砀山酥梨果实石细胞解剖学研究及木质素合成途径的初步分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
砀山酥梨(Pyrus bretschneideri cv.)为我国梨出口的主要品种之一,但是近年来由于品种退化或是管理不善的原因,石细胞含量增加,肉质变粗,口感多渣,严重影响了砀山酥梨的品质和经济价值。因此,本实验以砀山酥梨为材料,系统研究梨果实石细胞发育的规律,了解石细胞发育与果实薄壁细胞发育的关系;探讨木质素代谢对石细胞形成的影响,并对梨果实中木质素代谢的途径进行初步研究。旨在探讨石细胞发育的机理,为调控梨果实石细胞形成和含量、了解石细胞发育与木质素代谢的关系提供理论依据,及为研究梨果实木质素代谢途径提供技术方法。主要研究结果如下:
     1、梨石细胞先由果肉细胞壁不均匀加厚,进而形成厚壁细胞。石细胞由薄壁细胞次生壁加厚形成的,石细胞细胞壁加厚的部分被番红染成红色,且呈不均匀加厚,加厚最先在细胞角隅处发生,然后扩展到整个细胞壁。
     2、石细胞形成始于花后15天,此后一周内形成大量石细胞;花后23天,石细胞聚簇,石细胞团大量出现,石细胞团直径增大;花后67天,石细胞团直径最大,此时薄壁细胞以长条状和椭球状两种方式膨大。梨果实发育过程中,石细胞含量先上升后下降,花后51天,石细胞含量达18.95%,以后石细胞含量下降。石细胞由薄壁细胞发育而来,是薄壁细胞分化的一个方向,另一个方向是膨大成熟。石细胞含量的下降是由于果实生长和薄壁细胞膨大引起的相对下降。
     3、石细胞的形成受木质素合成的影响,梨果实发育过程中,石细胞含量与木质素含量呈显著正相关,相关系数R2=0.9847。石细胞形成的时期,梨果实中苯丙氨酸解氨酶、过氧化物酶、多酚氧化酶活性相对较高,石细胞形成结束后,梨果实中PAL、POD、PPO活性相对较低。PAL、POD、PPO影响梨果实石细胞的形成和木质素的合成,梨果实中石细胞的分布与薄壁细胞分裂、膨大的程度有关。
     4、采用高效液相测定方法,在梨发育过程中分离检测到肉桂酸和对香豆酸,初步确定木质素的合成可能是经过对香豆酸进入木质素合成特异途径的。
     5、砀山酥梨、贡梨、丰水梨、库尔勒香梨、苹果梨五种不同基因型成熟梨果实中,石细胞含量与木质素含量呈正相关,梨果实中石细胞含量高的部位木质素含量也高,基因型梨果实石细胞的含量与PAL、POD、PPO活性之间没有相关性。
Pyrus bretschneideri cv. is one of the export pears in China. However, it affected the quality of Pyrus bretschneideri cv. that stone cell content increased, taste more than java and flesh became coarse as a result of variety degradation or mismanagement in recent years. Therefore, this experiment studied the development of stone cells, understanding the relationship between the development of stone cell and parenchyma; explore the metabolism of lignin on the forming of stone cells; and preliminary study the path of lignin metabolism in Pyrus bretschneideri cv.. Designed to investigate the mechanism of stone cells, in order to provide theoretical basis for controlling the forming of stone cells, understanding the relationship between the forming of stone cells and lignin metabolism, and provide the ways for studying lignin metabolism farther of pear. Key findings are as follows.
     1 Unequal thickness of fruit parenchyma cells’wall forms thick wall cell, thick wall cells developed to stone cell through cell wall re-thickness in pear. Stone cell formed through thickening of secondary wall of parenchyma. Part of unequal thickness wall was dyed red by Safranine. The thickness began at took place in the cell, and than extended to the entire cell wall.
