原位TiC_p增强镁基复合材料制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源紧缺及环境污染问题的日益突出,汽车工业对高效率,低排放和轻量化的要求逐渐提高。镁合金的开发和应用顺应了汽车节能和环保的趋势,越来越引起人们的关注,但是镁合金的耐热性能较差限制了其在汽车工业上的广泛应用。本文的研究工作主要是针对上述问题进行,运用材料复合化思路和原位制备方法,探索研制耐热性能改善,弹性模量提高,强度提高和阻尼性能优良的结构功能一体化的原位合成镁基复合材料。相对于其它金属基复合材料(如铝基,钛基,铁基和铜基等)的研究发展水平,原位合成镁基复合材料的研究处于初步阶段。因此,研究镁基复合材料的原位反应体系,制备工艺,微观结构和力学性能,阻尼性能以及耐热性能等之间的内在关系,对研制和开发综合性能优越的镁基复合材料及其在汽车工业上的应用具有重要的指导意义。
     本文首先对原位反应的热力学研究表明,Mg-Al-Ti-C体系可以发生原位反应生成TiC增强颗粒。利用Miedema模型结合Wilson方程,计算并预测了常用合金元素或稀土元素会对Mg-Al-Ti-C体系的原位反应的影响规律。根据计算结果,选用汽车工业上常用的AZ91D作为基体合金,合金中的Zn和Mn等元素,有利于原位反应产物TiC的生成,同时有利于抑制TiAl3中间相的形成。
     对原位反应的实验研究表明,原位反应形成TiC增强镁基复合材料的过程为:Al先通过Al-Ti反应形成TiAl3金属间化合物,同时释放出大量热量,进一步引发了TiAl3和C以及Ti和C之间反应形成热力学上更稳定的TiC。预制块中的Al不但能够参与原位反应,降低原位反应的温度,使TiC颗粒尺寸减小,同时Al也可以作为稀释剂,有利于TiC颗粒在Mg熔体中的扩散和均匀分布。原位制备的TiC颗粒增强的镁基复合材料,颗粒细小且分布均匀,颗粒附近存在高密度的位错,颗粒与镁基体界面清洁,结合紧密,这些均对提高镁基复合材料的力学性能有利。
     对TiC/AZ91D镁基复合材料的室温力学性能研究表明,原位合成的TiC增强体的引入,使复合材料的室温拉伸强度和压缩强度均有了提高。与基体合金相比,TiC颗粒增强镁基复合材料的室温拉伸强度提高了约20-26%,弹性模量提高了3-11%。复合材料的强化机理主要归结为细晶强化和位错强化的综合作用。复合材料的失效主要是由颗粒与基体界面处的脱粘和基体的断裂引起。
     镁合金作为汽车零件主要受螺栓等压应力作用,常见使用温度在25-200°C之间,对以上工况条件下AZ91D镁合金和TiC/AZ91D镁基复合材料的压缩实验研究表明,AZ91D镁合金断裂区域和安全区域的分界线Z=8×1014s-1。TiC/AZ91D镁基复合材料的分界线Z值经计算为Z=5×1013s-1。与AZ91D镁合金相比,TiC/AZ91D镁基复合材料需要更低的Z值,即更高的温度和更低的应变速率以避免材料发生断裂。
     通过研究镁合金常见变形温度(250-400°C)和常见应变速率(10-3-8s-1)下TiC/AZ91D镁基复合材料的压缩变形行为,构建出TiC/AZ91D镁基复合材料的热加工图。热加工图能预测的加工性能良好区域和加工非稳区,为判定材料的最佳热加工条件和失稳区域,制定合理的热加工工艺提供理论和实践依据。
     本文进一步研究了原位颗粒增强镁基复合材料的阻尼性能。复合材料的阻尼性能优于基体合金,并且复合材料的阻尼性能随增强体体积分数的增加而提高。在室温时,增强颗粒附近存在高密度的位错,有利于复合材料的室温阻尼性能提高。高温时,增强体与镁基体界面强度随温度的升高而降低,在一定应力作用下,通过晶界滑移,界面滑移等方式消耗振动能量,从而提高高温阻尼性能。
     最后,本文建立了螺栓载荷保持(Bolt Load Retention,BLR)评价系统,模拟镁合金及复合材料作为汽车零件在螺栓预紧力作用下高温长时间服役的实际工况。AZ91D镁合金及TiC/AZ91D镁基复合材料的BLR行为测试结果表明,随着温度和载荷的增加,镁合金及其复合材料的螺栓剩余载荷比例减少,但是预载荷的增加仍然有利于残余载荷的增大。在本文测试范围内,镁基复合材料在不同温度和载荷下的BLR性能均优于镁基体合金,且随温度提高镁基复合材料BLR性能有较大改善。通过研究归纳的剩余载荷比例的等值线可以用来表示温度和初始载荷对剩余载荷百分数的综合影响。等值线图的建立为镁合金零件的工程设计提供理论依据。
Due to energy shortage and environmental pollution, magnesium alloys are attracting more and more attention in automobile industry for losing the weight of a vehicle,reducing the exhaust emissions and raising fuel efficiency. However, the poor thermal resistance properties of magnesium alloys restrict development and application of magnesium alloys in automobile industry.
     This research is trying to solve the above problem. The research work aims to synthesize magnesium matrix composites by using in situ technique and obtain higher strength, better thermal resistance properties and better damping capacities than those of magnesium alloys. Compared with ex situ technique, in situ technique exhibits the finer reinforcement,the better distribution and the cleaner reinforcement-matrix interface than ex situ one. So in situ magnesium matrix composites have great potential to obtain excellent mechanical properties and functional properties and extend the application of magnesium alloys in automobile industry.
     In situ synthesis method has been extensively studied for aluminum, titanium, iron and copper matrix composites. However, this technique is still relatively new for in situ magnesium matrix composites. Therefore it is of great significance to study in situ reaction, fabrication, microstructure, mechanical properties, damping capacities and thermal resistance properties of in situ magnesium matrix composites.
