Al_2O_3-TiC/W18Cr4V扩散连接界面结构及应力分布研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Al2O3-TiC复合陶瓷由于在Al2O3基体上添加了TiC增强颗粒,使其具有更高的硬度、强度和断裂韧性,被广泛应用于切削刀具的制备。将Al2O3-TiC复合陶瓷与W18Cr4V高速钢用扩散焊方法连接起来制成复合构件,对于改善结构件内部应力分布状态、拓宽Al2O3-TiC复合陶瓷的使用范围具有重要意义。
     本文采用真空扩散连接工艺,对Al2O3-TiC复合陶瓷和W18Cr4V高速钢的连接进行了试验研究。通过控制真空度1.33×10-4~1.33×10-5Pa,连接温度1080℃~1160℃,保温时间30~60min,压力10~20MPa,可获得界面结合良好的Al2O3-TiC/W18Cr4V扩散连接接头。当连接温度1130℃、保温时间45min、连接压力15MPa时,Al2O3-TiC/W18Cr4V扩散连接接头的剪切强度达154MPa。
     用金相显微镜和扫描电镜(SEM)分析了Al2O3-TiC/W18Cr4V扩散界面组织结构,研究了工艺参数对界面结合状态和组织结构的影响。结果表明,升高连接温度和延长保温时间,界面过渡区的宽度增加,显微硬度增加,但没有硬度高于Al2O3-TiC陶瓷的脆性相生成。用X射线衍射仪(XRD)分析了Al2O3-TiC/W18Cr4V扩散接头剪切断口相组成,结果表明,断口靠近Al2O3-TiC侧主要存在着A12O3、TiC、TiO和Ti3Al等相,断口靠近W18Cr4V侧主要有A12O3、TiC、Cu、CuTi、CuTi2、Fe3W3C、FeTi等相。
     本文提出Al2O3-TiC/W18Cr4V扩散界面过渡区主要由Al2O3-TiC/Ti界面反应层、Cu-Ti固溶体层、Ti/W18Cr4V界面Ti侧反应层和W18Cr4V钢侧反应层组成。电子探针(EPMA)分析表明,Al2O3-TiC/Ti界面反应层主要含Ti、Al、O; Cu-Ti固溶体层含Ti、Cu和少量Fe; Ti/W18Cr4V界面Ti侧反应层含Ti和C; W18Cr4V钢侧反应层主要含Ti、Fe、W、C、Cr等。Ti存在于Al2O3-TiC/W18Cr4V界面过渡区的多个反应层中,与多种元素有共存区,表明Ti与多种元素发生了反应,Ti是控制Al2O3-TiC/W18Cr4V扩散连接接头界面反应的主要元素。
     Al2O3-TiC/W18Cr4V扩散界面形成过程分四个阶段:首先Ti-Cu-Ti中间层熔化形成Cu-Ti液相,填充Al2O3-TiC/W18Cr4整个界面;其次Cu-Ti液相中的Ti向Al2O3-TiC和W18Cr4V两侧扩散并发生反应,使液相区进一步增宽和成分均匀化;然后液相逐渐凝固,各界面间反应生成多种化合物;最后是固相成分均匀化阶段。对Al2O3-TiC/W18Cr4V扩散连接过程的非对称性进行分析,提出Al2O3-TiC/W18Cr4V扩散连接液相凝固过程的非对称模型。对Al2O3-TiC/W18Cr4V扩散连接界面反应机理研究表明,扩散界面反应形成了Al2O3-TiC/TiC+Tl3Al+TiO/CuTi+CuTi2+TiC/TiC+FeTi/Fe3W3C+a-Fe/W18Cr4V的界面结构。
     对Al2O3-TiC/W18Cr4V扩散连接接头应力分布进行有限元计算,研究了工艺参数、中间层、试样尺寸及形状对接头应力分布的影响。结果表明,接头边缘界面附近应力变化幅度很大,靠近接头中心应力分布很均匀。接头最大轴向拉应力位于接头边缘附近的陶瓷侧,最大剪切应力位于接头边缘Ti/W18Cr4V界面处。降低加热温度和增大连接压力会降低接头轴向残余拉应力。使用Ti-Cu-Ti复合中间层比使用纯Ti中间层可以降低界面轴向应力和剪切应力。增大试样直径和减小W18Cr4V钢厚度可以减小轴向拉应力。方形截面试样四角的应力值比同截面积圆形试样的轴向拉应力要大。
     对Al2O3-TiC/W18Cr4V扩散界面剪切断裂进行分析,界面裂纹扩展路径可分为界面断裂和混合断裂,其中混合断裂的接头强度高于界面断裂。通过控制扩散工艺参数可以控制界面断裂的形式。界面剪切断口形貌呈解理脆性断裂特征,有明显的解理台阶,也有少量的韧性断裂特征。界面断裂主要发生在靠近Al2O3-TiC陶瓷一侧的界面处,主要是穿晶断裂,也有少量的沿晶断裂。
     本文对Al2O3-TiC复合陶瓷和W18Cr4V高速钢扩散连接界面结构、界面反应机理、应力分布和界面断裂等进行了研究,该研究工作为Al2O3-TiC复合陶瓷的推广应用提供了试验依据和理论基础,为Al2O3-TiC复合陶瓷与其他金属的连接提供了研究思路。
ceramic matrix composites composed of Al2O3 matrix and TiC reinforcing particles have been widely used as cutting tools because of their high strength, hardness and fracture toughness. If the diffusion joining of Al2O3-TiC ceramic matrix composites and W18Cr4V high speed steel can be realized, it will be have important significance to perfect the stress distribution in the components and enhance the use range of Al2O3-TiC composites.