     2 The forming of stone cell mostly started at DPA15 and it commenced largely within a week. The stone cells gathered and emerged at DPA23 and the diameter of stone cell group enlarges. The max diameter of stone cell group came forth at 67DPA. At the same time, the Parenchyma cells grew and enlarged with two different methods, strip and ellipsoid. The content of stone cell increased firstly, and then descended during pear fruit development. The max content of stone cell came forth at 51DPA(18.95%). Some of the parenchyma could develop into stone cells, the others would expand and maturate. The content of stone cell was determined the forming of stone cell and the expansion of parenchyma cells during fruit development.
     3 Synthesis of lignin affected the forming of stone cell. The content of stone cell and lignin was significant correlation during development of pear fruit, correlation coefficient R2=0.9847. The activity of ammonia-lyase, peroxidase, polyphenol oxidase are all relatively high during the forming of stone cell in pear fruit. And then the activity of PAL, POD, PPO were relatively low. PAL, POD, PPO affected the forming of stone cell and synthesis of lignin in pear. But the distribution of stone cell is related to the degree of division as expanding of parenchyma..
     4 The experiment detected the cinnamic acid and P-coumalic acid in pear fruit of development. Cinnamic acid is the product of Benzene propane metabolic and starting substance of metabolic pathway-specific of lignin. P-coumaric is the important branch of pathway-specific of lignin and translated from cinnmic acid. Therefore, the synthesis of lignin may be through p-cumaric acid into the lignin-specific pathway in pear fruit.
     5 The content of stone cell and lignin was positive correlation in five different genotype pear fruit- Pyrus bretschneideri cv, Gong pear, Fung pear, Korla fragrant pear and apple-pear. The parts of high stone cell content have high lignin content also. It is unclear of the relationship between the content of stone cell and the activity of PAL, POD, PPO in different genotypes pear.
引文
[1]张力,于润卿.梨优良品种及其丰产优质栽培技术[M].北京:中国林业出版社, 2002, 192-199
    [2]李绍华.世界果树生产状况及提高我国果品市场竞争力对策[J].中国农业大学学报, 2003, 8(1): 7-13
    [3]中国农业百科全书编辑部.中国农业百科全书(果树卷)[M].北京:农业出版社, 1993
    [4]李玲,蔡永萍,刘小阳.梨果实的石细胞[J].植物生理学通讯, 2004, 40(5): 629-632
    [5]刘小阳,李玲,宗梅,等.梨果实石细胞含量分布及其对梨品质的影响[J].安徽农业大学学报, 2004, 31(1): 104-106
    [6]何凤仁.酥梨、鸭梨果实石细胞群研究[J].江苏农学院学报, 1988, 9(1): 35-36
    [7]阿拉木萨,李宝江.梨果实石细胞团的发育、分布及其对果实品质的影响[J].北方果树, 1994, (4): 4-6
    [8]陶世容,辛华,初庆刚,等.窝梨果实结构及发育的研究[J].西北植物学报, 1999, 19(1): 123-126
    [9]张华云,王善光,牟其芸,等.套袋对莱阳梨果皮结构和PPO、POD活性的影响[J].园艺学报, 1996, 23(1): 23-26
    [10]顾模,林凤起,张冰冰.梨果肉结构的解剖研究[J].中国果树, 1989, 20(2): 1-3
    [11]乔勇进,张绍铃,陶书田,等.梨果实石细胞发育机理的研究进展[J].果树学报, 2005, 22(4): 367-371
    [12]牟其芸,李文香,张华云,等.梨果实中石细胞含量测定及与果实品质相关性的研究[J].落叶果树,1996, (1): 7-9