     In this study, the feasibility of Mg-Al-Ti-C in situ reaction was firstly confirmed thermodynamically. According to the calculation using an extended Miedema model and the Wilson equation, the influences of alloying elements on the free energy of TiAl3 and TiC formation were calculated and the effect of the alloying additions on in situ reaction to synthesize TiC/Mg composites was evaluated. The calculation results show elements Zn and Mn in AZ91D alloys were beneficial to promote TiC formation, as well as hinder the brittle TiAl3 phase formation.
     Experimental research showed molten magnesium alloy was infiltrated into Al-Ti-C preforms, simultaneously the in situ reaction happened and TiC particles were formed in the liquid of magnesium alloy. Ti reacted with Al to form TiAl3 in the initial stage, and then C reacted with TiAl3 to form TiC. Al in the preforms serves not only as a reactant and participates in the in situ reaction to decrease reaction temperature and TiC particle size, but also as a diluent to to facilitate the diffusion and distribution of TiC particles. The as-cast microstructure of the in situ composites revealed the uniform distribution of TiC particulates with spherical sizes. Microstructural analysis showed high dislocation density around the reinforcements and good and clean interface between TiC particles and matrix.
     Introducing TiC particles into magnesium matrix improved the mechanical properties of matrix material. The tensile strength of magnesium matrix composites were 20-26% higher than those of magnesium alloy and elastic module were 3-11% higher than magnesium alloy. The strengthen effect of in situ magnesium matrix composites was explained by refine grain strengthen and dislocation strengthen mechanism. The fracture analysis of TiC/AZ91D composites revealed the failure of composites was caused by interfacial debonding and the fracture of matrix.
     The compressive deformation behaviors of AZ91D alloys and TiC/AZ91D composites were studied in temperature and strain rate range of 25-200°C and 10-3-1s-1. The border of early fracture is close to Z=8×1014s-1 in AZ91D alloys and Z=5×1013s-1 in TiC/AZ91D composites. So this value may represent the limit of hot deformation conditions because a premature fracture occurs for Z>8×1014s-1 in AZ91D alloys and Z>5×1013s-1 in TiC/AZ91D composites. Compared with AZ91D alloy, TiC/AZ91D composites need higher temperature and lower strain rate (lower Z value) to avoid premature fracture.
     The compressive deformation behavior of TiC/AZ91D composites has also been investigated at strain rates 10-3-8s-1and hot working temperatures 250-400°C. The processing map has been adopted to correlate processing parameters, predict safe regions and instable regions, obtain safe processing conditions and optimize hot forming process of TiC/AZ91D composites.
     Damping capacities of in situ TiC reinforced magnesium matrix composites with different reinforcement percentage were investigated. Experimental results show TiC reinforced magnesium matrix composites possessed better damping capacities than those of non-reinforced magnesium alloy. Compared to magnesium matrix alloy, an increase in damping capacities of TiC/AZ91D composites was attributed to the dislocation damping mechanism at room temperature. At elevated temperatures, the matrix became relatively soft with respect to ceramic reinforcement and interface sliding between the reinforcement and matrix occurred. Interface damping became a new contributor to the increase of damping capacity.
     A new bolt load retention evaluation system was set up to simulate automobiles parts served at high temperature and preloads and evaluate the thermal resistance properties of Mg alloys and composites. The effect of the variables such as temperature, preload and different samples on the feasibility of BLR evaluation systems was systematic investigated. BLR behaviors of AZ91D alloys and TiC/AZ91D composites at different temperature and preloads were tested. Results showed that the increases in temperature and preload led to a decrease in BLR as a fraction of preload. Higher preloads led to a higher remaining clamp loads, although a fraction of preloads was lower for higher preloads. The fraction of remaining load to preload of composites was found to be higher than that of AZ91D alloy, which indicated that TiC/AZ91D composites can improve BLR behaviors of magnesium matrix. The combined influence of temperature and preload level can be described by a series of“contour”maps that relate the fraction of remaining load to preload and temperature. This diagram is useful for engineering design.
引文
[1] E. Aghion , B. Bronfm, Eliezer, The role of magnesium industry in protecting the environment, Materials Processing and Technology, 2001, 117:381-385
    [2]苏鸿英,镁合金在汽车工业的应用及技术开发现状,有色金属工业,2001,7: 75-76
    [3]翟春泉,曾小勤,镁合金的开发与应用,机械工程材料,2001, 25(1): 6-10
    [4]赵志远,镁合金铸件在汽车上的应用,特种铸造及有色合金,1990, 6: 37-39
    [5]袁序弟,镁合金在汽车工业的应用前景,汽车科技,2002, 3(1): 1-3
    [6]吕宜振,王渠东,曾小勤,丁文江,朱燕萍,镁合金在汽车上的应用现状,汽车技术,1999,8(28): 28-31
    [7]晓青,镁合金在汽车上的开发与应用,上海汽车, 2005, 3: 38-40 [ 8 ] A. Luo, M.O. Pekguleryuz, Cast magnesium alloys for elevated temperature applications, Journal of Materials Science, 1994, 29: 5259-5271
    [9]闫蕴琪,张廷杰,邓炬,周廉,耐热镁合金的研究现状与发展方向,稀有金属材料与工程, 2004,6(33): 561-565
    [10]李新林,王慧远,姜启川,颗粒增强镁基复合材料的研究现状及发展趋势,材料科学与工艺,2001,9(2): 219-224
    [11]陈晓,傅高升,钱匡武,镁基复合材料的研究现状和发展趋势,机电技术,2003,26: 74-80
    [12] D.M. Lee, B.K. Suh, J.S. Lee et al, Fabrication microstructures and tensile properties of magnesium alloy AZ91/SiCp composites produced by powder metallurgy, Material Science and Technology, 1997, 13: 590-595
    [13]都雨林,张文兴,柴东琅等,粉末冶金法制备SiC颗粒增强镁基复合材料工艺及性能的研究,热加工工艺, 2001, 5: 24-26
    [14]陈培生,孙扬善,蒋建清,工艺因素对SiC/Mg复合材料中颗粒分布的影响,东南大学学报,1997,27 (5): 17-23
    [15] R.A. Saravanan, M.K. Surappa, Fabrication and characterization of pure magnesium-30vol.% SiCp particle composite, Material Science and Engineering A, 2000, 276 (1): 108-116
    [16] T.W. Hong, S.K. Kim, H.S. Ha, et al, Microstructural evolution and semisolid forming of SiC particulate reinforced AZ91HP magnesium composites, Materials Science and Technology, 2000,16: 887-892.
