther, Generation and purification of maximally entangled atomic states in optical cavities[J]. Phys. Rev. A 2005,71: 013811.
    [143]S. M. Spillane, T. J. Kippenberg, O. J. Painter and K. J. Vahala, Ideality in a Fiber-Taper-Coupled microresonator system for application to cavity quantum eletrodynamics[J]. Phys. Rev. Lett.2003,91:043902.
    [144]Y. Wu and X. X. Yang, Highly efficient four-wave mixing in double-∧ systems in ultraslow propagation regime[J]. Phys. Rev. A 2004,70:053818.
    [145]S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut and H. J. Kimble, Ultrahigh-Q toroidal microresonators for cavity quantum electro-dynamics[J]. Phys. Rev. A 2005,71:013817.
    [146]J. R. Buck and H. J. Kimble, Optimal sizes of dielectric microspheres for cavity QED with strong coupling[J]. Phys. Rev. A 2003,67:033806.
    [147]M. F. Santos, E. Solano and R. L. de Matos Filho, Conditional large Fock state preparation and field state reconstruction in cavity QED[J]. Phys. Rev. Lett. 2001,87:093601.
    [148]A. Biswas and G. S. Agarwal, Quantum logic gates using Stark-shifted Raman transitions in a cavity[J]. Phys. Rev. A 2004,69:062306.
    [149]E. Solano, Selective interactions in trapped ions:state reconstruction and quantum logic[J]. Phys. Rev. A 2005,71:013813.
    [150]S. J. van Enk, H. J. Kimble, J. I. Cirac and P. Zoller, Quantum communication with dark photons[J]. Phys. Rev. A 1999,59:2659.
    [151]L. M. Duan, J. I. Cirac, P. Zoller, Geometric manipulation of trapped ions for quantum computation[J]. Science 2001,292:1695.
    [152]S. B. Zheng, Nongeometric conditional phase shift via adiabatic evolution of dark eigenstates:a new approach to quantum computation[J]. Phys. Rev. Lett. 200595:080502.
    [153]J. Cho, D. G. Angelakis and S. Bose, Fractional quantum Hall state in coupled cavities[J]. Phys. Rev. Lett.2008,101:246809.
    [154]A. C. Ji, X. C. Xie and W. M. Liu, Quantum Magnetic Dynamics of polarized light in arrays of microcavities[J]. Phys. Rev. Lett.2007,99:183602.
    [155]P. B. Barclay, K. Srinivasan, O. Painter, Integration of fiber-coupled high-Q SiNx microdisks with atom chips[J]. Appl. Phys. Lett.2006,89:131108.
    [156]A. K. Ekert, Quantum cryptography based on Bell's theorem[J]. Phys. Rev. Lett. 1991,67:661.
    [157]H. Mabuchi and A. C. Doherty, Cavity quantum electrodynamics:Coherence in context[J]. Science 2002,298:1372
    [158]R. Miller, T. E. Northup, K. M. Birnbaum, A. Boca, A. D. Boozer and H. J. Kimble, Trapped atoms in cavity QED:coupling quantized light and matter[J]. J. Phys. B:At. Mod. Opt. Phys.2005,38:S551.
    [159]G. A. Durkin, C. Simon and D. Bouwmeester, Multiphoton entanglement concen-tration and quantum cryptography[J]. Phys. Rev. Lett.2002,88:187902.
    [160]M. Keller, B. Lange, K. Hayasaka, W. Lange and H. Walther, A calcium in a cavity as a controlled single-photon source[J]. New J. Phys.2004,6:95.
    [161]S. B. Zheng and G C. Guo, Tunable phase gate for two atoms with an immunity to decoherence[J]. Phys. Rev. A 2006,73:052328.
    [162]S. B. Zheng, Generation of Greenberger-Horne-Zeilinger States for three atoms trapped in a cavity beyond the strong-coupling regime[J]. Phys. Lett. A 2008, 372:591.
    [163]M. O. Scully and M. S. Zubairy, Quantum optics[M]. (Cambridge:Cambridge University Press) 1997.
    [164]J. Cho and H. W. Lee, Generation of atimic cluster states through the cavity input-output process[J]. Phys. Rev. Lett 2005,95:160501.
    [165]R. Ma, A. Schliesser, P. Del'Haye, A. Dabirian, G Anetsberger and T. J. Kippenberg, Radiation-pressure-driven vibrational modes in ultrahigh-Q silica microsphere[J]. Opt. Lett.2007,32:2200.
    [166]M. Pollinger, D. O'Shea, F. Warken and A. Rauschenbeutel, Ultrahigh-Q tunable Whispering-Gallery-Mode microresonator[J]. Phys. Rev. Lett.2009,103: 053901.
    [167]J. McKeever, A. Boca, A. D. Boozer, J. R. Buck and H. J. Kimble, A one-atom laser in a regime of strong coupling[J]. Nature (London) 2003,425:268.
    [168]C. Y. Chen, M. Feng and K. L. Gao, Toffoli gate originating from a single resonant interaction with cavity QED[J]. Phys. Rev. A 2006,73:064304.
    [169]Y. F. Xiao, X. B. Zou and G. C. Guo, One-step implementation of an N-qubit controlled-phase gate with neutral atoms trapped in an optical cavities[J]. Phys. Rev. A 2007,75:054303.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700