稀土元素对Zn-25 Al-5 Mg-2.5 Si合金组织和力学性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高铝锌基合金(ZA)是近几十年来国内外应用十分广泛的一种有色金属材料,它具有良好的铸造性能、力学性能、抗磨损性能和低廉的制造成本等优点。高铝锌基合金是绿色合金,其熔炼耗能比铜低得多。工业上用其部分替代青铜、黄铜和巴氏合金等制造减摩、耐磨零件。
     在应用过程中发现ZA合金在中低速重载连续工作时,因温升造成强度和耐磨性下降,难以满足工况的高温要求,限制了它的应用。为了进一步提高锌铝合金的高温性能,本文较为系统地研究了稀土元素对高铝锌基合金的组织和常温、高温(100℃和180℃)力学性能的影响,对扩大其应用范围有较大意义。
     综合国内外研究现状,本文选用Zn-25Al-5Mg-2.5Si合金为研究对象,通过加入不同含量的稀土元素Gd、Y、Nd和Dy,制备出Zn-25Al-5Mg-2.5Si-xRE合金。利用金相显微镜、扫描电镜、能谱仪和X射线衍射等多种现代分析手段,研究了四种稀土元素对Zn-25Al-5Mg-2.5Si合金的微观组织、生成相形态及分布的影响,测试了合金的常温和高温力学性能,分别得出了各稀土元素的最佳加入量。
     对合金的微观组织观察表明:适量稀土元素Gd、Y、Nd和Dy能够明显细化Zn-25Al-5Mg-2.5Si合金的铸态组织,改善组织的形貌。稀土能在合金中形成具有较高硬度和热稳定性的颗粒状或块状高熔点化合物,这些高熔点化合物弥散分布于基体组织中。当Gd和Nd的添加量为0.8wt%、Y的添加量为0.4wt%、Dy的添加量为1.2wt%时,合金的细化效果最好。
     对合金相组成的XRD分析结果表明:稀土加入Zn-25Al-5Mg-2.5Si合金后,优先与Al形成Al-RE化合物,多余的稀土与Zn形成Zn-RE化合物。Gd加入Zn-25Al-5Mg-2.5Si合金中形成的稀土相是Al3Gd、GdZn12;Y加入合金中形成的稀土相是Al3Y、Y2Zn17;Nd加入合金中形成的稀土相是Al2Nd、NdZn2;Dy加入合金中形成的稀土相是AlDy、DyZn。
     合金的力学性能测试结果表明:加入适量的RE能提高Zn-25Al-5Mg-2.5Si合金的硬度和室温、高温拉伸强度,并能改善合金的塑性。力学性能随RE的增加基本上呈先升后降的趋势。当Gd和Nd的添加量为0.8wt%、Y的添加量为0.4wt%、Dy的添加量为1.2wt%时,合金的强度达到最大值。
     分析认为,稀土元素Gd、Y、Nd和Dy主要是通过细晶强化和析出强化的共同作用提高了合金的室温和高温强度,改善了合金的塑性。
     比较四种稀土元素对合金的组织与性能的影响规律,结果表明Dy的加入对合金组织细化和力学性能改善最为有效,其余依次是Gd、Nd和Y。
     对合金拉伸断口的SEM形貌分析表明:未加稀土的Zn-25Al-5Mg-2.5Si合金的断裂形式为脆性断裂。随着稀土的加入和温度的升高,合金的拉伸断口组织中韧窝数量增多,合金的塑性得到提高。当稀土加入量过大,形成的稀土化合物相在基体中或晶界上团聚时,合金的断口类型又由韧性断裂转变为脆性断裂。
     我国有色金属资源和稀土资源非常丰富,因此本文把稀土加入到有色合金中提高其性能,扩展其应用范围,对资源利用和经济发展有着重要的意义。
Zinc alloys containing higher aluminum (ZA alloys) are one of the widely used non-ferrous materials in recent decades because of their many advantages such as good casting and mechanical properties, excellent wear-resisting performance and lower manufacturing cost. Meanwhile, ZA alloys are environmentally friendly because the melting energy consumption for the alloys is much lower than for the copper alloys. ZA alloys have been used to substitute for some traditional alloys such as brass, bronze and babbitt metals to prepare some wear-resistant and anti-friction components.