    [17] T. Ebert, Spray forming of magnesium alloys and composites, Powder Metallurgy, 1997, 40(2): 126-130
    [18] G.G. Doncel , J. Wolfenstine, P. Melenier et al, The use of foil metallurgy processing to achieve ultra fine grained Mg-9Li laminates and Mg-9Li-5B4C particulate composites, Material Science, 1990, 25: 4535-4540
    [19] B.S. Murty, S.K. Thakur, B.K. Dhindaw, On the Infiltration Behavior of Al, Al-Li and Mg Melts through SiCp Bed, Metallurgical and Materials Transactions A, 2000, 31: 319-325
    [20] K. Purazrang, K.U. Kainer, Fracture Toughness Behaviour of a Magnesium Alloy Metal matrix Composite Produced by the Infiltration Technique, Composites, 1991, 22(6): 456-462
    [21] W.J. Lu, D. Zhang, X.N. Zhang, R.J. Wu, T. Sakata, H. Mori, Microstructural characterization of TiB in in situ synthesized titanium matrix composites prepared by common casting technique, Journal of Alloys and Compounds, 2001, 327(1-2): 240-247
    [22] Y.F. Han, X.F. Liu, X.F. Bian, In situ TiB2 particulate reinforced near eutectic Al-Si alloy composites, Composites, 2002, 33(3): 439-444
    [23] B. Yang, F. Wang, J. S. Zhang, Microstructural characterization of in situ TiC/Al and TiC/Al-20Si-5Fe-3Cu-1Mg composites prepared by spray deposition, Acta Materialia, 2003, 51(17): 4977-4989
    [24] E.L. Zhang, S.Y. Zeng, B. Yang, Q.C. Li, M.Z. Ma, A study on the kinetic process of reaction synthesis of TiC: Part I. Experimental research and theoretical model,Metallurgical and Materials Transactions A, 1999, 30: 1147-1151.
    [25] R.F. Shyu, F.T. Weng, C.T. Ho, in situ reacted titanium nitride-reinforced aluminum alloy composite, Journal of Materials Processing Technology, 2002, 122(2-3): 301-304
    [26] P.C. Maity, P.N. Chakraborty, S.C. Panigrahi, Al-Al203 in situ particle composites by reaction of CuO particles in molten pure Al, Materials Letters, 1997, 30(2-3): 147-151
    [27] M.K. Premkumar, M.G. Chu, Al-TiC particulate composite produced by a liquid state in situ process, Materials Science and Engineering A, 1995, 202(1-2): 172-178
    [28] W.H. Jiang, G.H. Song, X.L. Han, C.L. He, H.C. Ru, Synthesis of TiC/Al composites in liquid aluminum, Materials Letters, 1997, 32(2-3): 63-65
    [29] Y.J. Kim, H.Chung, S.J.L. Kang, Processing and mechanical properties of Ti-6Al-4V/TiC in situ composite fabricated by gas-solid reaction, Materials Science and Engineering A, 2002, 333(1-2): 343-350
    [30] W.J. Lu, D. Zhang, X.N. Zhang, R.J. Wu, T. Sakata, H. Mori, Microstructural characterization of TiC in in situ synthesized titanium matrix composites prepared by common casting technique, Journal of Alloys and Compounds, 2001, 327(1-2): 248-252
    [31] Y.S. Wang, X.Y Zhang, G.T. Zeng, F.C. Li, In situ production of Fe-VC and Fe-TiC surface composites by cast-sintering, Composites A, 2001, 32(2): 281-286
    [32] Z. Mei, Y.W. Yan, K. Cui, Effect of matrix composition on the microstructure of in situ synthesized TiC particulate reinforced iron-based composites, Materials Letters, 2003, 57(21): 3175-3181
    [33] J.P. Tu, N.Y. Wang, Y.Z. Yang, W.X. Qi, F. Liu, X.B. Zhang, H.M. Lu, M.S. Liu, Preparation and properties of TiB2 nanoparticle reinforced copper matrix composites by in situ processing, Materials Letters, 2002, 52: 448-452
    [34] Q. Xu, X.H. Zhang, J.C. Han, X.D. He, V.L. Kvanin, Combustion synthesis and densification of titanium diboride-copper matrix composite, Materials Letters, 2004, 57(28): 4439-4444
    [35] X.H. Zhang, X.D. He, J.C. Han, W. Qu, V L. Kvalin, Combustion synthesis and densification of large-scale TiC-xNi cermets, Materials Letters, 2002, 56(3): 183-187
    [36] J.C. Han, X.H. Zhang, J.V Wood, In-situ combustion synthesis and densification of TiC-xNi cermets, Materials Science and Engineering A, 2000, 280(2): 328-333.