     In this paper, Al2O3-TiC ceramic and W18Cr4V steel was bonded together by vacuum diffusion bonding technology. Al2O3-TiC/W18Cr4V diffusion bonding joint with sufficient combination interface can be obtained by controlling heating temperature 1080℃~1l60℃, holding time 30-60min, bonding pressure 10-15MPa and vacuum degree 1.33x10-4~1.33x10-5 Pa.
     The microstructure feature of the Al2O3-TiC/W18Cr4V interface was investigated by optical microscope and scanning electron microscopy (JXA-840). The influence of diffusion bonding parameters on interface combining state and microstructure of Al2O3-TiC/W18Cr4V interface was studied. With the increase of heating temperature and prolong of holding time, the transition zone width of the Al2O3-TiC/W18Cr4V interface broadened and the microhardness in transition zone improved. The phase components in shear fracture surface of Al2O3-TiC/W18Cr4V joint were determined and analyzed by XRD. The results indicated that the phases near Al2O3-TiC interface were Al2O3, TiC, TiO and Ti3Al. And Al2O3, TiC, Cu, CuTi, CuTi2, Fe3W3C and FeTi phases were near W18Cr4V interface.
     The division on the transition zone of Al2O3-TiC/W18Cr4V diffusion bonding interface was put forward to include Al2O3-TiC/Ti interface reaction layer, Cu-Ti solid solution layer, Ti/W18Cr4V interface reaction layer near Ti side and reaction layer near W18Cr4V side. The elements in the Al2O3-TiC/Ti interface reaction layer are Ti, Al and O. The elements in the Cu-Ti solid solution layer are Cu and Ti. The elements in the Ti/W18Cr4V interface reaction layer near Ti side are Ti and C. The elements in the reaction layer near W18Cr4V side are Ti, Fe, W and C. Ti exists in almost of all the reaction layers of Al2O3-TiC/W18Cr4V transition zone and coexists with many kinds of elements. It indicates that Ti was the main controlling element of interface reaction in Al2O3-TiC/W18Cr4V interface.
     The formation of Al2O3-TiC/W18Cr4V interface includes four stages. Firstly, Ti-Cu-Ti multi-interlayer melted into Cu-Ti eutectic liquid and spread throughout Al2O3-TiC/W18Cr4V interface. Secondly, Ti in the Cu-Ti eutectic liquid diffused into Al2O3-TiC and W18Cr4V and the width of Cu-Ti liquid broaden. Thirdly, the Cu-Ti liquid solidified and reaction layers in Al2O3-TiC and W18Cr4V interface formed. Lastly, the components in all reaction layers homogenized. The non-symmetry for the process of Al2O3-TiC/W18Cr4V diffusion bonding was studied. The reaction mechanism of Al2O3-TiC/W18Cr4V interface was studied and the results indicated that phase structures in the interface are Al2O3-TiC/TiC+Tl3Al+TiO/CuTi+CuTi2+TiC/TiC+FeTi/Fe3W3C+a-Fe/W 18Cr4V.
     The distribution of axial stress and shear stress in Al2O3-TiC/W18Cr4V diffusion bonding joint was studied using finite element method (FEM).The influences of bonding parameters, interlayer, sample size and shape on stress distribution were investigated. The calculated results indicated that the gradient of the axial stress and shear stress are great near the joint edge and are flat near the center. The maximum axial tensile stress located in Al2O3-TiC side near the joint edge. The maximum shear stress located in Ti/W18Cr4V interface near the joint edge. With the decrease of the bonding temperature and the improvement of bonding pressure, the axial tensile stresses decrease. With Ti-Cu-Ti interlayer instead of Ti interlayer, the axial stress and the shear stress both decrease. Improving the diameter of the sample and decreasing the thickness of W18Cr4V can decrease the axial tensile stress in the joint. The axial tensile stress in square sample is higher than that in round sample with equal area.