     However, their application is partly restricted because of their strength and wear-resistance declining with increase of temperature when they are overloaded or under continuously working. In order to further improve the properties of ZA alloys at high temperature, this paper investigated the effects of rare earth(RE) elements on the microstructure and the strength at room temperature and high temperature (100℃and 180℃), which is significant for extending their application fields.
     Zn-25Al-5Mg-2.5Si-xRE alloys were prepared by adding different content of rare earth elements Gd, Y, Nd and Dy to Zn-25Al-5Mg-2.5Si alloys. Metallurgical microscopy, scanning electron microscopy, energy dispersive spectrometer and X-ray diffraction were employed to investigate the effect of different rare earth elements on the microstructure, morphology and distribution of the phases of the Zn-25Al-5Mg-2.5Si-xRE alloys. Mechanical properties at room temperature and high temperature were tested and the optimum contents of rare earth elements were obtained.
     It was showed from the microstructure of the alloys that the additions of the appropriate amount of rare earth elements Gd, Y, Nd and Dy were capable of refining the as-casting microstructure and improving their morphology. Granular and massive compounds with higher melting point, hardness and stability were formed in the alloys as a result of the addition of rare earth elements. The compounds were dispersively distributed in the boundary and intracrystalline of the alloys. When 0.8wt% Gd or 0.8wt% Nd or 0.4wt% Y or 1.2wt% Dy was added to the alloy, the optimized grains refining effect on the alloys was obtained.
     XRD was used to analyze the phases composition in the alloys. The results showed that Al-RE compounds were preferentially formed as rare earth elements were added and then the redundant rare earth elements interacted with Zn to form Zn-RE compounds. Rare earth phases Al3Gd and GdZn12 were formed when Gd was introduced into Zn-25Al-5Mg-2.5Si alloy. Similarly, rare earth phases Al3Y and Y2Zn17, Al2Nd and NdZn2, AlDy and DyZn were also formed because of the addition of Y, Nd and Dy, respectively.
     It was revealed from the testing results of the mechanical properties of Zn-25Al-5Mg-2.5Si alloys adding RE that the higher hardness, tensile strength and plasticity at high temperature were achieved. The mechanical properties increased with increase of RE at first and then decreased later. When 0.8wt% Gd or 0.8wt% Nd or 0.4wt% Y or 1.2wt% Dy was added to the alloy, the maximum tensile strength was obtained.
     It is suggested that strength and hardness at the room temperature and high temperature increased and the plasticity of alloys were improved by adding rare earth elements Gd, Y, Nd and Dy mainly through the combined action of grain refining and precipitation strengthening.
     The comparison of the effect of four rare-earth elements on microstructure and properties of alloys showed that Dy was the most effective in alloy microstructure refinement and properties improvement, Gd, Nd and Y followed.
     SEM was used to characterize the fracture morphology of the alloys. It was showed that the fracture mode of the alloys without rare earth elements was brittle-fracture. With the increase of RE and the rise of temperature, the quantity of dimple fracture was increased, resulting in the improvement of plasticity of the alloys. However, when rare earth phases agglomerated in the matrix or grain boundary with adding excessive RE, plasticity of the alloys decreased.
     In this paper, the properties of non-ferrous alloys were remarkably improved with the addition of earth elements, which will extend the application fields of non-ferrous alloys and is significant for the economic development and resource utilization.
引文
[1]杨留栓,王洪敏,陈全德等.高铝锌合金[M].西安:西北正业大学出版社, 1997: 63-112.
    [2]张玉平,孙钢.高强度耐磨锌铝合金的性能及其应用[J].新技术新工艺, 1996, (1): 23-25.
    [3]张伟.国内外高铝锌基合金的研究现状和进展[J].铸造技术, 1993, (2): 36-39.
    [4]胡海明. ZA27的研究进展[J].材料导报, 1998, 12(3): 17-22.
    [5] Zhang ZM, Yang GC, Wang J C, et al. Microstructure evolution of the super-satuated ZA27 alloy and its damping capacities[J]. Materials Science, 2000, 35(13): 3383-3388.
    [6] Gervais E, Levert H. The development of a family of Zinc-base foundry alloys[J]. AFS Transactions, 1980, (3): 47-52.
