深部岩体多场耦合分析及地下空间开挖卸荷研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国民经济的蓬勃发展,越来越多的工程进入深部开采。深部岩体处于高地应力、高地温和高渗透水压力的特殊环境下,岩体的力学响应明显有别于浅部岩体。由于深部岩体受到各种荷载作用、岩体介质本身的复杂性、认识的不确定性以及深部岩体所表现出来的一系列新的力学特征,致使深部岩体的渗透性、破坏模式、强度特性以及开挖卸荷作用下岩体的变形特性等难于用传统的理论加以合理的解释。针对深部岩体的特点,研究深部岩体在“三高”环境下的力学特性和开挖卸荷作用下的变形规律已经成为一种现实需要,本文研究的主要内容如下:
     1.研究高温下的岩石结构的变化,用热应力作为桥梁,得出岩石渗透率和温度之间的数学关系式,由岩石渗透率和温度之间的数学关系式可知,温度在开始升高时,渗透率增加缓慢;当升高到一定温度后,渗透率增加的速度迅速增大,这一温度即为门槛值。经过门槛值温度之后岩石的渗透率随温度升高而迅速增加,不同的岩体其温度的门槛值是不同的。
     2.深部岩体处于中、高应力作用下,应力对岩体的渗透性影响很大,应力的变化将导致有效隙宽的改变,有效隙宽的改变,改变了岩体的渗透性。以有效隙宽的变化为基础,推导了岩体在中、高法向应力和剪切应力作用下岩体的渗透率表达式。结合裂隙渗流规律,建立了三维应力作用下裂隙渗流与应力表达式;通过张量分析,推导了裂隙组和多裂隙组渗透张量与应力的耦合表达式。
     3.从质量守恒定律、动量平衡原理和能量守恒定理三个原理出发,根据连续性方程、动量平衡方程和能量守恒方程这三个基本方程出发,建立了深部岩体温度场、渗流场和应力场的三场耦合作用控制方程组,包括温度作用下的岩体应力场控制方程、应力场和温度场作用下的岩体渗流控制方程以及渗流场和应力场作用下深部岩体的温度控制方程,定性的分析了三场耦合之间的作用关系和岩体在三场耦合作用下的变化情况。对三场耦合作用下的岩体力学特性情况进行了模拟,并对岩体三场耦合作用进行了定性研究。
     4.采用常规三轴加载试验和卸荷试验研究在不同围压下岩体的破坏模式和力学参数的变化特性;卸荷试验突破了以加载的方式研究岩体的力学特性。岩体在加、卸荷条件下的变形均随主应力差的增大而增大,但在相同的主应力差下,卸荷产生的扩容量比加荷时的要大,破坏程度也更为强烈。岩体在卸荷破坏失稳时的应力强度较加载破坏失稳时的应力强度更低。加载下岩体易呈现剪切破坏,而卸荷下岩体常呈现张剪复合型破坏。
     5.在相同的应力状态下,岩石在加载和卸荷作用下,在试样内部岩石微结构的破坏过程和破坏程度是不相同的。地下洞室围岩的失稳主要是由于工程开挖导致岩体卸荷产生损伤,围岩损伤的逐步累积发展造成围岩失稳。由于应力路径的差异,相同条件下岩体在卸荷条件下的力学行为不同于其在连续加载的力学行为。因此,采用基于连续加载条件的岩体破坏准则来分析卸荷条件下的洞室围岩稳定是不合适的。进一步证明,加载试验方法获得的岩体力学参数用于地下工程开挖的计算是不合理的。此外,孔隙水压对岩石内部裂纹的扩展、贯通起到加剧作用,并对围压起到遏制作用,降低了岩体的强度,但水压对岩体强度的降低程度随围压的增大而有所减小。
     6.岩体开挖本身就是一个应力调整和不断卸荷的过程,采用有限元软件对厂房地下工程进行了开挖卸荷模拟,模拟了不同开挖时步下围岩的位移和应力变化情况以及不同开挖空间岩体的变形规律。结合硗碛水电站地下厂房工程开挖所安装的多点位移计和锚杆应力计所监测到的不同开挖时间和开挖空间所对应的应力和位移资料,通过分析比较,开挖卸荷数值模拟结果和实际监测到的资料具有良好的一致性。通过卸荷开挖模拟和实测数据对比分析可知,采用数值模拟计算得到的不同时步的围岩应力和位移值,来实现对地下厂房工程围岩的稳定性进行评价和控制是可行的。
With the development of national economy, the exploration of underground space becomes deeper and deeper. Being in the conditions of high stress, temperature and seepage pressure, the mechanical behaviors of deep rock mass shows a quite difference from that of shallow rock mass. Because of the actions of various loadings, the complexity of rock medium, the uncertainty of perceptibility and a series of new mechanical properties of deep rock mass, the permeability, failure mode, strength and deformation characteristics under excavation and unloading are difficult to be interpreted with traditional theories reasonably. Consequently, it's essential to study the mechanical properties of deep rock mass under high stress, temperature and hydraulic pressure, together with the deformation regularity under excavation unloading. The content of this paper is summarized as fellows:
     1. Based on the study on the changes of the rock mass structure under high temperature, the expression of rock permeability and temperature is put forward with thermal stress as a bridge. According to the formula, permeability increased slowly with the rising of temperature, while increased rapidly when temperature reached a certain value. This temperature is threshold temperature and permeability of rock mass still increased rapidly when temperature beyond the threshold. The thresholds of different rock mass are different.