     The propagation paths of interface cracks in Al2O3-TiC/W18Cr4V joint include interface fracture and mixed fracture which had higher strength than interface fracture. The fracture mode can be controlled by controlling diffusion bonding parameters. The shear fracture of Al2O3-TiC/W18Cr4V joint was mostly cleavage fracture with obvious cleavage step. The fracture position mainly located at the interface near Al2O3-TiC. The fracture was mostly transgranular cleavage.
     The microstructure, interface formation mechanism, stress distribution and interface fracture of Al2O3-TiC/W18Cr4V diffusion bonding joint were studied in this paper. The studies can provide experimental basis and theory foundation for the wide application of Al2O3-TiC ceramic and research method for joining of Al2O3 and other metals.
引文
1.尹衍升,张景德.氧化铝陶瓷及其复合材料.北京:化学工业出版社,2001.
    2.蔡克峰,南策文,袁润章.Al2O3-TiC复合陶瓷的研究进展.材料导报,1995,(1):45-48.
    3. Deng J X, Can T K, Sun J L. Microstructure and mechanical properties of hot-pressed Al2O3/TiC ceramic composites with the additions of solid lubricants. Ceramics International,2005,31(2):249-256.
    4. Dobrzanski L A, Mikula J. Structure and properties of PVD and CVD coated Al2O3+TiC mixed oxide tool ceramic for dry on high speed cutting process. Journal of Materials Processing Technology,2005,164-165 (10):822-831.
    5. Smorygo O, KimJ S, Kim M D, Eom T G. Evolution of the interlayer microstructure and the fracture modes of the zirconia/Cu-Ag-Ti filler/Ti active brazing joints. Materials Letters,2007,61 (2):613-616.
    6.赵其章,陈铮,邹家生.Al2O3/Ti/Cu瞬间液相连接中的界面反应.华东船舶工业学院学报(自然科学版),2001,15(2):8-11.
    7. Jose Lemus-Ruiz, Carlos A Leon-Patino, Ena A Aguilar-Reyes. Interface behavior during the self-joining of Si3N4 using a Nb-foil interlayer. Scripta Materialia,2006,54 (7):1339-1343.
    8. Gurdial Blugan, Jakob Kuebler, Vinzenz Bissig, et al. Brazing of silicon nitride ceramic composite to steel using SiC-particle-reinforced active brazing alloy. Ceramics International,2007,33 (6):1033-1039.
    9.李树杰,刘深,段辉平,等.SiC陶瓷/SiC陶瓷及SiC陶瓷/Ni基高温合金SHS焊接中的界面反应及微观结构研究.硅酸盐学报,1999,27(6):757-762.
    10.汤文明,丁厚福,郑治祥等.低温烧结氧化铝基材料的研究.材料科学与工艺,1997,5(3):88-91.
    11.贾成厂.陶瓷基复合材料导论(第二版).北京:冶金工业出版社,2002.
    12. Cutler Raymond A, Hurford Andrew C, Virkar Anil V. Pressureless-sintered Al2O3-TiC composites. Materials Science and Engineering A,1988,105-106 (ptl):183-192.
    13. Kim Y, Lee J. Pressureless sintering of Alumina-Titanium Carbide composites. Journal of the American Ceramic Society,1989,72 (8):1333-1337.
    14.蔡克峰,南策文,袁润章.无压烧结制备Al2O3-TiC复合陶瓷.硬质合金,1994,11(4):215-218.
    15. Chae Ki-Woong, Kim Doh-Yeon, Kim Byung-Chan, Kim Kyung-Bae. Effect of Y2O3 additions on the densification of an Al2O3-TiC composite. Journal of the American Ceramic Society,1993,76 (7):1875-1860.
    16.曾照强,胡晓清,林旭平等.添加Cr2O3对Al2O3-TiC陶瓷烧结及纳米结构形成的影响.硅酸盐学报,1998,26(2):178-181.
    17.郭瑞松,蔡舒,季惠明,等.工程结构陶瓷.天津:天津大学出版社,2002.
    18.董倩,唐清,李文超.Al2O3-TiC基复相陶瓷的制备和性能.过程工程学报,2001,1(3):331-336.
    19.张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2002.
    20. Burden Stephen J, Hong Joonpyo, Rue James W, et al. Comparison of hot-isostatically pressed and uniaxially hot-pressed Alumina-Titanium carbide cutting tools. American Ceramic Society Bulletin,1988,67 (6):1003-1005.