    [7] Ayik O. Solidification and foundry studies of Zn/A1 alloys[J]. Crystal Growth, 1986, (79): 594.
    [8] Latanish R M. Corrosion science carrion engineering and advanced technologies[J]. CORROSION SCIENCE, 1995, 51(4): 270-283.
    [9]安继儒.中外常用金属手册[M].西安:西安交通大学出版社, 1990: 43-45.
    [10]杨璀珍.高铝锌合金组织和性能的研究[D].西安:西安理工大学.硕士学位论文, 2008.
    [11]刘永红,张忠明.锌铝合金的研究现状及应用概括[J].铸造技术, 2001, (1): 42-44.
    [12]张忠明等.铝、铜、镁对铸态锌基合金组织和阻尼性能的影响[J].中国有色金属学报, 1999, 9(1): 1-6.
    [13]赵浩峰,王玲.铸造锌合金及其复合材料[M].北京:中国标准出版社, 2002.
    [14] AbouEl-khairMT, DaoudA, IsmailA. Effect of different Al contents on the microstructure, tensile and wear properties of Zn-based alloy[J]. Materials Letters, 2004, 58: 1754-1760.
    [15] Chen Gang, Tong Mingduo, Zhu Zhengang. Study on the macrosegregation of aluminium in centrifugal-cast ZA27 alloy[J]. Materials Science and Engineering A, 1999, 265: 306–309.
    [16]长崎诚三,平林真.二元合金状态图集[M].北京:冶金工业出版社, 2004.
    [17]耿浩然,王守仁,王艳等编著.铸造锌铜合金[M].北京:化学工业出版社, 2006, 10-11.
    [18]周善初,罗兵辉.微量锆对Zn-Al合金阻尼性能及其稳定性的影响[J].中国有色金属学报,1994, 4(6): 60-64.
    [19]韩富银,赵浩峰等. Na变质对Zn-27Al-Si合金组织性能的影响[J].太原理工大学学报,2001,32(3): 282-283.
    [20]舒震,刘金水等.提高高铝锌合金高温性能及耐磨性的研究[J].湖南大学学报, 1995, 22(4): 70-76.
    [21]田卫平.稀土锌铝合金的发展[J].昆明冶金高等专科学校学报, 2002, 18(2): 14-17.
    [22]《重有色金属加工手册》编写组.重有色金属加工手册[M].北京:冶金工业出版社,1976.
    [23]陶小平,徐迎春,稀土-锌合金的研制[J].稀有金属与硬质合金, 2000, (6): 18-21.
    [24] Zhu H.X., Liu S.K, Bai X.J. Sliding wear behavior of planar random zinc-alloy matrix composites[J].Wear, 1996, 199: 82-88.
    [25] Anwar M, Murphy S. Comparative load-relaxation behaviour of high-aluminium zinc-based alloys [J]. Journal of Materials Science, 2001, 36 (2): 411-417.
    [26] Savaskan T, Murphy S. Mechanical properties and lubricated wear of Zn–25Al-based alloys[J]. Wear, 1987, 116: 211–224.
    [27] Zhu Y, Yan B, Huang W. Bearing wear resistance of monotectoid Zn–Al based alloy (ZA-35)[ J]. Materials Science and Technology, 1995, 11:109-113.
    [28] Murphy S, Savaskan T. Comparative wear behaviour of Zn–Al-based alloys in an automotive engine application[J]. Wear, 1984, 98: 151–161.
    [29]陈美玲,陈玉喜.高铝锌基合金热膨胀性能的研究[J].特种铸造及有色合金,1999, (1): 5-9.
    [30]崔峰,耿浩然,钱宝光等.原位生成TiB2/ZA27复合材料的制备与性能[J].复合材料学报,2004,21(4):87-91.
    [31]曹风江,谭建波,李文革等.高锌铝合金的研究进展与应用概况, 2006, 23(6): 381-384.
    [32]姚宏博.原位ZA27基复合材料的制备及性能研究[D].江苏大学.硕士学位论文. 2009
    [33]于柬.新型耐磨材料锌铝合金[J].金属热处理,1998,(2): 25-27.
    [34]张忠明,徐春杰,王锦程等.热挤压铸态ZA27合金阻尼性能研究[J].功能材料, 2005, (4) : 529-531.