     2. Owing to the high in-site stress, permeability of deep rock mass is greatly affected by stress, for the variation of stress will lead to the variation of the effective width of fracture which will influence the permeability. Based on the variation of effective width of fracture, the expression of rock mass permeability is brought forward in the case of medium and high normal stress and shear stress. And, the formula of crack seepage and stress under three dimension stresses are obtained by virtue of seepage regularity. Additionally, the coupling equation of the stress and the seepage tensor of the joint sets and cross joint sets is deduced through tensor analysis.
     3. According to the mass conservation law, linear momentum equilibrium principle and energy conservation law, the governing equations for coupled Thermo-Hydro-Mechanical (THM) behaviors in deep rock mass are derived. The governing equations include those for thermal, hydrological and mechanical fields, and are based on the conservation equations for fluid and solid masses, linear momentum and energy. The interaction of THM field and the response of the deep rock mass to the THM coupling are analyzed qualitatively. Furthermore, mechanical characteristics of deep rock mass in THM coupling are simulated and corresponding qualitative research is performed.
     4. Triaxial compression test and unloading test are carried out to study the failure modes and mechanical behaviors of rock mass under different confining pressure. Unloading test is distinguished from the conventional test which is by loading. The strains of rock mass under loading and unloading both increases with the growth of principal stress difference. However, with the same principal stress difference, volumetric dilatancy caused by unloading is greater than that of loading, as well as the damage of rock mass. Strength of rock mass in unloading tests is less than it in loading tests. And shear failure always occurs in rock mass under loading condition while tensional shear failure under unloading.
     5. The process and extent of microstructures damage inside the samples caused by loading and unloading are different under the same stress state. Failures of surrounding rock mass in the underground cavity mainly result in the unloading during excavation and which will lead to the accumulation and developing of the damage gradually. Due to different stress paths, the mechanical behaviors under unloading are distinguished from those in the tests of loading under the same stress condition. So, it is not appropriate to perform the stability evaluation of unloading rock mass according to the traditional strength criterion and it is also unreasonable to apply the mechanical parameters obtained from the loading test to the calculation of excavation engineering. Strength of rock mass will be weakened as pore water pressure will redound to the developing and coalescence of fractures and keep the confining pressure within limits. The decreasing effect pore water pressure to rock mass strength will be lowered with the increase of confining pressure.
