多带小波理论及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小波分析是在20世纪80年代末迅速发展起来的一个新兴数学分支,小波分析的出现在科学研究领域引起了广泛的关注.在最近20多年,小波理论及应用得到了迅速的发展并取得丰硕成果.小波分析与其它分析方法一样,都是利用特殊基函数来展开和研究任意信号函数,但小波基与其它函数基相比具有一定的优势,例如,小波基具有良好的局部化性质、多分辨率功能及可同时作时频分析等优点.小波基性质的多样性是小波分析具有广泛应用领域主要原因,人们可以根据应用于领域的不同来构造相适应的小波基.小波基的构造和性质分析是小波理论研究的一个重要课题,也是小波应用的前提和基础.本论文主要是关于多进小波和多小波基构造理论的研究及小波基相关的性质分析.具体内容安排如下:
     第1章介绍了小波分析发展历史、本论文研究目的、主要研究内容及得到相关主要结果.
     第2章总结和探讨具有特殊性质多进尺度函数构造方法,着重研究了紧支正交对称多进尺度函数构造一般方法.在逼近则阶一定条件下,探索支集最短正交对称多进尺度函数构造一般程序.
     第3章首先总结基于多分辨分析L~2(R)中的小波框架构造理论.利用UEP规则,研究正交对称多进小波基构造方法.利用多相矩阵酉矩阵分解结构,得到了一类正交对称小波滤波器簇角参数表示形式,根据角参数的选取可得到一系列性质不同正交对称多进小波系.
     第4章提出了最优多进Haar小波概念,并讨论其所具有基本性质及构造方法.在图像压缩中,用实验数据说明了最优Haar小波变换相比于传统的离散余弦变换具有一定优势.
     第5章利用小波矩阵之间一种运算,给出了具有特定结构的正交小波矩阵一种构造方法.着重研究成对对称和具有优美结构的多进小波函数的构造.
     第6章首先总结了正交多小波一此基本理论及一些构造的方法.为提高正交对称多小波消失矩和逼近阶,研究一类正交对称多小波维数扩充的一种算法.
     第7章是本文总结与展望,指出了与本文相关期待进一步研究几个问题.
     本论文的主要创新之处如下:
     1.给出了多进正交对称低通滤波器构造一般方法,得到了在正则阶一定条件下,支集最短正交对称尺度函数构造程序.
     2.给出了偶数进低通滤波器对称应的多相向量一种特殊酉分解,得到了正交对称多进小波的高通滤波器的一种构造方法.得到了一类正交对称多进小波滤波器簇角参数表示形式.以3进小波为例,给出了奇数进正交对称小波多相矩阵酉扩充的一种算法.
     3.提出了多进最优Haar小波概念和构造方法.用图像压缩效果的实验数据说明了最优Haar小波较传统离散余弦变换具有一定优势.
     4.利用小波矩阵之间一种运算,得到了一类成对对称和优美小波构造方法.为提升正交对称多小波函数消失矩,提出了多小波维数扩充的一种算法.
Wavelet analysis is a new offset of mathematics which developing very fast in late 1980s.The appearance of wavelet has brought extensive effect in science research fields.The theory and application of wavelet analysis have obtained plentiful fruits in last two decates.Wavelet analysis,samilary as the traditional analysis,deploy and research an arbitrary function by base functions.But,compare to other bases,wavelet bases have some advantages.For example,wavelet bases have localize character,mathematical microtelescope feature and adaptive feature.Multiplicity of property is the main reason that wavelet analysis has been applied in many fields. people are possibility to tailor wavelet bases to a given application field.Therefore, the construction of wavelet bases is a very important task in the wavelet academic research.The main contents of this thesis are about the construction and application of multi-band wavelet and multiwavelet bases.The outline of this thesis is as follows:
     In chapter one,the history of wavelet development、the motivation and the primary results relating to the thesis are introduced.