    [35] Bamhurst R J,et a1.Gravity Casting of Zinc-Aluminum Alloys Solidification Behavior of ZA8,ZAl2 and ZA43[J]. AFS Transactions, 1983, 91: 569-584.
    [36]赵浩峰,饶群力,李永莲.球硅增强锌铝合金的组织和性能研究[J].材料科学与工艺,1997,(4): 103-106.
    [37] Savaskan T, Aydiner A. Effects of silicon content on the mechanical and tribological properties of monotectoid-based zinc–silicon–silicon alloys[J]. Wear, 2004, 257(3-4): 377-88.
    [38] Prasad B.K. Effects of partially substituting copper by silicon on the physical, echanical, and wear properties of a Zn–37.5% al-based alloy[J]. Materials Characterization, 2000, 44: 301-308.
    [39] Lee P. P, Savaskan T, Laufer E. Wear resistance and microstructure of Zn–Al–Si and Zn–Al–Cu alloys[J]. Wear , 1987,117: 79–89.
    [40] Jian L, Laufer E. E, Masounave J. Wear in Zn–Al–Si alloys[J]. Wear, 1993,165: 51-56.
    [41] Prasad B.K. Effects of silicon addition and parameters on sliding wear characteristics of zinc-based alloys containing 37.5% aluminium[J]. Materials Transactions, 1997,38 (8): 701-706.
    [42]张玉平,武雪萍,张琐.耐磨高铝锌合金的性能研究[J].铸造设备研究,2000, (5): 27-29.
    [43] Wang Qudong, Wei Yinhong, Chen Wenzhou, In situ surface composites of (Mg2Si+Si)/ZA27 fabricated by centrifugal casting. Materials Letters, 2003,57: 3851-3858.
    [44] Liu Yongchang, Yang Gencang, LuYili. Damping behavior and tribological properties of as spray deposited high silicon alloy ZA27[J]. Journal of Materials Processing Technology, 1999, 87: 53-58.
    [45]赵沛廉,张金山.锰对ZA27合金高温性能的影响[J].材料科学与工艺,1996, (5): 34-37.
    [46]周明等. Mn对ZA27合金组织与性能的影响[J].江苏理工大学学报,1998,(1): 60-64.
    [47]刘金水,张福全,舒震等. Ce对ZA43合金组织和性能的影响[J].特种铸造及有色合金, 1998(1): 4-6.
    [48]许春香,赵沛廉.混合稀土对ZA27合金高温力学性能的影响[J].材料科学与工艺,1999, (3): 105-108.
    [49]余松林.多元合金化对锌铝合金性能的影响[D].江苏大学.硕士学位论文. 2008.
    [50]彭日升,刘杰,刘智勇.稀土对高铝锌合金抗蚀性的影响[J].稀土, 1993, 14(5): 33-35.
    [51]骆灼旋,陈华信,陈炽伦等.稀土在高铝锌基合金的作用[J].铸造技术, 1989,(2): 26-29.
    [52]宋人英,王兴杰,姜深等.稀土在锌合金中作用[J].中国稀土学报, 1995, 13: 479-483.
    [53] Chen T.J, Hao Y, Sun J. Effects of Mg and RE additions on the semi-solid microstructure of a zinc alloy ZA27[J]. Science and Technology of Advanced Materials, 2003, 4: 495-502.
    [54]刘金水等. Ti对Al-Zn合金组织性能的影响[J].金属学报,1993,29(11): A487-A491.
    [55] ZHANG Zhongming,WANG Jincheng,LU Yili.et al.Influence of Al-Ti-1B Master Alloy on Microstructure and Damping Capacity of ZA27 Alloy[J],Trans.Nonferrous Met.Soc,China,1998,8(3) : 500-504
    [56] Sastry Shanta, Krishna M, Uchil Jayagopal. A study on damping behaviour of aluminite particulate reinforced ZA-27 alloy metal matrix composites[J]. Journal of Alloys and Compounds, 2001, 314: 268-274.