     6. Excavation is a process of stress adjustment and unloading ceaselessly. Numerical software is used to simulate the excavation unloading. Variations of displacement and stress in different stages as well as the deformation regularity of different parts of rock mass are discussed. By comparison, results of numerical simulation are well in accordance with the monitoring data obtained from the multi-points extensometers and bolt stress meters which are installed in the underground power plant of Qiaoqi hydroelectric power station. And it is feasible to appraise the stability and control the deformation of surrounding rock mass in underground engineering with numerical simulation results.
引文
[1] 谢和平.深部大型地下工程开采与利用中的几个关键岩石力学问题[M].北京:中国环境科学出版社,2002.
    [2] 谢和平.深部高应力下的资源开采现状、基础科学问题与展望[M].北京:中国环境科学出版社,2002.
    [3] 张有天,周建平.水电站大型地下工程建设的新进展[J].水利发电,2004(12):64~68
    [4] 何满朝,景海河.深部工程围岩及非线性动态力学设计理念[J].岩石力学与工程学报, 2002.24(12):1215~1224
    [5] 曾立新.深层岩石力学性质的试验方法[J].地质力学学报,1999,5(1):71~76
    [6] 王永岩,魏佳齐,李剑光等.深部岩体非线性蠕变变形预测研究[J].煤炭学报,2005,30(4): 409~413.
    [7] 蒋斌松,韩立军,贺永年.深部岩体变形的混沌预测方法[J].岩石力学与工程学报,2005, 24(16):2934~2940
    [8] 刘佑荣,唐辉明.岩体力学 M].武汉:中国地质大学出版社,1999
    [9] 孙广忠.岩体结构力学M].北京:科学出版社,1988
    [10] 谷兆祺,彭守拙,李仲奎.地下洞室工程M].北京:清华大学出版社,1994
    [11] 徐燕萍,刘泉声,许锡昌.温度作用下的岩石热弹塑性本构方程的研究[J].辽宁工程技术大学学报,2001,20(4):527~529
    [12] 左建平,谢和平,周宏伟.温度压力耦合作用下的岩石屈服破坏研究[J].岩石力学与工程学报,2005,24(16):2917~2921
    [13] 王永岩,齐瑁,杨彩虹等.深部岩体非线性蠕变规律研究[J].岩土力学,2005,26(1):117~121
    [14] 蒋斌松,蔡美峰,贺永年等.深部岩体非线性Kelvin蠕变变形的混沌行为[J].岩石力学与工程学报,2006,25(9):1862~1867
    [15] 谢和平,Sanderson D.J.,Peacock D.C.P.雁形断裂分形模型与能量耗散[J].岩土工程学报, 1994 16(1):78~83
    [16] 孟召平,彭苏萍,张慎河.不同成岩作用程度砂岩物理力学性质三轴试验研究[J].岩土工程学报,2003,25(2):140~143
    [17] 尤明庆.复杂路径下岩样的强度和变形特性[J].岩石力学与工程学报,2002,21(1):23~28
    [18] 王在泉,张黎明,贺俊征.岩石卸荷本构关系的BP神经网络模型[J].岩土力学,2005,24: 119~121
    [19] 张黎明,王在泉,王建新等.岩石卸荷破坏的试验研究[J].四川大学学报,2006,38(3):34~37
    [20] 车用太,鱼金子,刘五洲.华北北部地区地震中短期前兆场的震中区前兆空区模式岩体力学[J].华南地震,2000,20(2):1~6
    [21] 尤明庆.岩石试样的强度及变形破坏过程[M].北京:地质出版社,2000
    [22] 贺玉龙,杨立中.温度和有效应力对砂岩渗透率的影响机理研究[J].岩石力学与工程学报, 2005,24(14):2420~2427
    [23] 周青春,李海波,杨春和等.南水北调西线一期工程砂岩温度、围压和水压耦合试验研究[J].岩石力学与工程学报,2005,24(20):3639~3645
    [24] 孙钧.世纪之交的岩石力学研究.中国岩石力学与工程学会第五次学术大会论文集[D].中国科学技术出版社,1998
    [25] 唐春安.岩石破裂过程中的灾变[M].北京:煤炭工业出版社,1993
    [26] 曹文贵,方祖烈,唐学军.岩石损伤软化统计本构模型之研究[[J].岩石力学与工程学报, 1998,17(6):2621~2625
    [27] 李兆霞.损伤力学及其应用[M].北京:科学出版社,2002
    [28] 杨天鸿,唐春安,朱万成等.岩石破裂过程渗流与应力耦合分析[J].岩土工程学报 2001,23(4): 489~493
    [29] 何满潮,吕晓俭,景海河.深部工程围岩特性及非线性动态力学设计理念[J].岩石力学与工程学报,2002,21(8):1215~1224
    [30] 周宏伟,谢和平,左建平.深部高地应力下岩石力学行为研究进展[J].力学进展,2005,35(1): 91~99
    [31] 王明洋,周泽平,钱七虎.深部岩体的构造和变形与破坏问题[J].岩石力学与工程学报, 2006,25(3):448~455
    [32] Marti, J. and P. A. Cundall. "Mixed Discrimination Procedure for Accurate Solution of PlasticityProblems," Int. J. Num. Methods and Anal. Methods in Geomech, 1982 (6) : 129~139,.