    21. Bellosi A, Portu G D, Guicciardi S. Preparation and properties of electro-conductive Al2O3-based composites. Journal of the European Ceramic Society, 1992,10 (4):307-315.
    22. Cutler R A, Rigtrup K M, Virkar A V. Synthesis, sintering, microstructure and mechanical properties of ceramics made by exothermic reactions. Journal of the American Ceramic Society,1992,75 (1):36-43.
    23. Tampieri A, Bellosi A. Oxidation resistance of Alumina-Titanium Nitride and Alumina-Titanium Carbide composites. Journal of the American Ceramic Society,1992,75 (6):1688-1690.
    24.段辉平,李树杰,刘登科等.SiC陶瓷与GH128镍基高温合金反应连接研究.航空学报,2000,21(增刊):72-75.
    25. Messler R W JR, Orling T T. Fundamentals of the SHS joining process. Proceedings of the 1993 MRS Symposium on Joining and Adhesion of Advanced Inorganic Materials,1993,314 (2):177-182.
    26.何代华,傅正义,王皓,等.陶瓷/金属的自蔓延高温合成焊接研究现状.焊
    接学报,2002,23(1):85-87,96.
    27. Yang P, Turman B N, Glass S J, et al. Braze microstructure evolution and mechanical properties of electron beam joined ceramics. Materials Chemistry and Physics,2000,64 (2):137-146.
    28.徐再成,杜兴春,潘龙修.激光焊接SiCw/6061Al复合材料的试验研究.金属科学与工艺,1991,10(4):98-103.
    29. Nono M C A, Barroso J J, Castro P J. Mechanical behavior and microstructural analysis of alumina-titanium brazed interfaces. Materials Science and Engineering A,2006,435-436:602-605.
    30.冯吉才,靖向萌,张丽霞,等.TiC金属陶瓷/钢钎焊接头的界面结构和连接强度.焊接学报,2006,27(1):5-8.
    31.刘军红,孙康宁,田永生.复相A1203基陶瓷/钢在大气中直接钎焊的连接工艺.热加工工艺,2005,(4):29-30.
    32. Akeselen OM. Review:advances in brazing of ceramics. Journal of Materials Science,1992,27 (8):1989-2000.
    33.吴爱萍,邹贵生,任家烈.先进结构陶瓷的发展及其钎焊连接技术的进展.材料科学与工程,2002,20(1):104-106.
    34.李卓然,曹健,冯吉才.TiB2金属陶瓷与TiAl金属间化合物的扩散连接.焊接学报,2003,24(2):4-6,15.
    35. Feng Tao, Chen Xizhang, Wu Luhai. Diffusion welding of SiCp/2014Al composites using Ni as interlayer. Journal of University of Science and Technology Beijing:Mineral Metallurgy Materials (Eng Ed), 2006,13 (3): 267-271.
    36.任家烈,吴爱萍.先进材料的连接.北京:机械工业出版社,2000.
    37.李亚江.特殊及难焊材料的焊接.北京:化学工业出版社,2003.
    38. Xiong Jiangtao, Li Jinglong, Zhang Fusheng, et al. Joining of 3D C/SiC composites to niobium alloy. Scripta Materialia,2006,55:151-154.
    39. Zhang Lixia, Feng Jicai, Li Zhuoran. Numerical simulation of iron/TiC ceramic tappet brazed with TiZrNiCu filler metal. Transactions of Nonferrous Metals Society of China,2003,13 (6):1367-1370.
    40.楚建新,林晨光,叶军.陶瓷-金属的连接活性钎料的研究与发展.材料导报, 1994,8 (1):26-29.
    41. Abhijit Kar, Sudipta Mandal, Venkateswarlu K. Characterization of interface of Al2O3-304 stainless steel braze joint. Materials Characterization,2007,58(6): 555-562.
    42. Valette C, Devismes M F, Voytovych R, et al. Interfacial reactions in alumina/CuAgTi braze/CuNi system. Scripta Materialia,2005,52 (1):1-6.
    43. Vianco P T, Stephens J J, Hlava P F, et al. A barrier layer approach to limit Ti scavenging in FeNiCo/Ag-Cu-Ti/Al2O3 active braze joints. Welding Journal, 2003,82 (9):252-262.
    44.李潇一,罗震,步贤政,等.Al2O3陶瓷与金属镍的活性钎焊研究.材料工程,2008,(9):32-35,39.
    45.吴铭方,陈健,浦娟,等.Ti(C, N)与45钢钎焊接头组织及力学性能.焊接学报,2007,28(12):9-12.
    46.雷永平,韩丰娟,夏志东,冯吉才.陶瓷-金属钎焊接头残余应力的数值分析.焊接学报,2003,24(5):33-36,41.