    [13]陶世蓉.梨果实结构与耐贮性及品质关系的研究[J].西北植物学报, 2000, 20(4): 544-548
    [14]沈德绪,吴少华.梨果肉石细胞含量的分析方法[J].中国果树, 1985, 10(3): 50-53
    [15]吴少华.梨果肉石细胞的研究[J].福建农业大学学报, 1996, 25(1): 29-32
    [16]张雅凤,郭太君,焦培娟,等.秋子梨不同品系果实石细胞含量的测定[J].特产研究, 1988, (4):34-35
    [17]聂继云,李静,杨振锋,等.冷冻法测定梨的石细胞含量[J].果树学报, 2006, 23(1): 133-135
    [18]李疆,高疆生,张崎.砀山酥梨石果病的发病规律及其防治效果初探[J].新疆农垦科技, l991, (1): l6-l8
    [19]鞠志国.采期对莱阳茌梨酚类物质代谢和组织褐变的影响[J].中国农业科学, l99l, 24(2):63-68
    [20]李玲,蔡永萍,刘小阳.梨果实的石细胞[J].植物生理学通讯, 2004, 40(5): 629-632
    [21]李玲.光强对砀山酥梨石细胞发育过程生理代谢的影响[D].安徽农业大学, 2004
    [22] Fukuda H. Establishment of an experimental system for the study of tracheary element differentiation from single cells isolated from the mesophyl of Zinnia elegans [J]. Plant Physiology, 1980, 65: 57-60
    [23] Bugos, R.C, Chiang V L C., Campbell W.H. cDNA cloning, sequence analysis and seasonal expression of lignin-bispecific caffeic acid/5-hydroxyferulic acid O-methyltransferase of aspen of aspen[J]. Plant Molecular Biology, 1991, 17: 1203-1215
    [24] Van Huyster RB.Some molecular aspects of plant peroxidase: biosynthetic studies [J]. Ann Rev Plan t Physiol Plant Molecular Biology, l987, 38: 205-21
    [25]Christensen JH, Banw G, Welinder KG, eta1. Purification and characterization of peroxidase correlated with lignification in poplar xylem [J]. Plant Physiology, 1998, ll8: 125-135
    [26] Lagrimini LM. Wound induced deposition of polyphenols intransgenic plants over expressing peroxidase [J]. Plant Physiology, 1991, 96: 577-583
    [27]席玛房,罗自生,程度,等.竹笋采后木质化与多酚氧化酶、过氧化物酶和苯丙氨酸解氨酶活性的关系[J].植物生理学通讯, 2001, 37(4): 294-295
    [28] Uggla C, Moritz T, Sandberg G, eta1. Auxinas appositional signal in pattern formation in plants[J]. Process Naltural Academic Science USA, 1996, 93: 9282-286
    [29] Basra AS, Salarch RS, Dlmlongewal R, eta1. Calcium-mediated changes in peroxidase and O-diphenol oxidase activities of cotton fibers an d its possible relationship to ABA[J]. Plant Growth Regulation, 1992, l1: 159-164
    [30] Fukuda H, Kobayashi H. Dynamic organization of the cytoskeleton during Acheary element differentiation [J]. Development Growth Differentiation, 1989, 31: 9-16
    [31] Roberts LW, Baba S. Evidence that auxin·induced xylogenesis in Lactuca explants requires calmodulin [J]. Environment Experimental Botany, l987, 27: 289-29l
    [32]赵广杰.木材细胞壁的构造及其主要成分的堆积过程[J].北京林业大学学报, 1999, 21(1): 74-78
    [33]崔克明.木质部细胞分化的程序[J].西北植物学报, 2006, 26(8): 1735-1748
    [34]高侠莉,袁宗飞,刘晓峰.砀山梨原产地与引种区果实品质的比较研究[J].落叶果树, 1998, (1): 22-23
    [35]何天明,张琦,邹以强,等.香梨果实早期发育的解剖研究)[J].新疆农业科学, 2001, 38(5): 247-248
    [36]辛广.南果梨和苹果梨的石细胞聚合体的扫描电镜观察[J].鞍山师范学院学报, 1998,
    19(4): 42-43
    [37]陶书田,张绍铃,乔勇进,等.梨果实发育过程中石细胞团及几种相关酶活性变化的研究[J].果树学报, 2004, 21(6): 516-520
    [38]刘小阳,高贵珍,李红侠,等.砀山酥梨果实发育与石细胞形成的动态研究[J].淮北煤炭师范学院学报. 2006, 27(1): 50-53
    [39]张冰冰,林凤起,刘慧涛,等.梨果实及石细胞团发育的研究[J].落叶果树, 1988, 20(2): 1-3
    [40]贺新强,崔克明.植物次生壁形成的研究进展[J].植物学通报, 2002, 19(5): 513-522