     In chaper two,we summarize some methods to construct multi-band scaling functions firstly.A method to construct the compacted orthogonal symmtric multiband scaling function is given in details.Under the condition of given regular order, we consider the construction procedure for orthogonal symmetric scaling function with the shortest support.
     In chaper three,the theory on constructing multi-band wavelet frames is summarized at firstly.utilizing the UEP regulation,we consider in detail the method to construct the filter banks of symmetric and orthogonal multi-band wavelet.By analyzing the polyphase matrix of multi-band wavelet,we research a class of symmetric orthogonal filter banks of multi-band wavelet which are expressed by angle parameter.via choosing angle parameter,one can obtain multi-band wavelet bases with different property.
     In chaper four,we put forward the concept of optimal multi-band Haar wavelets and give a general method to construct the filter banks of optimal Haar wavelets. Optimal Haar wavelet transform is superior to the discrete cosine transform(DCT) which have been shown experimentally in image and video compression.
     In chaper five,we define a new operation between wavelet matrix.Applying the operation to orthonomal wavelet matrix,we obtain a method to construct orthononal wavelet matrix with especial structure such as pair-symmetric and beautiful structure.
     In chaper six,we firstly summarize some theory of multi-wavelet and method to construct orthogonal multi-wavelet.at last,in order to heighten p.p.o and vanishing moment,we research an algorithm for dimension extension of orthogonal symmetric multi-wavelets.
     In chaper seven,summarize and prospect,and we put forward some issue relating to the thesis which deserved to rescarch.
     The main innovations of this thsis are as follows:
     1.A general way to construct symmetric orthogonal multi-band scaling function is provided.A scheme for constructing scaling sequence with the shortest length and a given regularly order is obtained.
     2.The factorization of polyphase matrix of a class of orthogonal symmetric multi-band wavelet filter banks has been considered,method to construct orthogonal symmetric multi-band wavelet filter banks has been obtained.A class of orthogonal symmetric filter banks are provided by angle parameters.
     3.The concept of optimal multi-bank Haar wavelets was put forward,and a general method of constructing the optimal multi-bank Haar wavelets is provided.The optimal multi-bank Haar wavelets perform better than DCT in image compression has been shown experimentally.
     4.Appling wavelet matrix operation,we obtain a method to construct a class of orthononal wavelet matrix with especial structure such as pair-synunetric and beautiful structure wavelet matrix.In order to heighten vanishing moment,we put forward an algorithm for dimension extension of orthogonal symmetric multi-wavelets.
引文
[1]Meyer Y.Wavelets algorithms and application[M],Society for Industrial and Applied Mathematics,1993.
    [2]Mallat S.A theory for multiresolution signal decomposition:the wavelet representation [J].IEEE Trans.Patten Anal.Machine Intell.,1989,11(7):674-693.
    [3]Dubechies I.Where do wavelets come from?-A personal point of view[J].In:Proc.IEEE,1996,84(5):510-513.
    [4]Cohen A and Danbechies I.Bi-orthogonal bases of compactly supported wavelets[J].Commu.on Pure and Applied Math.,1992,45(5):485-560.
    [5]李建平.小波分析与信号处理-理论、应用及软件实现[M].重庆出版社,1997.
    [6]冉启文.小波变换与分数傅里叶变换理论与应用[M].哈尔滨:哈尔滨工业大学出版社,2001.
    [7]李建平,唐远炎.小波分析方法的应用[M].重庆:重庆大学出版社,1999.
    [8]崔锦泰.小波分析导论.程正兴译[M].西安:西安交通大学出版社,1995.
    [9]程正兴.小波分析算法与应用[M].西安:西安交通大学出版社,1999.
    [10]Rosenfeld A.A nonlinear edge detection technique[J].in:Proce.IEEE,1970,58(5):814-816.
    [11]Young R.An introduction to nonlinear Fourier series[M].New York:Academic Press,1980.1-150.