    47.邹家生.材料连接原理与工艺.哈尔滨:哈尔滨工业大学出版社,2005.
    48. Treheux D, Lourdin, Mbongo B, Juve D. Metal-ceramic solid state bonding: mechanisms and mechanics. Scripta Metallurgical and Materialia,1994,31(8): 1055-1060.
    49. Hussain P, Isnin A. Joining of austenitic stainless steel and ferrite stainless steel to sialon. Journal of Material Processing Technology,2001,113(1-3):222-227.
    50. Vegter R H, Ouden G D. Diffusion bonding of zirconium to silicon nitride using nickel interlayers. Journal of Material Science,1998,33(18):4525-4530.
    51.冯吉才,刘玉莉,张九海等.碳化硅陶瓷和金属铌及不锈钢的扩散结合.材料科学与工艺,1998,6(1):5-7.
    52. Travessa Dilermando, Ferrante Maurizio, Ouden Gert den. Diffusion bonding of aluminium oxide to stainless steel using stress relief interlayers. Materials Science and Engineering A,2002,337(1-2):287-296.
    53.李亚江,王娟.特种焊接技术及应用.北京:化学工业出版社,2004.
    54. Sun Daqian, Liu Weihong, Jia Shusheng. Formation process, microstructure and mechanical property of transient liquid phase bonded aluminium-based metal matrix composite join. Transactions of Nonferrous Metals Society of China, 2004,14(1):105-110.
    55. Gu Xiaoyan, Sun Daqian, Liu Li. Transient liquid phase bonding of TiC particulate reinforced magnesium metal matrix composite (TiCp/AZ91D). China Welding,2007,16(1):19-24.
    56. Locatelli M R, Dalgleish B J, Nakashima K, et al. New approaches to joining ceramics for high-temperature applications. Ceramics International,1997,23 (4): 313-322.
    57. Sugar J D, McKeown J T, Akashi T, Hong S M, et al. Transient-liquid-phase and liquid-film-assisted joining of ceramics. Journal of the European Ceramic Society,2006,26 (4-5):363-372.
    58.邹贵生,吴爱萍,任家烈等.连接压力在Ti/Ni/Ti复合层TLP扩散连接Si3N4陶瓷中的作用机制.宇航材料工艺,2000,5:76-80.
    59.邹贵生,吴爱萍,任家烈等.Ti/Ni/Ti复合层TLP扩散连接Si3N4陶瓷结合机理.清华大学学报(自然科学版),2001,41(4):51-54.
    60.邹贵生,吴爱萍,任家烈等.Al/Cu/Ti复合层原位生成金属间化合物连接陶瓷.稀有金属材料与工程,2003,32(12):982-985.
    61. ZhangY, Feng D, He Z Y, et al. Progress in joining ceramics to metals. Journal of Iron and Steel Research,2006,13 (2):1-5.
    62.周飞,李志章.Ti/Cu/Ti部分瞬间液相连接Si3N4的界面反应和连接强度.中国有色金属学报,2001,11(2):273-278.
    63.顾怡红,万菊林,梁开明.TiAl4V/Al2O3的扩散连接及界面问题的初步研究.机械工程材料,1996,20(1):14-17.
    64. Huang R. Diffusion bonding behavior of austenitic stainless steel containing titanium and alumina. Journal of Materials Science,1992,27:6274-6278.
    65. Kliauga A M, Travessa D, Ferrante M. Al2O3/Ti interlayer/AISI 304 diffusion bonded joint:Microstructural characterization of the two interfaces. Materials Characterization,2001,46(1):65-74.
    66.王娟,李亚江,马海军,等.Ti/Cu/Ti复合中间层扩散连接TiC-Al2O3/ W18Cr4V接头组织分析.焊接学报,2006,27(7):9-12.
    67. Wang Juan, Li Yajiang, Yin Yansheng. Microstructural charaterization in diffusion bonded TiC-Al2O3/Cr18-Ni8 joint with Ti interlayer. Bulletin of Materials Science,2006,29 (2):155-158.
    68. Wang Juan, Li Yajiang, Gerasimov S A. Interfacial microstructure and strength of diffusion brazed joint between Al2O3-TiC and 9CrlMoV steel. Bulletin of Materials Science,2007,30 (4):415-419.
    69.王娟,李亚江,Gerasimov S A. Al2O3-TiC/Q235真空扩散钎焊界面组织及抗剪强度.焊接学报,2008,29(12):25-28.
    70. Feng J C, Naka M, Schuster J C. Phase formation and diffusion path of SiC/Ta/SiC joint. Journal of Materials Science Letters,1997,16(13):1116-1117.