    [33] Itasca Consulting Group, Inc. PFC3D (Particle Flow Code in 3 Dimensions), Version 2.0. Minneapolis: ICG, 1999
    [34] Barton, N. "The Shear Strength of Rock and Rock Joints," Int. J. Rock Mech. Min. Sci. & Geotech. Abstr, 1976(13): 255~279
    [35] Brady, B. H. G., and E. T. Brown. Rock Mechanics for Underground Mining. London: GeorgeAllen & Unwin., 1985.
    [36] Cundall, P. A. "Numerical Modeling of Jointed and Faulted Rock," in Mechanics of Jointed and Faulted Rock, 11~18. Rotterdam: A. A. Balkema, 1990
    [37] 谢和平,高峰.岩石类材料损伤演化的分形特征[[J].岩石力学与工程学报,1991,10(1):12~16
    [38] Snow D T. A parallel plate model of fracture permeable media. Ph.D. Thesis [D]. Berkeley: University of California, Berkeley, 1965
    [39] Yasuhara, H,D. Elsworth and A Polak. The evolution of permeability in a natural fracture: the significant role of pressure solution. Journal of Geophysical Res, Vol.109, B03204
    [40] Jing L. A review of techniques, advances and outstanding issues in numerical modeling for rock mechanics and rock engineering. International Journal of rock mechanics & mining sciences, 2003,40: 283~353.
    [41] 高大钊.岩土工程的回顾与展望[M].北京:人民交通出版社,2001
    [42] Singh J. Strength of rocks at depth. In: Griggs D, Handin J eds, Rock at Great Depth, Rotterdam: AA Balkema, 37~44.
    [43] 章根德.岩石介质流变学[M].北京:科学出版社,1999
    [44] 中国科学院地质研究所.岩体工程地质力学问题[M].北京:科学出版社,1980
    [45] 郭志.软岩力学特性研究[[J].工程地质学报,1996,4(3):79~84
    [46] 许宏发.软岩强度和弹模的时间效应研究[[J].工程地质学报,1996,16(3):246~251
    [47] 李永胜.作为现代学科的岩石力学研究与实践.中国岩石力学与工程学会第五次学术大会论文集[D].中国科学技术出版社.1998
    [48] Sun Jun. A study on 3-D nonlinear rheological behavior of soft rocks. In: Edited by He-Hua Zhu, Jin-Chun,Chai,Mao-SongHuang, Practice and advance in geotechnical engineering[C].Shanghai. 2002
    [49] 唐礼忠,潘长良.岩石在峰值荷载变形条件下的松弛试验研究[J].岩土力学,2003,12(24): 941~943
    [50] 徐平.三峡工程花岗岩蠕变特性试验研究[J].岩土工程学报,1996,18(4):246~251
    [51] 周火明,熊诗湖,刘小红等.三峡船闸边坡岩体拉剪试验及强度准则研究[J].岩石力学与工程学报,2005,24(24):4418~4421
    [52] 王在泉.复杂边坡工程系统稳定性研究[M].徐州:中国矿业大学出版社,1999