    [37] M. Mabuchi, K. Higashi, Strengthening mechanisms of Mg-Si alloys, Acta Materialia, 1996, 44(11): 4611-4618
    [38] H.Z. Ye, X.Y. Liu, B. Luan, in situ synthesis of AlN particles in Mg-Al alloy by Mg3N2 addition, Materials Letters, 2004, 58(19): 2361-2364
    [39] S.C. Tjong, Z.Y. Ma, Microstructural and mechanical characteristics of in situ metal matrix composites, Materials Science and Engineering R, 2000, 29: 49-113
    [40] H.Z. Ye, X.Y. Liu,Review of recent studies in magnesium matrix composites, Journal of Materials Science, 2004, 39: 6153-6171
    [41] Q.C. Jiang, X.L. Li, H.Y. Wang, Fabrication of TiC particulate reinforced magnesium matrix composites, Scripta Materialia, 2003, 48(6): 713-717
    [42] I. A. Ibrahim, F. A. Mohamed, E. J. Iavernia, Particulate reinforced metal matrix composites-a review, Journal of Materials Science, 1991, 26: 1137-1156
    [43] J. Surbrahmanyam and M. Vijayakumar, Self-propagating high-temperature synthesis, Journal of Materials Science, 1992, 27(23): 6249-6273
    [44] P.K. Rohatgi, R. Ashana, S. Das, Solidification structure and the properties of cast metal ceramic particle composites, International Metals Reviews, 1986, 31(3): 115-140
    [45] A.W. Urquhart, Novel reinforced ceramics and metals: a review of Lanxide's composite technologies, Materials Science and Engineering A, 1991, 144(1-2): 75-82
    [46]李奎,汤爱涛,潘复生,金属基复合材料原位反应合成技术现状与展望,重庆大学学报,2002,25(9):155-161
    [47] S. Hwang, C. Nishimura, P.G. McCormick, Compressive mechanical properties of Mg-Ti-C nanocomposite synthesized by mechanical milling, Scripta Materialia, 2001, 44: 2457-2462
    [48] L. Lu, M.O. Lai, M.L. Hoe, Formation of nanocrystalline Mg2Si and Mg2Si dispersion strengthened Mg-Al alloy by mechanical alloying, Nanostructured Materials, 1998, 10(4): 551-563
    [49] L. Lu, K.K. Thong, M. Gupta, Mg-based composite reinforced by Mg2Si, Composites Science and Technology, 2003, 63(5): 627-632
    [50] L. Lu and L. Froyen, Mechanically alloyed high strength Mg5wt.%Al10.3%wt.Ti4.7%wt.B alloy, Scripta Materialia, 1999, 40(10): 1117-1122
    [51] P.J. Davies, J.L.F. Kellie, J.V. Wood, UK Patent, 1992, No. 2, 257985A
    [52] P.J. Davies, J.L.F. Kellie, J.V. Wood, Development of cast aluminum MMCs, Key Engineering Materials, 1993, 77-78: 357-362
    [53] M.A. Matin, L. Lu, M. Gupta, Investigation of the reactions between boron and titanium compounds with magnesium, Scripta Materialia, 2001, 45(4): 479-486
    [54] Q.C. Jiang, H.Y. Wang, J.G. Wang, Q.F. Guan, C.L. Xu, Fabrication of TiCp/Mg composites by the thermal explosion synthesis reaction in molten magnesium, Materials Letters, 2003, 57(16-17): 2580-2583
    [55] H.Y. Wang , Q.C. Jiang , X.L. Li, J.G. Wang, In situ synthesis of TiC/Mg composites in molten magnesium, Scripta Materialia, 2003, 48(9): 1349-1354
    [56] H.Y. Wang, Q.C. Jiang, X.L. Li, F. Zhao, Effect of Al content on the self-propagating high-temperature synthesis reaction of Al-Ti-C system in molten magnesium, Journal of Alloys and Compounds, 2004, 366: L9-L12
    [57] H.Y. Wang, Q.C. Jiang, X.L. Li, J.G. Wang, Q.F. Guan, H.Q. Liang, In situ synthesis of TiC from nanopowders in a molten magnesium alloy, Materials Research Bulletin, 2003, 38: 1387-1392
    [58] D.C. Dunand, A. Mortensen, J.L. Sommer, Synthesis of bulk and reinforced nickel aluminides by reactive Infiltration, Metallurgical and Materials Transactions A, 1993, 24: 2161-217
    [59] E.T. Nassaj, M. Kobashi, T. Choh, Fabrication and analysis of an in situ TiB2/A1 composite by reactive spontaneous, Scripta Materialia, 1996, 34(8): 1257-1265
    [60] Q. Dong, L.Q. Chen, M.J. Zhao, J. Bi, Synthesis of TiCp reinforced magnesium matrix composites by in situ reactive infiltration process, Materials Letters, 2004, 58(6): 920-926
    [61] L.Q. Chen, Q. Dong, M.J. Zhao, J. Bi, N. Kanetake, Synthesis of TiC/Mg composites with interpenetrating networks by in situ reactive infiltration process, Materials Science and Engineering A, 2005, 408: 125-130
    [62] X.Q. Zhang, L.H. Liao, N.H. Ma, H.W. Wang, The effect of heat treatment on damping characterization of TiC/AZ91 composites, Materials Letters, 2006, 60: 600-604
    [63] X.Q. Zhang, L.H. Liao, N.H. Ma, H.W. Wang, Mechanical properties and damping capacity of magnesium matrix composites, Composites A, 2005, 37: 2011-2016
    [64] Q.C. Jiang, X.L. Li, H.Y. Wang, Fabrication of TiC particulate reinforced magnesium matrix composites, Scripta Materialia, 2003, 48: 713-717
    [65] H.Y. Wang, Q.C. Jiang, Y.Q. Zhao, F. Zhao, B.X. Ma, Y. Wang, Fabrication of TiB2 and TiB2-TiC particulates reinforced magnesium matrix composites, Materials Science and Engineering A, 2004, 372: 109-114
    [66]陈晓,傅高升,钱匡武等,Sr对原位自生Mg2Si/ZM5复合材料组织与性能的影响,中国有色金属学报,2002,12: 241-245
    [67]王连登,傅高升,陈晓等,硅对Mg2Si/ZM5复合材料组织与性能的影响,特种铸造及有色合金,2003,2: 7-10
    [68]陈晓,傅高升,钱匡武等,原位反应自生MgO/Mg2Si增强镁基复合材料的热力学和动力学研究,铸造技术,2003,24(4): 321-324
    [69]于化顺,闵光辉,任旭芳等,B2O3与Mg-Li合金反应合成复合材料的热力学及动力学研究,复合材料学报,1998,15(2): 18-22
    [70] H.S. Yu, R.L. Gao, G.H. Min, Z.F. Wang, X.C. Chen, Mechanical properties and creep resistance of Mg-Li composites reinforced by MgO/Mg2Si particles, Transactions of Nonferrous Metals Society of China, 2002, 12(6): 1154-1157 [ 71 ] J.E. Bishop and V.K. Kinra, Analysis of elastothermodynamic damping in particle-reinforced metal-matrix composites, Metallurgical Transactions A, 1995, 26: 2773–2782
    [72] W. Kimberley, M. Glover, Magnesium flair, Automotive Engineer, 1997, 22(4): 69-71 [ 73 ] A.A. Luo, Recent magnesium alloy development for automotive powertrain applications, Material Science Forum, 2003, 419-422: 57-66
    [74] G.J.C. Carpenter, S.H.J. Lo, Characterization of graphite-aluminum composites using analytical electron microscopy, Journal of Materials Science, 1992, 27: 1827-1841.