    71.冀小强,李树杰,马天宇等.用Zr/Nb复合中间层连接SiC陶瓷与Ni基高温合金.硅酸盐学报,2002,30(3):305-310.
    72. Li Shujie, Zhou Ying, Duan Huiping. Wettablity and interfacial reaction in SiC/ Ni plus Ti system. Journal of Materials Science,2002,37:2575-2579.
    73. Fukai T, Naka M, Schuster J C. Bonding and interfacial structures of SiC/Zr joint. Transactions of the Japan Welding Research Institute,1996,25 (1):59-62.
    74. Shimoo K, Okamura K, Adachi S. Interaction of Si3N4 with Titanium at elevated temperatures. Journal of Materials Science,1997,32 (11):3031-3036.
    75. Peteves S D, Paulasto M, Ceccone G, et al. The reaction route to ceramic joining-fabrication, interfacial chemistry and joint properties. Acta Materials, 1998,46 (7):2407-2414.
    76. Stoop B T J, Ouden G D. Diffusion bonding of Silicon Nitride to Austenitic stainless steel with metallic interlayers. Metallurgical and Materials Transactions, 1995,26A:203-208.
    77. Soon-Bok Lee, Jong-Ho Kim. Finite-element analysis and X-ray measurement of the residual stresses of ceramic/metal joints. Journal of Materials Processing Technology,1997,67:167-172.
    78. Munz D, Sckuhr M A, Yang Y Y. Thermal stresses in ceramic-metal joints with an interlayer. Journal of the American Ceramic Society,1995,78 (2):285-290.
    79. Kimura O, Kawashima T. Effect of interlayer thickness on residual thermal stresses in a ceramic-to-metal cylindrical joint. Journal of the American Ceramic Society,1993,76 (3):757-759.
    80. Frisch A, Kaysser W A, Zhang W. Stress relaxation and bonding in MA6000 joints by reactive interlayer. Acta Metallurgical Materials,1992,40: 361-368.
    81. Yamada T, Yokoi K, Kohno A. Effect of residual stress on the strength of alumina-steel joint with Al-Si interlayer. Journal of Materials Science,1990,25: 2188-2192.
    82. Yamada T, Koguchi H. Reliability evaluation of joints of ceramics and metals. International Journal of the Japan Society of Mechanical Engineering,1991,134 (2):167-170
    83.毛样武,张建军.采用Ti/Ag/Ti中间层连接SiC陶瓷的有限元应力分析.北京航空航天大学学报,2004,30(10):930-933.
    84.吴铭方,周小丽,马骋,杨沛.Ti(C,.N)/40Cr钎焊接头残余应力数值计算.焊接学报,2006,27(12):65-68
    85.汪建华,楼松年,戚新海,吴鲁海.陶瓷金属扩散焊接的残余应力及其缓和措施.硅酸盐学报,1995,23(6):606-609.
    86. Zhou Y, Ban F H, Ren J L, et al. Interlayer selection and thermal stress in brazed Si3N4 steel joints. Materials Science and Technology,1991,7:863-867.
    87.翟阳,庄丽君,曹余庆,孙李军.用非晶态合金作中间层扩散连接Si3N4与40Cr钢的研究.金属学报,1995,31(9):423-428.
    88.常宝华,史耀武.中间层厚度对陶瓷扩散焊接头应力分布影响的数值分析[J].航空材料学报,1997,17(2):40-44
    89. Zhong Z H, Zhou Z J, Ge C C. Brazing of doped graphite to Cu using stress relief interlayers. Journal of Materials Processing Technology,2009,209(5):2662-2670.
    90. Meyer M, Elssner G, Schmauder S. Interfacial fracture mechanics on sandwich specimens with variable layer thickness. Computational Materials Science,1993, 1 (3):270-275.
    91. Zhang J X, Chandel R S, Chen Y Z, et al. Effect of residual stress on the strength of an alumina-steel joint by partial transient liquid phase (PTLP) brazing. Journal of Materials Processing Technology,2002,122:220-225.
    92.金大志,石磊,彭康.陶瓷/金属焊接应力的数值计算与分析.焊接,2006,(9):47-49.
    93. Li H, Li J B, Sun L Z, et al. Effect of low temperature treatment regime on residual stress state near interface in bonded SiC/6061Al compounds. Materials Science and Engineering A,1996,221:179-186.
    94. Koguchi H, Hino T, Kikuchi Y, et al. Residual stress analysis of joints of ceramics and metals. Experimental Mechanics,1994,6:116-123.
    95. Li H, Sun L Z, Li J B. X-ray stress measurement and FEM analysis of residual stress distribution near interface in bonded ceramic/metal compounds. Scripta Materialia,1996,34 (9):1503-1508.