    [41]崔克明,王雅清.木质部细胞分化和脱分化的机理[J].西北植物学报, 2000, 20(6): 907-921
    [42]贺新强,崔克明,李正理.杜仲次生木质部分化过程中木质素与半纤维素组分在细胞壁中的动态变化[J].植物学报, 2001, 43(9): 899-904
    [43]贺新强,王幼群,胡玉熹,等.毛竹茎纤维次生壁形成的超微结构观察[J].植物学报, 2000, 42(10): 1003-1008
    [44] Whetten R,Sun Y H,Zhang Y,Seder of R.Functional genomics and cell wall biosynthesis in Idololly pine [J]. Plant Molecular Biology, 2001, 47: 275-29l
    [45] Milioni D. Differdntial exprenssion of cell-wall-related genes during the formation of tracheary elements in the Zinnia mesophyll cell system [J]. Plant Molecular Biology, 2001, 47: 221-238
    [46] Blee K A, Wheatley E R, Bonham V A, Mitchell G P. Proteomic analysis reveals a novel set of cell wall proteins in a transformed tobacco cell culture that synthdsises secondary walls as determined by biochemical and morphological parametera[J]. Plant, 2001, 212: 404-415
    [47] Takabe K, Fujita M, Harada H, Saiki H. Autoradiographic Investigation of Lignification in the Cell Walls of Cryptomeria(Cry-tomeria japonica D. Don)[J]. Mokuzai, 1985, 31: 613-619
    [48] Fujita M, Harada H. Autoradiographic Investigations of Cell Wall Development [M]. Mokuzai Gakkaishi, 1978, 24: 435-440
    [49] Timell T E. Comperssion Wood in Gymnosperms [M]. Springer-verlag, 1986
    [50] Fukushima K, Terashima N. Heterogeneity inFormation of Lignin. XII. Formation of p-Hydroxyphenyl Lignin in Various Hard-wood Visualized by Microautor adiograply [J]. Wood Chemistry Technology, 1990, 10: 413-419
    [51] Sovari J, Sjostrom E, Klemola A, etal. Chemical Characterization of Wood Constituents, Esrecially Lignin, in Fractions Separat-ed From Middle Lamella and Secondary Wall of Norway Spruce(Picea abies)[J]. Wood Science Technology, 1986, 20: 35-41
    [52]蔺占兵,马庆虎,徐洋.木质素的生物合成及其分子调控[J].自然科学进展, 2003, 13(5): 455-461
    [53]赵华燕,魏建华,宋艳茹.木质素生物合成及其基因工程研究进展[J].植物生理与分子生物学报, 2004, 30(4): 361-370
    [54]魏建华,宋艳茹.木质素生物合成途径及调控的研究进展[J].植物学报, 2001, 43(8): 771-779
    [55] Boerjan W, Ralph J, Baucher M. Lignin biosynthesis [J]. Annual Review of Plant Biology, 2003, 54: 519-546
    [56] Baucher M, Halpin C, Petit Conil M, et al. Lignin genetic engineering and impact on pulping[J]. Critical Reviews in Bio- chemistry and Molecular Biology, 2003, 38: 305-350
    [57]付伟,廖祥儒,王俊峰,等.植物体内的木质素[J].生物学通报, 2004, 39(2): 12-14
    [58]章霄云,郭安平,贺立卡,等.木质素生物合成及其基因调控的研究进展[J].分子植物育种, 2006, 4(3): 431-437
    [59] Whiting P, Goring D A. Chemical characterization of tissue fractions from the middlel -amella and secondary wall of black spruce tracheids[J]. Wood Science Technology, 1982, 16: 261-267
    [60]耿飒,徐存拴,李玉昌.木质素的生物合成及其调控研究进展[J].西北植物学报, 2003, 23 (1): 171-181
    [61] Donaldson LA. Lignification and lignin topochemistry-anultrastructural view [J]. Phytochemistry, 2001, 57: 859-873
    [62] Terashima N, Fu kushima K. Heterogeneityin formation of lignin. X I.A nautoradio graphic study of the heterogeneous formation and structure of pine lignin [J]. Wood Science Technology, 1988, 22: 9225-9270