    [12]Grossman A and Morlet J.Decomposition of Hardy function into square integrable wavelets of constant shape[J].SIAMJ.Math.Anal.,1984,15(4):723-736.
    [13]Morlet J.Wave propation and sampling theory and complex waves[M].Geophysics,1982,47(2):222-236.
    [14]Cohen A and Danbechies I.Wavelets on the interval and fast wavelet transforms[J].Appl.Comput.Harmon.Anal.,1993,1(1):54-81.
    [15]Mallat S.Multiresolution approximations and wavelet orthonormal bases of L~2(R)[J].Trans.Amer.Math.Soc.,1989,315:69-87.
    [16]Burt P J and Adelson E H.The Laplacian pyramid as a compact image code[J].IEEE Trans.Comm,1983,31:532-540.
    [17]Mintzer F.Filters for distortion-free two-band multirate filter banks[J].IEEE Trans.,Acounst.Speech,Signal processing,1985,33:620-630.
    [18]Sweldens W.The lifting scheme:A custom-design construction of biorthogonai wavelets [J].Appl.and Comput.Harmon.Anal.,1996,3(2):186-200.
    [19]Sweldens W.The lifting scheme:Aconstruction of second generation wavelets[J].SIAM Journal of Mathematical Analysis,1998,29(2):511-546.
    [20]Goodman T N,Lee S L.and Tang W.S.Wavelets in wandering subspsces[J].Trans.American Math.Soc.,1994,338:639-654.
    [21]Geronimo J S,Hardin D P and Massopust P R.Fractal functions and wavelet expansions based on several scaling functions[J].Approx.Theory,1994,78:373-401.
    [22]Xia X G.A new prefiltsr design for discrete multiwavelet transforms[J].IEEE Trans.Signal Processing,1998,46:1558-1570.
    [23]Reichel J,Menegaz G and Nadenau M J,et al.Integer wavelet transform for embedded loesy to loesless image compression[J].IEEE Trans.Images Processing:2001,10(3):383-392.
    [24]Berkner K and Wells R.O.Smoothnesss estimates for soft-threshold denoising via translation-invariant wavelet transforms[J].Applied and Computational Harmonic Analysis,2002,12(1):1-24.
    [25]Chang S G,Yu B and Vetterli M.Spatiaiiy adattive wavelet threshold with context modeling for image denosing[J].IEEE Trans.Image Processing,2000,9(9):1522-1530.
    [26]Dubechies I.Orthonormal bases of compactly supported wavelets[J].Communications on Pure and Applied Mathematics,1988,41(7):909-996.
    [27]Plonka G.Approximation oder provied by rcfinable function vectors[J].Constr.Approx.,1997,221-244.
    [28]Jiang Q.T.On the design of multifilter banks and orthonomal multiwavelet bases[J].IEEE Trans.Signal Processing,1998,46:3292-3303.
    [29]Duffin R J and Schaeffer A C.A class of nonharmonic fourier series[J].Trans.mer.Math.Soc.,1952,72:147-158.
    [30]Han B.Symmetric orthonormal scaling functions and wavelets with dilation factor 4[J].Adv.Comput.Math.,1998,8:221-247.
    [31]Chui C.K.and Lian J A.Study on orthonormal multiwavelets[J].Applied Numerical mathmatics,1996,20(3):273-298.
    [32]Chui C.K.and Lian J.A.Construction of compactly supported symmetric and antisymmetric orthonormal wavelets with scale=3[J].Applied Comput Harmonanal,1995,2:68-84.
    [33]Dai X R,Feng D J and Wang Y.Structure of refinable spline[J].Appl.Comput.Harmon.Anal.,2007,22:374-381.
    [34]Wang G Q.4-bank compactly supported Bi-symmetrie orthogonal wavelets bases[J].Opt.Eng.,2004,43(10):2362-2368.
    [35]Heller P.Rank M wavelets with N vanishing moments[J],SIAM J.Matrix Anal.Appl.,1995,16:502-519.