    [53] 雷承弟.二滩水电站枢纽区岩体蠕变试验[J].水电工程研究,1989:1~11
    [54] 朱维申.何满潮.复杂条件下围岩稳定性与岩体动态施工力学[M].北京:科学出版社.1995
    [55] 张向东.软岩蠕变理论及其工程应用[J].岩石力学与工程学报,2004,23(10):1640~1642
    [56] 孙钧.隧道力学问题的若干进展[J].西部探矿工程,1993(4):1~7
    [57] 王援,速宝玉,徐志英.三维裂隙岩体渗流场耦合模型及有限元模拟[J].水文地质工程学报,1995(3):1~4
    [58] 柴军瑞.岩体渗流场与应力场耦合分析的多重裂隙网络模型[J].岩石力学与工程学报, 2000,19(6):712~717
    [59] Noorishad J. eatl. A finite-element method for coupled stress and fluid for analysis in fractured rock masses. Int..J. Rock. Mech.Sci.&Geomech. Abstr. 1985, 22 (4):251~281
    [60] Ohnishi Y.,Kabayashi A. Thermal-hydraulic-mechanical coupling analysis of rock mass. See: Comprehensive Rock Engineering, Pergamon Press, 1993(2): 191~208
    [61] Jiao Y., Hudson J.A. The fully-coupled model for rock engineering system. Int.J. Rock Mech.Min.Sci & Geomech. Abstr., 1995.32(5):491~512
    [62] 王瑞风.高温岩体地热开发的流固耦合三维数值模拟[J].太原理工大学学报,2002(2): 78~82
    [63] Han Mo Jeong. Temperature sensitive water vapor permeability and shape memory effect of polyurethane with crystalline reversible phase and hydrophilic segments, Polymer International, 2000
    [64] Erqi Wang. Time-dependent Closure and Permeability of a Ball scale hydraulic fracture under constant normal stress Geothermal Congress 2000 Proceedings World.
    [65] York Ave, Permeability, permeability evolution, and mineral reactions in hydrothermal systems associated with magmata intrusions and continental collision from numerical models. Eleventh Annual V. M Goldschmidt Conference, 2001
    [66] A.V.Zharikov. Experimental study of rock permeability and its anisotropy at high temperature and pressure, Institute of Geology of Ore Deposits, Moscow, Russia, 2001
    [67] Willis.J.Ambusso, Experimental determination of stress water relative permeability relations, 2001
    [68] Giovanni Cimatti. The eddy current problem with temperature dependent permeability Electronic Journal of Differential Equations. Vol.2003
    [69] 张晶瑶.高温条件下岩石结构特征的研究[J].东北大学学报,1996,2(17):5~9.