    96.郭伟,赵熹华,宋敏霞.扩散连接界面理论的现状与发展.航天制造技术,2004,5:36-39.
    97. Orhan N, Aksoy M, Eroglu M. A new model for diffusion bonding and its application to duplex alloys. Materials Science and Engineering A,1999,271 (1-2):458-468.
    98.#12
    99. Kowalski K, Bernasik A, Sadowski A. Bulk and grain boundary diffusion of titanium in yttria-stabilized zirconia. Journal of the European Ceramic Society, 2000,20:951-958.
    100.张贵锋,张建勋,包亚峰.日本关于固相扩散焊界面空洞收缩机理的研究.焊接,2001,10:14-18.
    101.#12
    102.Tuah-Poku I, Dollar M, Massalaki T B. A study of the transient liquid phase bonding process applied to a Ag/Cu/Ag sandwich joint. Metallurgical Transactions,1988,19A(2):675-686.
    103.曲文卿.异种材料TLP扩散连接过程及界面力学失配性研究.北京:北京航空航天大学博士学位论文,2000.
    104.王艳芳,李涛.瞬间液相扩散连接模型及发展现状.热加工工艺,2007,36(11):66-69
    105.Liu S, Olsen D L, Martin G P, et al. Modeling of brazing processes that use coating and interlayer. Welding Journal,1991,70 (8):207-215.
    106.曲文卿,张彦华.TLP连接技术研究进展.焊接技术,2002,31(3):4-7.
    107.陈铮,赵其章,方芳,等.陶瓷/陶瓷(金属)部分瞬间液相连接.硅酸盐学报,1999,27(2):187-192.
    108.Chen Zheng, Lou Hongqing, Li Zhizhang. Partial transient liquid-phase bonding of Si3N4 with Ti/Cu/Ni multi-interlayers. Journal of Materials Science Letters, 1997,16:2026-2028.
    109.邹家生,初雅杰,许志荣,陈铮.Si3N4陶瓷二次部分瞬间液相连接模型.航空材料学报,2004,24(3):43-47.
    110.郭世敬,陈思杰,梁峰.瞬时液相扩散连接中间层的研究.热加工工艺,2009,38(9):97-99.
    111.张勇,何志勇,冯涤.金属与陶瓷连接用中间层材料.钢铁研究学报,2007,19(2):1-4,34.
    112.邹家生,翟建广,初雅杰,陈铮.Ti箔厚度对Si3N4/Ti/Cu/Ti/Si3N4部分瞬间液相连接界面结构及强度的影响.焊接学报,2003,24(6):19-22.
    113.Jose Lemus, Robin A L Drew. Joining of silicon nitride with a titanium foil interlayer. Materials Science and Engineering A,2003,352 (1-2):169-178.
    114.Wang Ying, Cao Jian, Feng Jicai, et al. TLP bonding of alumina ceramic and 5A05 aluminum alloy using Ag-Cu-Ti interlayer. China Welding,2009,18 (4): 39-42.
    115.Liu C F, Zhang J, Zhou Y, Meng Q C, Naka M. Effect of Ti content on microstructure and strength of Si3N4/Si3N4 joints brazed with Cu-Pd-Ti filler metals. Materials Science and Engineering:A,2008,491 (1-2):483-487.
    116.Ning Honglong, Geng Zhiting, Ma Jusheng, et al. Joining of sapphire and hot pressed Al2O3 using Ag70.5Cu27.5Ti2 brazing filler metal. Ceramics International,2003,29 (6):689-694.
    117.Barrena M I, Matesanz L, Salazar J M Gomez de. Al2O3/Ti6A14V diffusion bonding joints using Ag-Cu interlayer. Materials Characterization,2009,60 (11): 1263-1267.
    118.Brochu M, Pugh M D, Drew R A L. Brazing silicon nitride to an iron-based intermetallic using a copper interlayer. Ceramics International,2004,30 (6): 901-910.
    119.长崎诚三,平林真著(刘安生译).二元合金状态图集.北京:冶金工业出版社,2004.
    120.Kozlova O, Braccini M, Voytovych R, et al. Brazing copper to alumina using reactive CuAgTi alloys. Acta Materialia,2010,58 (4):1252-126.
    121.李卓然,樊建新,冯吉才.氧化铝陶瓷与低碳钢钎焊接头的力学性能.焊接学报,2009,30(10):65-67,72.
    122.Blugan G, Janczak-Rusch J, Kuebler J. Properties and fractography of Si3N4/TiN ceramic joined to steel with active single layer and double layer braze filler alloys. Acta Materialia,2004,52 (15):4579-4588.
    123.张文钺.焊接物理冶金.天津:天津大学出版社,1989.