    [36]Ji H and Shen Z,.Compactly supported(bi)orthogonal wavelets generated by interpolatory refinable functions[J].Adv.in Comput Math.,1999,11:81-104.
    [37]Peter Niels Heller.Rank M wavelets with N vanishing moments[J].SIM J.Matrix Anal.Appl.,1995,16(2):502-519.
    [38]Peter S and Peter N.Theory of regular M-band wavelet bases[J].IEEE Trans on Signal Processing,1993,41:3497-3511.
    [39]Bi N,Dai X and Sun Q.Construction of compactly supported M-band waveelets[J].Appl.Comput.Harmonic Anal..1999,6:113-131.
    [40]Heller P N.Lagrange M-band filters and the construction of smooth M-band wavelets[M].in:Proc.IEEE-SP Int.Symp.on Time Frequency and Time Scale Analysis,Philadelphia,1994.
    [41]He T X.Biorthogonal wavelets with certain regularities[J].Appl.Comput.Harmonic Anal..2001.11:227-242.
    [42]Mauro Maggioni.M-band burt-adclson biorthogonal wavelets[J].Appl.Comput.Harmonic Anal.,2000.9:286-311.
    [43]Selesnick I.W.Multiwavelet bases with extra approximation properties[J].IEEE Trans.Signal Processing.1998,46:2898-2980.
    [44]Daubechics I,Han B,Ron A and Shen Z.Framelets:MRA-based constructions of wavelet frames[J].Appl.Comput.Harmon.Anal.,2003,14:1-46.
    [45]Chui C K,He W,.Joachim S and Sun Q.Compactly supported tight affine frames with integer dilations and maximum vanishing moments[J].Adva in Comput.Math.,2003,18:159-187.
    [46]Alexander Petukhov.Explicit construction of framelets[J].Appl.and Comput.Harmon.Anal.,2001,11:313-327.
    [47]Han B and MO Q.Symmetric MRA tight wavelet frames with three generators and high vanishing moments[J].Appl.Comput.Harmon Anal.,2005,18:67-93.
    [48]Vaidyanathan P.P.Quadrature mirror filter banks,M-band extension and perfect reconstruction technique[J].IEEE ASSP Mag.,1987,4:4-20.
    [49]Jiang Q.On the design of multifilter banks and orthonomal multiwavelet bases[J].IEEE Trans.Signal Processing,1998,46:3292-3303.
    [50]Tao X.and Jiang Q.T.Optimal multifilter banks:Design,related symmetric extention transform.and application to image copression[J].IEEE Trans.Signal Processing,1999,47:1878-1889.
    [51]毕宁,黄达人,戴青云等.一类含参数的正交对称四进小波构造[J].计算数学,2005,27(2):141-150.
    [52]黄达人等,多进制小波分析[M],浙江大学出版社,2001.
    [53]彭立中,王永革.3带正交小波系统的参数化和代数结构[J].中国科学(A 辑),2001,7(31):602-614.
    [54]王国秋.一般的9-7 小波滤波器及其图像压缩性能研究[J].电子学报,2001,29(1)130-132.
    [55]王国秋,运用 W-正交变换的视频图像压缩方法[P],专利号:00126721.3,专利文献(2001).
    [56]王国秋等,用于图像和视频压缩的正交变换方法[P],专利号:200610031951.0,专利文献(2006).
    [57]彭立中,王永革.具有优美结构的紧支正交小波的构造[J].中国科学 E 辑技术科学,2004.34(2):200-210.
    [58]Plonka G.Ncccssary and sufficient conditions for orthonormality of scaling vectors [R].Technical Report,University Rostock,1997.
    [59]Mintzer F.Filters for distortion-free two-band multirate filter banks[J].IEEE Trans.,Acounst.Speech,Signal processing,1985,33:620-630.