    [70] 高红梅.高温高压力下岩石渗透率的实验研究[D].辽宁工程技术大学,2005
    [71] 谢和平.深部高应力下的资源开采—现状、基础科学问题与展望.香山科学会议编[S].科学前沿与未来,第175次香山科学会议.北京:中国环境科学出版社,2002,179~191
    [72] Kidybinski A, Dubinski J. Strata Control in Deep Mines Rotterdam: A. A Balkema. 1990:1~3
    [73] Brown ET, Hoek E. Trends in relationships between measured rock in situ stress and depth. Int J Rock Mech Min Sci Geomech Abstr,1978(15): 211~215
    [74] 周维垣编.高等岩石力学[M].北京:水利水电出版社.1990
    [75] 李建林.卸荷岩体力学理论与应用[M].北京:中国建筑工业出版社,1999
    [76] Stacey T R, Wesseloo J. The in situ stress regime in South-Africa. In: Vouille G Berest Peds. Proc 9th International Congress on Rock Mechanices.Rotterdam:A.A.Balkema,1999.1189~1192
    [77] Sheory P R.A theory for in situ stress in isotropic and transversely isotropic rock. Int J Rock Mech Min Sci Geomech Abstr,1994,31(1): 23~34
    [78] Herget G. Stresses in Rock. Rotterdam: A. A. Balkma,1988
    [79] 徐志英.岩石力学(第3版)[M].北京:中国水利水电出版社,1993
    [80] 李天斌,王兰生.卸荷应力状态下玄武岩变形破坏特征的试验研究[[J].岩石力学与工程学报,1993 12(4):321~327
    [81] 张黎明,王在泉,王建新.岩石卸荷破坏试验研究[J].四川大学学报,2006,38(3):34~37
    [82] 王在泉,张黎明,贺俊征.岩石卸荷本构关系的BP神经网络模型[J].岩土力学,200,25(增): 119~121
    [83] 尤明庆,华安增.岩石试样的强度准则及内摩擦系数[J].地质力学学报,2001,7(1):53~60
    [84] 杨更社,谢定义,张长庆等.岩石单轴受力CT识别损伤本构关系的探讨[J].岩土力学,1997, 18(2):29~34
    [85] 葛修润,任建喜,蒲毅彬等.煤岩三轴细观损伤演化规律的CT动态试验[J].岩石力学与工程学报,1999.18(5):497~502
    [86] Tu J. W. and Lee X. Micromechanical damage models for brittle solids, part Ⅰ: compressive loadings. J. Engng. Mech, 1991, 117(7): 1515~1536
    [87] 谢强.扫描电镜显微镜下岩石破裂过程的连续观察及其破坏机制分析[J].第四届全国工程地质大会论文选集((2)[C].北京:海洋出版社,1992
    [88] 朱珍德,张勇,徐卫亚等.高围压高水压条件下大理岩断口微观机理分析与试验研究[J].岩石力学与工程学报,2005.24(1):42~51
    [89] 唐辉明.工程地质数值模拟的理论与方法[M].武汉:中国地质大学出版社,2001.10
    [90] 吴顺唐,邓之光.有限差分方程概论[M].南京:河海大学出版社,1993
    [91] 李仲奎,戴荣,姜逸明.FLAC3D分析中的初始应力场生成及在大型地下洞室群计算中的应用.岩石力学与工程学报[J].2002.12,21(增2):2387~2392
    [92] 张东日,陶连金,李风仪等.拉格朗日元法及其应用软件FLAC[J].矿山压力与顶板管理, 1997,3:24~27
    [93] 刘波,韩彦辉.FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005
    [94] Itasca Consulting Group Inc. FLAC-3D (Fast Lagrangian Analysis of Continua in 3 Dimensions), Version 2.00, Users Manual (Volume V) [R]. USA: ItascaConsulting Group Inc, 1997
    [95] 王恩志.岩体裂隙的网络分析及渗流模型[J].岩石力学与工程学报,1993,12(3):214~221
    [96] 赵阳升.矿山岩石流体力学[M].北京:煤炭工业出版社,1994
    [97] D.T.Snow. Rock Fracture Spacing: Opening and Porosity. J. Soil Mech Found. Div.Proc.ASCE, 1968,94:73~91
    [98] Louis C. Rock hydrolics. In: Muller Led. Rock Mechanics. New York:Elsevier Science.1974
    [99] Jones F O. A laboratory study of the effects of confining pressure on fracture flow andstorage capacity in carbonate rocks. J. PetroLTechnol, 1975, 21(2): 151~159
    [100] Nelson. Fracture permeabily in porous reservoirs: experimental andfield approach [Ph D Dissertation]. Texas: Department of Geology, Texas A and M University. 1975