    [57] Zhang ZM, Wang LC and Xu DH. Influence of RE Content on Damping[J]. Journal of Rear Earths, 1999, 17(2): 122-125
    [58] Sharma S. C, Girish B. M, Somashekar D. R, at al. Mechanical properties and fractography of zircon-particle-reinforced ZA-27 alloy composite materials [J]. Composites Science and Technology, 1999, 59: 1805-1812.
    [59] Choudhury P, Das S, Datta B.K. Effect of Ni on the wear behavior of a zinc–aluminum alloy[J]. Journal of Materials Science, 2002, 37: 2103–7.
    [60] Prasad BK. Effects of microstructure on the sliding wear performanceof Zn–Al–Ni alloy[J]. Wear, 2000, 240(1–2):100-12.
    [61] LI Zi-quan, ZHOU Heng-zhi, LUO Xin-yi, at al. Aging microstructural characteristics of ZA-27 alloy and SiCp/ZA-27 composite[J]. Transactions of Nonferrous Metals Society of China, 2006, 16: 98-104
    [62] Kurnaz S. Can. Production of fibre reinforced Zn-Al (ZA12) based metal matrix composites using infiltration technique and study of their properties[J]. Materials Science and Engineering A, 2003, 346: 108-115.
    [63] LI Z Q, WU B Y, ZHANG S Y. Solidification and microstructure of SiC /ZA-27composite fabricated by mechanical-electromagnetic combination stirring process[J]. Materials Science and Technology, 2001, 17(4): 465-471.
    [64] Sharma S. C, Seah K. H. W, Satish B. M, at al. Corrosion characteristics of ZA-27/glass-fibrecomposites[J]. Corrosion Science, 1997, 39: 2143-2150.
    [65] LI Z Q, WU B Y, ZHANG S Y. Retreatment process of Sic particles and fabrication technology of Sic particulate reinforced Zn-Al alloy matrix composite[J]. Materials Science and Technology, 2001, 17(8): 954-960.
    [66] K. H. W. Seah, S. C. Sharma, B. M. Girish . Mechanical properties of as-cast and heat-treated ZA-27/graphite particulate composites[J]. Composites Part A: Applied Science and Manufacturing, 1997, 28: 251-256.
    [67] K. H. W. Seah, S. C. Sharma, P. R. Rao, at al. Mechanical properties of as-cast and heat-treated ZA-27/silicon carbide particulate composites[J]. Materials & Design, 1995, 16: 277-281.
    [68] Miroslav Babic, Slobodan Mitrovic, Branislav Jeremic. The influence of heat treatment on the sliding wear behavior of a ZA-27 alloy [J]. Tribology International, 2010, 43: 16-21.
    [69]魏晓伟.高铝锌合金压蠕变行为研究: [D].四川成都:四川大学,博士学位论文, 2003.
    [70] WANG Hongmin,CHEN Quande,WU Yigui,etal.Microstructure and Properties of Supersaturated ZA27 Alloy During Natural Ageing. Materials Science,1992,(27):1212-1216
    [71]陈美玲,丁立英,姜守本.热处理对ZA33-3合金组织及力学性能的影响[J].铸造,1995(5): 1-6.
    [72] Tagami M,Ohtani TUsami T.Effect of Heat Treatment,Content of Cu and Rolling Reduction on the Damping Capacity and Mechanical Properties 0f Zn-22%A1 Alloy,Light Metals,1988,38(2):107-113.
    [73] Geng Haoran, Tian Xianfa, Cui Hongwei. Antifriction and wear behaviour of ZAS35 zinc alloy influence of heat treatment and melting technique[J]. Materials Science and Engineering A, 2001, 316: 109-114
    [74] Gervais E,Barnhurst R J,Loong C A.An Analysis of Selected Properties of ZA Alloys[J],Metal, 1985, (94): 43-47.
    [75] Babic M, Ninkovic R, Mitrovic S, at al. Influence of heat treatment on tribological behavior of Zn–Al alloys.In:Proceedings of thinternational conference on tribology. SERBIATRIB’07, Kragujevac, 2007. 17-22.
    [76] Jovanovic MT, Bobic I, DjuricB, at al. Microstructural and sliding wear behavior of heat-treated zinc-based alloy[J]. Tribology Letters, 2007, 25(3): 173-84.
    [77] Prasad BK. Influence of heat treatment parameters on the lubricated sliding wear behavior of a zinc-based alloy[J]. Wear, 2004, 257: 1137–44.