    [60]Mallat S.Multiresolution approximations and wavelet orthonormal bases of L~2(R)[J].Trans.Amer.Math.Soc.,1989,315:69-87.
    [61]Tao X.and Jiang Q.T.Optimal multifilter banks:Design,related symmetric extention transform and application to image copression[J].IEEE Trans.Signal Processing,.1999,47:1878-1889.
    [62]Lian J A.Orthogonality criteria for multi-scaling functions[J].Appl.Comput.Harmon.Anal.,1998,5:277-311.
    [63]Plonka G.Approximation order provided by refinable function vectors[J].Constr.Approx.,1997,13:221-244.
    [64]Bi N,Han B and Shen Z W.Example of refmable compontwise polynomial[J],Appl.Comput.Hamon.Anal.,2007,22:368-373.
    [65]Han B and Mo Q.Multiwavelet frames from refinable function vectors[J].Adva.Comput.Math.,2003,18:211-245.
    [66]Selesnick I.W.Multiwavelet bases with extra approximation properties[J].IEEE Trans.Signal Processing,1998,46:2898-2980.
    [67]Tao X.and Jiang Q.T.Optimal multifilter banks:Design,related symmetric extention transform.and application to image copression[J].IEEE Trans.Signal Processing,1999,47:1878-1889.
    [68]Jiang Q T.Parametrizations of symmetric orthogonal multifilter banks with different filter lengths[J].Linear Algebra and its Applications,2000,311:79-96.
    [69]Jiang Q T.Symmetric paraunitary matrix extension and parametrization of symmetric orthogonal multifilter banks[J].Siam J.Matrix Anal.Appl.,2001,(23) 167-186.
    [70]Jiang Q T.On the design of multifilter banks and orthonormal multiwavelct bases[J].IEEE Trans.Sign.Proce.,1998,46(12):3292-3303.
    [71]Dong B.and Shen Z.,Pseudo-splines,wavelets and framelets[J].Appl.Comput.Harmon.Anal.,2006,22:78-104.
    [72]Vetterli M.Wavelets and filter banks:theory and design[J].IEEE Trans.Signal Processing,1992,40:2207-2232.
    [73]Geronimo J.S.,Hardin D.P.and Massopust P.R.Fractal functions and wavelet expansions based on several scaling functions[J].Approx.Theory,1994,78:373-401.
    [74]Beloygay E,Wang Y.compactly supported orthogonal symmetric scaling functions[J].Appl Comput Harmon Anal,1999,7:137-150.
    [75]Smith M.J.T.and Barnwell.Exat reconstruction for tree-structured subband coders[J].IEEETrans.Acounst.Speech,Signal Processing,1986,5:1303-1310.
    [76]杨守志,彭立中.基于重数延长法提升加细向量函数的逼近阶[J].中国科学(A 辑),2005,35(12):1347-1360.
    [77]Chui C.K.,He W.J.,and Sun Q.Y.Compactly supported tight affine frames with integer dilations and maximum vanishing moments[J].Advances in Computational Mathematics,2003,18:159-187.
    [78]Vetterli M,Herley C.Wavelet and filter banks:theory and design[J].IEEE Tran.Signal Processing.1992,40(9):2207-2232.
    [79]Zou H,Tewfik A H.Discrete orthogonal M-band wavelet decomposition[M].In:Proceedings IC-ASSP,San Fran-cisco,1992,4:605-608.
    [80]Dubechies I.Ten lectures on wavelets.Philadelphia,Capital City Press,1992
    [81]Ron A.Shen Z.,Affine systems in:The analysis of analysis operator[J].J.Funct.Anal.1997,148:408-447.
    [82]Dong B.,Shen Z.,Construction of biorthogonal wavelets from pseudo-splines[J].J.of Approxi.Theory,2006,138:211-231.
    [83]Ivan W.,Farras A.,Symmetric wavelet tight frames with two generators[J].Appl.Comput.Harmon.Anal.,2004,17:211-225.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700