    [101] Gale J E. The effects of fracture type (induced versus natural) on the stress-fracture closure-fracture permeabity relationships [A]. In: Proc. 23rd Symp on Rock Mech.[C]. Berkeley, 1982
    [102] 速宝玉,詹美礼,王媛.裂隙渗流与应力耦合特性研究[J].岩土工程学报,1997,19(4):73~77
    [103] 刘继山.单裂隙受正应力作用时的渗流公式[J].水文地质工程地质.1987,14(2):32~28
    [104] Burton N, Bandis S, Bakhtar K. Strength, Deformation and conductivity coupling of rock joints. Int. J. RockMech. Min. Sci. and Geomech. Abstr. 1985, 22(3): 121~140
    [105] Gangi A F. Variation of whole and fractured porous rock permeability with confining pressure. Int. J. Rock Mech. Min. Sci. and Geomech. Abstr. 1978, 15(4):249~257
    [106] Walsh J B. A new model for analyzing the effect of fracture on compressibility. J. ofGeophys. Resear., 1979, 84(B7): 3532~3536
    [107] Z. Chen, S.P. Narayan, Z. Yang, S.S. Rahman. An experimental investigation of hydraulic behavior of fractures and joints in granitic rock. Int J Rock Mech Min Sci. 2000(37): 1061~1071
    [108] T. Esaki, S. Du, Y. Mitani, K. Ikusada, L. Jing. Development of a shear-flow test apparatusand determination of coupled properties for a single rock joint. Int J Rock Mech Min Sci. 1999,36: 641~650
    [109] Makurat A, Barton N, Rad NS, Bandis S. Jiont conductivity variation due to normal andshear deformation. IN: Proc. Int. Symp on Rock Joints, Loen, Norway. Rotterdam, theNetherlands: Balkama. 1990:535~540
    [110] Olsson, W. A. and BrownS. R.Hydromechanical response of a fracture undergoingcompression and shear. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1993(30): 845~851
    [111] 常宗旭,赵阳升,胡耀青等.三维应力作用下单一裂缝渗流规律的理论与试验研究[J].岩石力学与工程学报.2004,23(4):620~624
    [112] 盛金昌.裂隙岩体渗流耦合研究综述[J].岩土力学,1998,19(2):92~98
    [113] 张金才.裂隙岩体渗透特性研究[J].煤炭学报,1997,22(5):481~485
    [114] Brown , S,R,et al. Fluid permeability of deformable fracture networks, Journal Geophysical Reaserach, 1992,103(B2): 2489~2500
    [115] Oda,M. An equivalent continuum model for coulped stress and fluid flow analysis in jointed rock masses, Water Resources Research, 1986,22(13): 1845~1856
    [116] 耿克群.岩体裂隙渗流水力特性的试验研究[J].清华大学学报,1996,36(1):102~106
    [117] 沈洪俊.应力作用下裂隙岩体渗流特性的试验研究[J].长江科学院院报,1998,15(3):35~39.
    [118] 周远田.岩石应力与渗流力的关系[J].岩石力学与工程学报,1998,17(8):393~399
    [119] 张家发.裂隙岩体渗流参数讨论及渗流场的有限元分析[J].长江科学院院报,1990(7):25~30
    [120] 张家发.三维饱和非饱和稳定非稳定渗流场的有限元模拟[J].长江科学院院报,1997,14(3): 426~431
    [121] 钱伟长.变分法及有限元[M].北京:科学出版社,1980
    [122] 卓家寿,章青.不连续介质力学问题的界面元法[M].科学出版社,2000
    [123] 蔡耀军.裂隙岩体三维空间非均匀各向异性渗透性评价[J].地质科技情报,1989,2:18~21
    [124] 谢如彪.非线线数值分析[M].上海:上海交通大学出版社,1984
    [125] 罗焕英.地下水运动的数值模拟[M].北京:中国建筑工业出版社,1988
    [126] 雷树业.含温多孔介质传质传热三参数模型研究方法[J].清华大学学报,1993,37(2):86~90
    [127] 何满潮.深部开采岩体力学研究[J].岩石力学与工程学报,2005,24(16):2803~2813
    [128] Jiao,Y, et al. The fully coulped model for rock engineering system, Int,J. Rock Mech.Min.Sci.A ,1995,32(5): 491~512