    [75] D.M. Goddard, W.R. Whitman, R.L. Pumphrey, Graphite/Magnesium Composites for Advanced Lightweight Rotary Engines, SAE transactions, 1986, 95(3): 598-604
    [76] E.F. Crawley, M.C. Van Schoor, Material damping in aluminum and metal matrixcomposites, Journal of Composite Materials, 1987, 21(6): 553-568
    [77]张小农,张荻,吴人洁等,SiCp和A12Si05f混杂增强纯镁的阻尼性能,材料研究学报,1998,12(1): 75-78
    [78] L.H. Liao, H.W. Wang, X.F. Li, N.H. Ma, Research on the dislocation damping of Mg2Si/Mg-9Al composite materials, Materials Letters, 2007, 61(11-12): 2518-2522
    [79] L.H. Liao, X.Q. Zhang, X.F. Li, H.W. Wang, N.H. Ma, Effect of silicon on damping capacities of pure magnesium and magnesium alloys, Materials Letters, 2007, 61(1): 231-234
    [80] L.H. Liao, X.Q. Zhang, H.W. Wang, X.F. Li, N.H. Ma, Influence of Sb on damping capacity and mechanical properties of Mg2Si/Mg-9Al composite materials, Journal of Alloys and Compounds, 2007, 430(1-2): 292-296
    [81] X.Q. Zhang, H.W. Wang, L.H. Liao, N.H. Ma, In situ synthesis method and damping characterization of magnesium matrix composites, Composites Science and Technology, 2007, 57: 720-727
    [82] P. Lukac, Z. Trojanova, W. Riehemann and B.L. Mordike, Damping in Magnesium Matrix Composites, Materials Science Forum, 1996, 210-213: 619-626
    [83] J. Goken, W. Richemann, Dependence of internal friction of fiber-reinforced and unreinforced AZ91 on heat treatment, Materials Science and Engineering, 2002, 324: 127-133.
    [84] C.J. Ma, D. Zhang, W.J. Ding, Q.D. Wang, Damping Capacity of SiCw/MgLiAl Composites, Journal of Materials Science Letters, 2001, 20: 327-329.
    [85]张小农,张荻,吴人洁,王灿,朱震刚,纤维增强镁基复合材料的阻尼性能,宇航材料工艺, 1997,6 :21-22.
    [86]张小农,陈思根,张荻,吴人洁,Gr/Mg复合材料的阻尼行为研究,材料工程, 1997, 8 : 19-21
    [87]张小农,张荻,吴人洁,王灿,朱震刚,纯镁基复合材料的阻尼性能,功能材料,1997, 28(5): 540-542
    [88] X.N. Zhang, D. Zhang, R.J. Wu, Z.G. Zhu and C. Wang, Mechanical properties and damping capacity of (SiCw+B4Cp)/ZK60A Mg alloy matrix composite, Scripta Materialia,1997, 37:1631–1635.
    [89]张虹,斯永敏,刘庆国等,不同增强体镁基复合材料的阻尼性能,国防科技大学学报, 1996, 18(3): 54-58
    [90] C. Mayencourt, R. Schaller, Development of a high-damping composites: Mg2Si/Mg, Physica Status Solidi A Applied Research, 1997, 163(2): 357-368
    [91] X.Q. Xie, T.X. Fan, D. Zhang, T. Sakata, H. Mori, Mechanical and Damping Behavior of Woodceramics/ZK60A Mg Alloy Composite, Materials Research Bulletin, 2002, 37:1133-1140.
    [92] N. Srikanth and M. Gupta, Determination of energy dissipation in Mg/SiC formulations using a new method of suspended beam coupled with circle-fit approach, Scripta Materialia, 2001, 45: 1031-1037
    [93] N. Srikanth and M. Gupta, Damping characterization of Mg-SiC composites using an integrated suspended beam method and new circle-fit approach, Materials Research Bulletin, 2002, 37: 1149-1162
    [94] Z. Trojanova, H .Ferkel, P. Lukac, W. Riehemann, Two new high-damping magnesium composites, Physica Status Solidi (A) Applied Research, 2002, 193(2): 205-210.
    [95]葛庭隧,非线性滞弹性内耗的实验和理论研究,金属学报,1997,33(17): 9-21
    [96] A. Granato, K. Lücke, Theory of mechanical damping due to dislocation, Journal of Applied. Physics, 1956, 27: 583-593.