    [78]邹勇志.高铝锌基合金的相变与热物理性能的研究[D].广西南宁:广西大学.硕士学位论文, 2004
    [79]刘或,韩树楷,施忠良等. ZA27合金耐蚀性能实验研究[J].兵器材料科学与工程,1995(5),15-19
    [80] Kucukomeroglu PG, SavaskanT, MurphyS. Dry sliding friction and wear properties of zinc-based alloy[J]. Wear, 2002, 252:894–901.
    [81] Pandey J P, Prasad B K, Yegneswaran AH. Dry sliding wear behavior of a zinc- based alloy: a comparative study with a leaded-tinbronze[J]. Materials Transactions(JIM),1998, 39(11):1121–1125.
    [82]商全义. ZA27合金摩擦磨损性能的研究[J].郑州纺织工学院学报,1997,8 (2),1-6.
    [83]张伟,黄积荣.高铝锌合金(30%-43%)耐磨性能的研究[J].特种铸造及有色合金,1992,(4): 6-10.
    [84]项宏瑶.稀土对高强度锌基合金耐磨性的影响[J].力学工程材料,1996,(2): 30-32.
    [85]李元元,张大童,罗俊明.高铝锌基合金粉末冶金及其摩擦特性初探[J].中国有色金属学报,1997,(1): 10-13.
    [86]李虎成,李利君,杨通,ZA27合金摩擦磨损特性的研究[J].特种铸造及有色合金,1993,(4): 1-6.
    [87] Ahmet Türk, Can Kurnaz, Hüseyin ?evik. Comparison of the wear properties of modified ZA-8 alloys and conventional bearing bronze [J]. Materials & Design, 2007, 28: 1889-1897.
    [88] Sharma S. C, Girish B. M, Rathnakar Kamath, et al. Effect of SiC particle reinforcement on the unlubricated sliding wear behaviour of ZA-27 alloy composites[J]. Wear, 1997, 213: 33-40.
    [89] PRASAD B K. Abrasive wear characteristics of a zinc-based alloy and zinc-alloy/SiC composite[J]. Wear, 2002,252: 250-263.
    [90] Sharma S.C, Girish B.M, Somasheka r D.R.. Sliding wear behaviour of zircon particles reinforced ZA-27 alloy composite materials[J]. Wear, 1999, 224: 89-94.
    [91]高升吉,沈保罗,杨钢等. Zn-25%AI-X%Cu合金的力学性能和耐磨性研究.特种铸造及有色合金[J],1998(3): 16-18.
    [92] Zhao Haofeng,Song Wei and Zhao Peilian.Wear Resistance Performance of ZA27 Alloys Reinforced by Rare Earth Compound, Journal of Rare Earths,2000, 18(1): 46-48.
    [93] Temel Sava?skan, Alev Ayd?ner.Effects of silicon content on the mechanical and tribological properties of monotectoid-based zinc–aluminium–silicon alloys[J]. Wear, 2004, 257: 377-388.
    [94] Zhu Y.H, Lee W.B. Tensile deformation and phase transformation of furnace-cooled Zn–Al based alloy[J]. Materials Science and Engineering A. 2000, 293: 95-101.
    [95] Aashuri H., Razavimanesh A., Kolahi A., at al. Impact and tensile behaviour of fractional melting processed ZA-27 alloy[J]. Materials Science and Engineering A, 2002, 333: 115-122.
    [96] Zhu Y.H, Hinojosa J, Yue T.M, ea al. Structural evolution in a continuously cast eutectoid Zn–Al-based alloy[J]. Materials Characterization. 2002, 48: 315-322.
    [97]杨留栓.改进高热强锌基合金的新思路[J].材料导报, 1994, (3): 13-16.
    [1]刘永红,张忠明.锌铝合金的研究现状及应用概括[J].铸造技术, 2001, (1): 42-44.
    [2]舒震,刘金水等.提高高铝锌合金高温性能及耐磨性的研究[J].湖南大学学报, 1995, 22(4): 70-76.
    [3] Anwar M, Murphy S. Comparative load-relaxation behaviour of high-aluminium zinc-based alloys [J]. Journal of Materials Science, 2001, 36 (2): 411-417.