    [129] Millard,Aetal. Discrete and continum Approaches to simulate the Thermo-Hydro-Mechanical coulping in alarge fractured rock mass, Int.J. Rock Mech.Min.Sci,1995,32(5): 409~434
    [130] Jing,L.,et al,DECOVALEX-An International cooperative research project on mathematical models of coupled THM process for safety ansysis of radioactive waste repositories,Int J.rock mech.Min.Sci,1995,32(5): 456~479
    [131] Balkema; Experimental study on the rock bolt reinforcement in discontinuous rocks [J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, Volume 26, Issues 3-4, July 1989
    [132] Mogi K. Effect of the intermediate principal stress on rock failure. J. Geophys. Res. 1967, 72(20): 5117~5131
    [133] John A. Hudson, John P.Hardson. Engineering Rock Mechanics, Elsevier Science Ltd Second impression, 2000
    [134] U. S. National committee for rock mechanics et al. Conceptual models of flow and transport in
    [135] The fractured vadose zone. National academy press, 2003
    [136] Louis C, Maini YNT, Determination of in situ hydraulic parameters in jointed rock, Rroc
    [137] Witherspoon et al. Validity of cubic law flow fluid flow in a deformable rock fracture. Water
    [138] Oda.M. An rock masses equivalent continuum model for coupled stress and fluid flow analysis in jointed Water research, 1986, 13 (C22): 1845~1856
    [139] Flow and transport in thick unsaturated zones of fractured rock. Journal of Contaminant Hydrology, 38:281~322
    [140] Goodman R E. Method of Geological Engineering in Discontinuous Rocks. West New York,1976
    [141] Kranz R L, et al. Int. J. Rock Mech. Min. Sci & Geomech. Abstr.16,3(1979): 225~234
    [142] Louis C. Rock hydroulics. In: Rock Mechanics, Ed by L Muller, 1974
    [143] 唐辉明.工程地质数值模拟的理论与方法[M].武汉:中国地质大学出版社,2001
    [144] 董学晟.水工岩石力学[M].北京:中国水利水电出版社,2004
    [145] 吴顺唐,邓之光.有限差分方程概论[M].南京:河海大学出版社,1993
    [146] 雷晓燕.岩土工程数值计算[M].北京:中国铁道出版社,1999
    [147] 凌标灿,彭苏萍.工程因素对围岩稳定性影响三维数值模拟分析[J].工程地质学报,2003.11(4):46~50
    [148] 黄润秋等.工程地质学中的数值模拟与拟合[J].水文地质工程学报,1991,18(5):7~10
    [149] 周先贵,曹金国.岩土力学数值方法研究进展[J].建筑技术开发,2002,8:15~18
    [150] 朱伯芳.有限单元法原理与应用[M].北京:中国水利水电出版社,1998
    [151] 杨典森,陈卫忠,杨为民等.龙滩地下洞室群围岩稳定性分析[J].岩土力学,2004,25(3): 1121~1127
    [152] 潘永坚,陈光.某浅埋地下洞室围岩稳定及渐进破坏过程分析[J].水文地质工程地质.2004,3:25~28
    [153] 张练,丁秀丽,付敬.清江水布垭地下厂房围岩稳定三维数值分析[J].岩土力学, 2003.10(24):254~258
    [154] 于龙,张永康.岩体裂隙水流的运动规律[J].水利水电科学研究院,1997.15(3):208~218
    [155] 张玉卓,张金才.裂隙岩体渗流与应力耦合的试验研究[J].岩土力学,1997.18(4):59~62
    [156] 刘压晨.核废料贮存裂隙岩体水热耦合迁移及其与应力的耦合分析[D].中国科学院武汉岩土力学研究所,2000
    [157] 朱合华,邓涛,强健.3种岩石高温后力学性质的试验研究[J].岩石力学与工程学报, 2006.25(10):1945~1950
    [158] India Y, Kinoshita N, Ebisawa A, et al. Strength and deformation characteristics of rocks after undergoing thermal hysteresis of high and low temperature[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstract,1997,34(3):688~694
    [159] 刘才华.岩质顺层边坡水力特性及双场耦合研究[D].中国科学院武汉岩土力学研究所, 2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700