    124.蔡雁兵,王志宏,张国珍,等.Al2O3-TiC复合材料放电等离子烧结(SPS)致密化研究.北京工业大学学报,2003,29(1):112-115.
    125.杨敏,邹增大,王新洪,曲仕尧,王育福.Si3N4陶瓷/Nb/Cu/Ni/Incone1600界面反应层形成机制研究.材料科学与工艺,2006,14(4):400-403,407.
    126.Liu H J, Feng J C, Qian Y Y. Interface structure and formation mechanism of diffusion-bonded joints of SiC ceramic to TiAl-based alloy. Scripta Materialia, 2000,43:49-53.
    127.Dezellus O, Andrieux J, Bosselet F, et al. Transient liquid phase bonding of titanium to aluminium nitride. Materials Science and Engineering A,2008,495 (1-2):254-258.
    128.Martinelli A E, Drew R A L. Microstructural development during diffusion bonding of a silicon carbide to molybdenum. Materials Science and Engineering A,1995,191:239-247.
    129.Ratnaparkhi P L, Howe J M. Characterization of a diffusion-bonded Al-Mg alloy/SiC interface by high resolution and analytical electron microscopy. Metallugrical and Materials Transactions A,1994,25:617-627.
    130.何鹏,冯吉才,钱乙余,等.扩散连接接头区域元素浓度分布的数值分析.焊接学报,2002,23(3):80-92.
    131.张九海,何鹏.扩散连接接头行为数值模拟的发展现状.焊接学报,2000,21 (4):84-91.
    132.徐乐英,王文斌,庄育智.Cu与NbTi之间扩散反应的研究.金属学报,1988,24(4):269-274.
    133.Ghosh M, Chatterjee S. Effect of interface microstructure on the bond strength of the diffusion welded joints between titanium and stainless steel. Materials Characterization,2005,54 (4-5):327-337.
    134.曲文卿,庄鸿寿,张彦华.异种材料TLP扩散连接过程的非对称性.中国有色金属学报,2003,13(2):300-304.
    135.刘会杰.SiC陶瓷与TiAl合金的扩散连接机理及反应层成长行为研究.哈尔滨:哈尔滨工业大学博士学位论文,2002.
    136.Chen Zheng, Cao M S, Zhao Q Z, J, Zou S. Interfacial microstructure and strength of partial transient liquid-phase bonding of silicon nitride with Ti/Ni multi-interlayer. Materials Science and Engineering A,2004,380(1-2):394-401.
    137.熊进辉,黄继华,张华,赵兴科,林国标.Cf/SiC复合材料与Ti合金的Ag-Cu-Ti-TiC复合钎焊.中国有色金属学报,2009,19(6):1038-1043.
    138. Jose Lemus-Ruiz, Ena A. Aguilar-Reyes. Mechanical properties of silicon nitride joints using a Ti-foil interlayer. Materials Letters,2004,58 (19):2340-2344.
    139.王素梅,孙康宁,卢志华,李春胜,赵天平.Ti-Al/TiC陶瓷基复合材料烧结过程的研究.材料科学与工程学报,2003,21(4):565-568.
    140.张凯锋,吴为.TB2/Cu/TB2扩散焊的界面反应.中国有色金属学报,2002,10(1):17-21.
    141.王金友,葛志明,周彦邦.航空用钛合金.上海:上海科学技术出版社,1985.
    142.Lu L, Fuh J Y H, Chen Z D, et al. In situ formation of TiC composite using selective laser melting. Materials Research Bulletin,2000,35 (9):1555-1561.
    143.陈楚.数值分析在焊接中的应用.上海:上海交通大学出版社,1985.
    144.李春胜,黄德彬.金属材料手册.北京:化学工业出版社,2005.
    145.干勇,田志凌,董瀚,冯涤,王新林.中国材料工程大典(第3卷).北京:化学工业出版社,2006.
    146.宋世学,艾兴,赵军等.Al2O3/TiC纳米复合刀具材料的力学性能与增韧强化机理.机械工程材料,2003,27(12):35-37,41.
    147.钟军鹏,赵子华.断口学.北京:高等教育出版社,2006.
    148.黎振兹.工程断裂力学基础.长沙:中南工业大学出版社,1990.
    149.方洪渊,冯吉才.材料连接过程中的界面行为.哈尔滨:哈尔滨工业大学出版社,2005.
    150.周飞,李志章,罗启富.通过Cu/Ti液相扩散反应进行Si4N3/Cu的连接.浙江大学学报,2000,34(6):109-112.
    151.张勇,张国庆,何志勇,冯涤,李周.Ni基高温钎料对Cf/SiC陶瓷基复合材料的润湿性研究.材料工程,2008,3:5-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700