    [4] Savaskan T, Murphy S. Mechanical properties and lubricated wear of Zn–25Al-based alloys[J]. Wear, 1987, 116: 211–224.
    [5]曹风江,谭建波,李文革等.高锌铝合金的研究进展与应用概况, 2006, 23(6): 381-384.
    [6]杨璀珍.高铝锌合金组织和性能的研究[D].西安:西安理工大学.硕士学位论文, 2008.
    [7] Wei Ai-li, Song Wei, Wu Xiao-dong, et al. Effects of the Morphology of Silicon Phase on the Properties of Zinc Based Composites. Materials Science Forum[J].2007, 561-565: 693-695.
    [8]李建春.合金元素对ZA27组织和性能的影响[D].太原:太原理工大学.硕士学位论文, 2008.
    [9]崔峰,耿浩然,钱宝光等.原位生成TiB2/ZA27复合材料的制备与性能[J].复合材料学报,2004,21(4): 87-91.
    [10]陶小平,徐迎春,稀土-锌合金的研制[J].稀有金属与硬质合金, 2000, (6): 18-21.
    [11]赵浩峰,王玲.铸造锌合金及其复合材料[M].北京:中国标准出版社, 2002.
    [12] Chen T.J, Hao Y, Sun J. Effects of Mg and RE additions on the semi-solid microstructure of a zinc alloy ZA27[J]. Science and Technology of Advanced Materials, 2003, 4: 495-502.
    [1]杨留栓,杨根仓,周尧和.改进高热强锌基合金的新思路[J].材料导报, 1994, (3): 13-16.
    [2]徐光宪.稀土[M].北京:冶金工业出版社, 1995.
    [3]张国英,刘春明,魏丹等.稀土在铸造锌铝合金ZA27变质中的作用机理研究[J].沈阳师范大学学报(自然科学版), 2006, (7): 283-285.
    [4]赵浩峰,王玲.铸造锌合金及其复合材料.北京:中国标准出版社, 2002.
    [5]靳广永,吴玉峰,李建辉等. Gd对Mg-2Al-Zn合金微观组织及力学性能的影响[J].特种铸造及有色合金, 2007, 27(8): 642-644.
    [6]陈体军,郝远,孙军等. ZA27合金的微观组织.中国有色金属学报, 2002,12(2): 294-299.
    [7]中山大学金属系.稀土物理化学常数[M].北京:冶金工业出版社, 1978.
    [8] K. A. Gschneidner. Rare earth alloy[M]. New York: Dvan Nostranf Inc., 1961.
    [9]长崎诚三,平林真.二元合金状态图集[M].北京:冶金工业出版社, 2004.
    [10] R. W. Cahn. P. Haasen. Physical Metallurgy[M]. Published by North-Holland Publishing. New York.USA .1983.
    [11]候增寿,卢广熙.金属学原理[M].上海:上海科学技术出版社, 1990.
    [12]张泊清.变形中间合金细化剂组织及细化性能的影响.金属热处理, 1999,(6):26-29.
    [13]崔中圻主编.金属学与热处理[M].北京:机械工业出版社, 1992.
    [14]张承甫等.液态金属的净化与变质[M].上海:上海科学技术出版社, 1989.
    [15]石德珂.位错与材料强度[M].西安:西安交通大学出版社, 1988.
    [16]张俊善.材料强度学[M].哈尔滨:哈尔滨工业大学出版社, 2004.
    [17]陈君,李全安,李肖丰. Y、Gd与Ca对AZ81镁合金组织和力学性能的影响.特种铸造及有色合金, 2008 , 28(12): 980-982.
    [18]王峰,王志,林立. Ca和Gd对压铸Mg-6Gd-3Y-0.5Zr合金组织及性能的影响.铸造, 2009, 58(10):1026-1029.
    [19]张振国,汤峰,刘英.稀土对ZnAl-27高温性能及组织的影响[J].热加工工艺, 2005, (7): 20-21.
    [20]赵建生.断裂力学及断裂物理[M].北京:华中科技大学出版社, 2003.
    [21]李杰华,介万奇,杨光昱.稀土Gd对Mg-Nd-Zn-Zr镁合金组织和性能的影响[J].稀有金属材料与工程, 2008, 37(10): 1751-1755.