    [63] Humphreys J. M, Chapple C. Rewriting the lignin radmap, Curr, Opin[J]. Plant Biology, 2002, 5(3): 224-229
    [64] Anterola A M, Jeon J H, Davin L B, Lewis NG. Transcriptional control of monolignol biosynthesis in Pinustaeda factors affecting monolignol ratios and carbon allocation in phenyl propanoid metabolism [J]. Bioiogy Chemistry, 2002, 277: 18272-18280
    [65] Bate N, Orr J , Ni W. Quantitative relationship between phenylalanine ammonia-lyase levels and phenyl propane acid cumulation in transgenic tobacco identifies a rate- deter2 mining step in natural product synthesis [J]. Process Natural Academic Science USA, 1994, 91: 7608 -7612
    [66] Sewalt V J H , Ni W, Blount J W. Reduced lignin content and altered lignin composition in transgenic tobacco down regulated in expression of L-phenylalanine ammonia-lyase orcinnamate4hydrelase[J]. Plant Physiology, 1997, 115: 41-50
    [67] Takahama U. Oxidation of hydroxycinnamic acid and hy-droxycinnamoyl alchol derivatives by laccase and peroxidase interactions among p- hydroxyphenyl, guaiacyl and syringylgroups during the oxidation reaction[J]. Plant Physiology, 1995, 93: 61-68
    [68] Takahama U, Oniki T. A possible mechanism for the oxidation of sinapylalcohol by peroxidase-dependent reaction in the apoplast enhancement of the oxidation by hydroxycinnamic acid and component of the apoplast[J]. Plant Cell Physiology, 1996, 37: 499 - 504
    [69]席玛房,罗自生,程度,等.竹笋采后木质化与多酚氧化酶、过氧化物酶和苯丙氨酸解氨酶活性的关系[J].植物生理学通讯, 2001, 37(4): 294-295
    [70] Christensen J H, Banw G, Welinder K G. Purification and characterization of peroxidases correlated with lignification in poplar xylem [J]. Plant Physiology, 1998, 118: 125-135
    [71] Ipelcl Z, Ogras T, Altinkut A. Reduced leaf peroxidase activity is associated with reduced lignin content in transgenic poplar [J]. Plant Biotechnology, 1999, 16: 381-387
    [72]殷亚芳,姜笑梅.细胞壁中过氧化物酶的分布对杨树木质化过程的影响[J].电子显微学报, 2007, 26(1): 49-53
    [73] Richardson A , Stewart D , McDougall G L. Identification and partial characterization of a coniferyl alcohol oxidase from lignifying xylem of sitka spruce ( Picea sitchensis )[J] . Plant, 1997, 203:35- 43
    [74]王志刚,张彦广,黄大庄.不同杨树种纸条木质部酚类次生代谢物质的分析[J].河北农业大学学报, 1999, 22(4): 75-78
    [75]吴友根,陈金印.翠冠梨酶促褐变及其生化机制研究[J].中国农学通报, 2003, 18(4): 135-137
    [76]贾彩红,王宏芝,杜克久,等.抑制4CL基因表达的转基因毛白杨中木质素含量与茎秆颜色的关系[J].农业生物技术学报, 2004,12(6): 621-624
    [77] Gaelle P, Matthieu C, Catherine L. Simultaneous down-regulation of Caffeice/5-hydroxy ferulie acid–o-methyltransfer-ase I and cinnamoyl-coenzyme A reductase in the progeny from a cross between tobacco liners homozygous for each transgene consequences for plant development and Lignin synthesis[J]. Plant physiology, 2001, 126: 145-155

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700