    [97] T.W. Clyne, P.T. Withers,An introduction to metal matrix composites, Cambridge University Press,1993, 287-289
    [98] W.A. Updike, R.B. Bhagat,M.J. Pechersk,The damping performance of aluminum based composites,Journal of Metals, 1990, 42: 44-46
    [99] S Xu, J P Thomson and M Sahoo, A Review on Stress Relaxation And Bolt Load Retention Of Magnesium Alloys For Automotive Applications, Canadian Metallurgical Quarterly, 2004, 43: 489-506
    [100] D.L. Albright and T.K. Aune, Stress Relaxation Behavior of Die Casting Alloys, SAE Technical Paper Series, 1991, No.910412
    [101] T.K. Aune and T.J. Ruden, High Temperature Properties of Magnesium Die Casting Alloys, SAE Technical Paper Series, 1992, No. 920070
    [102] A.P. Druschitz and E.R. Showalter, Bolt Load Compressive Stress Retention Testing of Magnesium Alloys, SAE Technical Paper Series, 2003, No. 2003-01-0187
    [103] F. Hollrigl-Rosta, E. Just, J. Kohler and H.J. Melzer, Magnesium in Volkswagen, Proc. Conf. 37th Annual World Conference on Magnesium, Salt Lake City, Utah, U.S.A., 1980, 38-45.
    [104] P. Labelle, M. Pekgularyuz, M. Lefebvre and R. Bouchard, New Aspect of Temperature Behavior of AJ52x, Creep Resistant Magnesium Alloy, SAE Technical Paper Series, 2002, No. 2002-01-0079
    [105] S. Koike, K. Washizu, S. Tanaka, T. Baba and K. Kikawa, Development of Lightweight Oil Pans Made of a Heat-Resistant Magnesium Alloy for Hybrid Engines, SAE Technical Paper Series 2000, No. 2000-01-1117
    [106] F.C. Chen, J.W. Jones, T.A. McGinn, J.E. Kearns, A.J. Nielsen and J.E. Allison, Bolt-Load Retention and Creep of Die-Cast Magnesium Alloys, SAE Technical Paper Series, 1997, No. 970325
    [107] L.P. Moreno, K, Y. Sohn, J.W. Jones and J.E. Allison, Bolt-Load Retention Behavior of a Die Cast Magnesium-Rare Earth Alloy, SAE Technical Paper Series, 2001, No. 2001-01-0425
    [108] K. Pettersen and S. Fairchild, Stress Relaxation in Bolted Joints of Die Cast Magnesium Components, SAE Technical Paper Series, 1997, No. 970326
    [1] D.J. Lloyd, H. Lagace, Microstructural aspects of aluminum-silicon carbide particulate composites produced by a casting method, Materials Science and Engineering A, 1989,107: 73-80
    [2] T.X. Fan, D. Zhang, R.J. Wu, etc., Effect of Ti upon the interfacial reaction in SiCp/Al composites during multiple remelting above the liquidus, Journal of Materials Science Letters, 2002, 21: 1157-1161
    [3] A.R. Miedema, P.F. Dechatel, and F.R. De Boer, Cohesion in alloys-fundamentals of a semi-empirical model, Physica B, 1980, 100: 1-28
    [4] G.M. Wilson, Vapor-Liquid equilibrium XI. A new expression for the excess free energy of mixing, Journal of American Chemical Society, 1964, 86: 127-130
    [5] I. Gotman, M.J. Koczak, E. Shtessel, Fabrication of Al matrix in situ composites via self-propagating synthesis, Materials Science and Engineering A, 1994, 187: 189-199
    [1] P.J. Davies, J.L.F. Kellie, J.V. Wood, UK Patent, 1992, No. 2,257985A
    [2] M.A. Matin, L. Lu, M. Gupta, Investigation of the reactions between boron and titanium compounds with magnesium, Scripta Materialia, 2001, 45(4):479-486
    [3] Q.C. Jiang, H.Y. Wang, J.G. Wang, Q.F. Guan, C.L. Xu, Fabrication of TiCp/Mg composites by the thermal explosion synthesis reaction in molten magnesium, Materials Letters, 2003, 57(16-17): 2580-2583
    [4] H.Y. Wang, Q.C. Jiang, X.L. Li, F. Zhao, Effect of Al content on the self-propagating high-temperature synthesis reaction of Al-Ti-C system in molten magnesium, Journal of Alloys and Compounds, 2004, 366: L9-L12
    [5] Q. Dong, L.Q. Chen, M.J. Zhao, J. Bi, Synthesis of TiCp reinforced magnesium matrix composites by in situ reactive infiltration process, Materials Letters, 2004, 58(6): 920-926
    [6] X.Q. Zhang, L.H. Liao, N.H. Ma, H.W. Wang, Mechanical properties and damping capacity of magnesium matrix composites, Composites A, 2005, 37: 2011-2016
    [7]陈晓,傅高升,钱匡武等,Sr对原位自生Mg2Si/ZM5复合材料组织与性能的影响,中国有色金属学报,2002,12: 241-245
    [8] Q. Dong, L.Q. Chen, M.J. Zhao, J. Bi, Synthesis of TiCp reinforced magnesium matrix composites by in situ reactive infiltration process, Materials Letters, 2004, 58(6): 920-926
    [9] L.Q. Chen, Q. Dong, M.J. Zhao, J. Bi, N. Kanetake, Synthesis of TiC/Mg compositeswith interpenetrating networks by in situ reactive infiltration process, Materials Science and Engineering A, 2005, 408: 125-130
    [10] Q.C. Jiang, H.Y. Wang, J.G. Wang, Q.F. Guan, C.L. Xu, Fabrication of TiCp/Mg composites by the thermal explosion synthesis reaction in molten magnesium, Materials Letters, 2003, 57(16-17): 2580-2583