    [1]季玮.钇变质ZA-27合金的组织和性能[J].江西冶金, 1995, 15(5): 11-16.
    [2]中山大学金属系.稀土物理化学常数[M].北京:冶金工业出版社, 1978.
    [3] K. A. Gschneidner. Rare earth alloy[M]. New York: Dvan Nostranf Inc., 1961.
    [4]长崎诚三,平林真.二元合金状态图集[M].北京:冶金工业出版社, 2004.
    [5]李亚国,刘海林,李平.含钇ZA-27系列合金相结果特征分析[J].贵州科学,1999, 17(4): 270-271.
    [6] Czeppe T, Zakulski W, Bielańska E. Study of the thermal stability of phases in the Mg-Al System [J]. Journal of Phase Equilibria and Diffusion, 2003, 24(3):249-254.
    [7]李建弘.稀土元素对Mg-6Al合金显微组织及高温拉伸力学性能的影响[D].河南科技大学,硕士学位论文. 2008
    [8] Inem B. Crystallography of the second phase/SiC particles interface, nucleation of the second phase at P-SiC and its effect on interfacial bonding, elastic properties and ductility of magnesium matrix composites[J]. Journal of Materials Science, 1995, 30(22):5763-5769.
    [9] Bramfitt B.L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron[J]. Met Trans, 1970, 1(7):1987-1995.
    [10]余锟,黎文献,张世军. Ce对镁及镁合金中晶粒的细化机理[J].稀有金属材料与工程, 2005, 34(7): 1013-1016.
    [11]石德珂.位错与材料强度[M].西安:西安交通大学出版社,1988
    [12]李克杰,李全安,井晓天等. Y、Nd对Mg-5Al合金组织和性能的影响[J].特种铸造及有色合金, 2009, 29 (1): 73-76.
    [13]张诗昌,蔡启舟,王立世等.钇和混合稀土对AZ91合金高温力学性能的影响[J].特种铸造及有色合金, 2005 , 25 (5) :28-32.
    [14]王小强,李全安,张兴渊. Y, Nd复合稀土对AZ81镁合金组织和力学性能的影响[J].稀有金属材料与工程, 2008, 37 (1): 62-65.
    [15]赵建生.断裂力学及断裂物理[M].北京:华中科技大学出版社, 2003.
    [1]徐光宪.稀土[M].北京:冶金工业出版社, 1995.
    [2]鲁思军,杜文博,吴玉锋. Nd对Mg24Al21Sr合金显微组织及力学性能的影响[J].特种铸造及有色合金, 2008 , 28 (3): 224-226.
    [3]赵源华,陈云贵,唐永柏. Nd和Ce对AZ91镁合金组织和力学性能的影响[J].特种铸造及有色合金, 2009, 29(1): 69-72.
    [4]黄晓锋,曹喜娟,朱凯.钕对Mg25Zn22Al合金显微组织和力学性能的影响[J].机械工程材料, 2009, 33(10): 23-26.
    [5]长崎诚三,平林真.二元合金状态图集[M].北京:冶金工业出版社, 2004.
    [6]中山大学金属系.稀土物理化学常数[M].北京:冶金工业出版社, 1978.
    [7] K. A. Gschneidner. Rare earth alloy[M]. New York: Dvan Nostranf Inc., 1961.
    [8]黄晓锋,付彭怀,卢晨等. Nd对AM50力学性能及高温性能的影响[J] .材料研究学报, 2004 , 18 (6) : 593-596.
    [9]崔中圻主编.金属学与热处理[M].北京:机械工业出版社,1992.
    [10]张承甫等.液态金属的净化与变质[M].上海:上海科学技术出版社,1989.
    [11]石德珂.位错与材料强度[M].西安:西安交通大学出版社, 1988.
    [12]张俊善.材料强度学[M].哈尔滨:哈尔滨工业大学出版社, 2004
    [13]崔约贤,王长利.金属断口分析[M].哈尔滨:哈尔滨工业出版社, 1998.
    [14]朱知寿,马济民,高扬等.富Nd第二相颗粒对钛合金拉伸断裂方式的影响[J] .航空材料学报, 2000 , 20 (3) : 27-32..

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700