    [11] H.Y. Wang, Q.C. Jiang, X.L. Li, J.G. Wang, Q.F. Guan, H.Q. Liang, In situ synthesis of TiC from nanopowders in a molten magnesium alloy, Materials Research Bulletin, 2003, 38: 1387-1392
    [12] Y Choi, S.W. Rhee, Effect of aluminium addition on the combustion reaction of titanium and carbon to form TiC, Journal of Materials Science, 1993, 28: 6669 -6675
    [13] W.C. Lee, S.L. Chung, Ignition phenomena and reaction mechanisms of the self-propagating high-temperature synthesis reaction in the titanium-carbon-alumininn system, Journal of American Ceramic Society, 1997, 80(l): 53-61
    [14] S.D. Dunmead, D.W. Readey, C.E. Semler, Kinetics of combustion synthesis in the Ti-C and Ti-C-Ni systems, Journal of American Ceramic Society, 1989, 72(12): 2318-2324
    [15] M.K.Premkumar, M .G.Chu, Al-TiC particulate composite produced by a liquid state in situ process, Materials Science and Engineering A, 1995, 202(1-2): 172-178
    [16]中村元志等,各种铸造法を用いた材料,部品の制造,铸物, 1989, 61 (6): 423-431
    [17]郑成琪,熊书明,复合材料凝固过程中的颗粒/界面行为数学模型,铸造设备研究,2002,1:17-19
    [18] R.J. Arsenault, N. Shi, Dislocation generation due to differences between the coefficients of thermal expansion,Mater. Sci. Eng, 1986, 81: 175-187
    [1]黄伯云,李成功,石力开,邱冠周,左铁镛,中国材料工程大典有色金属材料工程(上),2006: 182
    [2] D.J. Lloyd, The solidification microstructure of particulate reinforced aluminium/SiC composites, Composites science and technology, 1989, 35: 159-179
    [3] E.O. Hall, The Deformation and Ageing of Mild Steel: III Discussion of Results,Proceedings of the Physical Society. Section B, 1951, 64: 747-753
    [4] N.J. Petch, The Cleavage Strength of Polycrystals, Journal of Iron and Steel Institute, 1953, 174: 25-28.
    [5] X.L. Zhong, W.L.E. Wong, M. Gupta, Enhancing strength and ductility of magnesium by integrating it with aluminum nanoparticles, Acta Materialia, 2007, 55: 6338–6344 [ 6 ] M. Taya, Strengthening mechanisms of metal matrix composites, Materials Transactions, JIM, 1991, 32(11): 1-19
    [7]印有胜,沉淀强化和弥散强化合金强化机制的定量探讨,沈阳工业大学学报,1996,18(4):74-78.
    [8] Dunand, DC and Mortensen, A, On plastic relaxation of thermal stresses in reinforced metals, Acta metall. mater.,1991, 39: 127-139
    [9] F.J. Humphreys, Mechanical and Physical Behaviour of Metallic and Ceramic Composites, Riso National Laboratory, Denmark,1988: 25-26
    [10] R.M. Aikin, L. Christodoulou, The role of equiaxed particles on the yield stress of composites, Scripta Metall, 1991, 25: 9-14.
    [11] M. Mabuchi, K. Higashi, Strengthening mechanisms of MgSi alloys, Acta Materialia,1996, 44(11): 4611-4618
    [12] V.V. Bhanuprasad, M.A. Staley, P. Ramakrishnan and. Y.R. Mahajan, Fractography of metal matrix composites, Key Engineering Materials, 1995, 104-107: 495-506
    [13] P.J. Withers, W.M. Stobbs, A.J. Bourdillon, Various TEM Methods for the Study of MMCs, Journal of microscopy,1988,151:159-169
    [14] M. Manoharan, J.J. Lewandowski, Crack Initiation and Growth Toughness of an Al MMC, Acta Metall, 1990, 38: 489-496
    [15] A.S. Argon, J. Im and R. Safoglu, Cavity formation from inclusions in ductile fracture, Metallurgical transactions A, 1975, 6: 825–837.
    [16]居志兰,花国然,戈晓岚,SiCp粒径及含量对铝基复合材料拉伸性能和断裂机制的影响,机械工程材料,2008,32:27-29
    [17] D. Lloyd, Aspects of Particle Fracture in Particulate Reinforced MMCs, Acta Metall., 1991, 39: 59-72
    [18] S. Xu, J.P. Thomson and M. Sahoo, A Review on Stress Relaxation And Bolt Load Retention Of Magnesium Alloys For Automotive Applications, Canadian Metallurgical Quarterly, 2004, 43: 489-506
    [19] H.J. Mcqueen, J. J. Jonas, Recent Advances in Hot Working: Fundamental Dynamic Softening Mechanisms, J. Appl. Metalwork, 1984, 3: 233-241.
    [20] H.J. Mcqueen, D. L. Bourell, Hot Workability of Metals and Alloys, J. Met, 1987, 39: 28-35.
    [21] S. Spigarelli, M. Regev, E. Evangelista, A. Rosen, Review of creep behaviour of AZ91 magnesium alloy produced by different technologies,Materials Science and Technology, 2001, 17: 627-638.
    [22] W. Blum, P. Weidinger, B. Watzinger, R. Sedlacek, R. Rosch, H.G. Haldenwanger, Time dependent deformation of the magnesium alloys AS21 and AZ91 around 100°C, Zeitschrift für Metallkunde, 1997, 88: 636-641.
    [23] S. Barbagallo, P. Cavaliere, E. Cerri, Compressive plastic deformation of an AS21X magnesium alloy produced by high pressure die casting at elevated temperatures,Materials Science and Engineering A,2004, 367(1-2): 9-16
    [ 24 ] S. Spigarelli, D. Ciccarelli, E. Evangelista, Compressive deformation of an Mg-Al-Si-RE alloy between 120 and 180°C, Materials Letters, 2004, 58: 460-464
    [25] R. Raj, Development of a processing map for use in warm-forming and hot-forming process. J Metall Mater Transact A, 1981, 12: 1089-1097.
    [26] H.L. Gegel, J.C. Malas, S.M. Doraivelu, In: Forming and forging, Metals handbook, Metal Park ASM, 1988, 14: 417-432.
    [27] Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, and D.R. Barker, Modeling of dynamic materials behavior in hot working deformation forging Ti-6462. Metallurgical and Materials Transactions A, 1984, 15:1883–92.
    [28] Y.V.R.K. Prasad, D.H. Sastry, S.C. Deevi, Processing maps for hot working of a P/M iron aluminide alloy, Interlnetallics, 2000, 17(8): 1067-1074
    [29] O. Slvakesavam,Y.V.R.K. Prasad, Processing map for hot working of hot-rolled Mg-11.5Li-1.5Al alloy, Zeitschrift für Metallkunde, 2002, 93(2):123-127
    [30] O. Slvakesavam,Y.V.R.K. Prasad., Characteristics of super plasticity domain in the processing map for hot working of as-cast Mg-11.5Li-1.5Al alloy, J Mater Sci Eng A, 2002, 323: 270-277.
    [31] O. SIVAKESAVAM, I. S. RAO and Y. V. R. K. PRASAD, Processing map for hot working of as cast magnesium, Materials Science and Technology, 1993, 9: 805-810
    [32] O. Sivakesavam and Y. V. R. K. Prasad, Hot deformation behaviour of as-cast Mg-2Zn-1Mn alloy in compression: a study with processing map, Mater. Sci. Eng. A, 2003, 362: 118-124.
    [1] I.Ritchie, Z.L. Pan, K. W. Sprungann, H. K. Schmidt, R. Dutton, High damping alloys the metallurgist's cure for unwanted vibrations, Can. Metall. Q, 1987, 26: 239-250.
    [2] A.A. Luo, Recent magnesium alloy development for automotive powertrain applications, Mater. Sci. Forum, 2003, 419-422: 57-66.
    [3] R. Schaller, Metal matrix composites, a smart choice for high damping material, J Alloys Comp, 2003, 355: 131-135.
    [4] G.J.C. Carpenter, S.H.J. Lo, Characterization of graphite-aluminium composites using analytical electron microscopy,J. Mater. Sci., 1992, 27: 1827-1841.
    [5] I.A. Ibrahim, F.A. Mohamed, E.J. Lavernia, Particulate reinforced metal matrix composites-a review,J. Mater. Sci., 1991, 26: 1137-1156.
    [6] A. Granato, K. Lücke, Application of dislocation theory to internal friction Phenomena at high frequencies, J. Appl. Phys., 1956, 27(7): 789-805.
    [7] A. Granato, K. Lücke, Theory of mechanical damping due to dislocation, J. Appl. Phys., 1956, 27: 583-593.
    [8] R. Schaller, G. Fantozzi, G. Gremaud, Mechanical spectroscopy Q-1 2001 with applications to materials science,Materials science forum, 2001, 615: 366-368
    [9] A. Granato, K. Lücke, Temperature dependence of amplitude-dependent dislocation damping, Journal of Applied Physics, 1981, 52: 7136-7142.
    [10] R. González-Martínez, J. G?ken, D. Letzig, K. Steinhoff and K.U. Kainer,Influence of aging on damping of the magnesium–aluminium–zinc series, Journal of Alloys and Compounds,2007, 437: 127-132
    [11] J. Zhang, R.J. Perez, E.J. Lavernia, Effect of SiC and graphite particulates on the damping behavior of metal matrix composites, Acta Metall., 1994, 42: 395-409.
    [12] S. Sastry, M. Krishna, J. Uchil, A study on damping behaviour of aluminite particulate reinforced ZA-27 alloy metal matrix composites, J. Alloys Comp, 2001, 314: 268-274
    [13] J. Zhang, R.J. Perez, C.R. Wong, E.J. Lavernia, Effects of secondary phases on the damping behavior of metals, alloys and metal-matrix composites, Mater. Sci. Eng. R, 1994, 13: 325-390
    [14] G. Schoeck, Internal Friction Due to Precipitation, Phys Status Solid, 1969, 32(2): 651-658
    [1] A. Luo, M.O. Pekguleryuz, Cast magnesium alloys for elevated temperature applications, Journal of Materials Science, 1994, 29: 5259-5271
    [2] A. A. Luo, Recent magnesium alloy development for elevated temperature applications, International Materials Reviews, 2004,49(1): 13-30
    [3] S Xu, J P Thomson and M Sahoo, A Review on Stress Relaxation And Bolt Load Retention Of Magnesium Alloys For Automotive Applications, Canadian Metallurgical Quarterly, 2004, 43: 489-506
    [4] D.L. Albright and T.K. Aune, Stress Relaxation Behavior of Die Casting Alloys, SAE Technical Paper Series, 1991, No.910412
    [5] F. Hollrigl-Rosta, E. Just, J. Kohler and H.J. Melzer, Magnesium in Volkswagen, Proc. Conf. 37th Annual World Conference on Magnesium, Salt Lake City, Utah, U.S.A., 1980, 38-45.
    [6] F.C. Chen, J.W. Jones, T.A. McGinn, J.E. Kearns, A.J. Nielsen and J.E. Allison, Bolt-Load Retention and Creep of Die-Cast Magnesium Alloys, SAE Technical Paper Series, 1997, No. 970325
    [7] E. G. Sieracki, J. J. Velazquez and K. Kabiri, Compressive Stress Retention Characteristics of High Pressure Die Casting Magnesium Alloys, SAE Technical Paper Series,1996, No.960421.
    [8] P. Labelle, M. Pekgularyuz, M. Lefebvre and R. Bouchard, New Aspects of Temperature Behavior of AJ52x, Creep Resistant Magnesium Alloy, SAE Technical Paper Series, 2002, No. 2002-01-0079.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700