基于小波纹理分析和鲁棒贝叶斯神经网络的非织造材料外观质量识别
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首次提出采用小波纹理分析和鲁棒贝叶斯神经网络方法对不同梳理工艺下生产的,以点轧热熔加固的5个不同等级的非织造材料外观质量等级进行识别,为基于智能技术的非织造材料外观质量评价和识别进行了探索性研究。本文以实现非织造材料外观质量的客观、准确识别为最终目标,主要研究了Besov空间多小波域消噪算法、小波纹理分析和鲁棒贝叶斯神经网络在非织造材料图像消噪、纹理特征提取和外观质量等级识别中的应用。?
     根据非织造材料不同区域纹理光滑特性具有显著差异的特点,本文提出了Besov空间多小波域非织造材料图像消噪方法,并从理论与实验上深入研究了小波域个数与消噪效果、耗时之间的关系。创新地提出以凸集映射前后高频小波系数差的平方和差分小于等于零为Besov空间多小波域消噪算法收敛准则,该准则有效地控制了算法的复杂性,提高了运算速度。相比于小波通用阈值消噪方法,Besov空间多小波域消噪方法不仅可以有效消除噪声,峰值信噪比大于等于40dB,还可以保持非织造材料图像纹理的光滑特性,有效抑制了过消噪现象。
     以VisTex数据库中的6幅典型纹理图像为参照,采用Tamura纹理特征中的对比度参数和Fourier功率谱图来度量和确定非织造材料图像纹理的整体对比度和方向性,研究了非织造材料图像的纹理特性。以点轧热熔加固5等级非织造材料为研究对象,建立了非织造材料图像小波纹理分析模型,系统讨论了高频小波系数1范数L1、2范数L2能量基特征和广义高斯分布控制参数特征κζ在非织造材料纹理特征表达中的应用,两类纹理特征可以在不同尺度和方向上对非织造材料图像的纹理进行刻画和描述。首创性地提出了基于1-近邻分类器的小波纹理特征质量评价方法,以此衡量不同小波基在非织造材料纹理特征提取中的性能差异。
     最后,以非织造材料的小波纹理特征为基础,采用鲁棒贝叶斯神经网络对5等级625幅试样进行外观质量等级识别。深入研究了鲁棒贝叶斯神经结构设计、权值优化、孤立点概率估计和网络模型选择等问题,详细探讨了基于UCMINF(An Algorithm forUnconstrained, Nonlinear Optimization)算法的鲁棒贝叶斯神经网络权值优化,基于小样本集推理原则和结构风险最小化原则的神经网络结构设计,以及根据网络识别精度和证据框架理论的最佳网络模型选择。在网络结构设计与模型选择方面,本文创新地提出了鲁棒贝叶斯神经网络结构设计极限风险准则和基于网络识别精度和证据框架理论的最佳网络模型选择方法,并将它们成功应用于鲁棒贝叶斯神经网络的结构设计与网络模型的评价和选择。其中,采用coif3小波基对非织造材料图像进行4层分解,提取12个L1能量值作为纹理特征对隐含层神经元个数为3的鲁棒贝叶斯神经网络进行训练和测试,该网络对125个测试样本的正确识别率为99.2%。
     研究表明,从Besov空间双小波域消噪后的非织造材料图像提取两类小波纹理特征对鲁棒贝叶斯神经网络进行训练和测试,以识别5等级625幅试样的质量外观等级的方法具有较高的正确识别率和较强的鲁棒性,该方法是有效可行的。
To explore the evaluation and inspection of visual quality of nonwovens using intelligent methods, an algorithm is proposed originally that integrates wavelet texture analysis and robust Bayesian neural network to identify the visual quality of nonwovens coming from five grades that are formed with different combing and thermal bonding processes. The final target of this work is to recognize the visual quality grade of nonwovens objectively and precisely, which is realized through three stages, nonwoven image denoising, feature extraction and reorganization by implementing the multiple wavelet basis image denoising using Besov projections algorithm, wavelet texture analysis and robust Bayesian neural network.
     According the characteristic that the smoothness of nonwoven texture in different domain, the multiple wavelet basis image denoising using Besov projections algorithm is used to eliminate the noise within nonwoven image, and the relationship between the number of wavelet bases and PSNR (peak signal to noise ratio), computation time is also researched deeply from the theoretical and experimental vision. A convergence criterion for multiple wavelet basis image denoising using Besov projections algorithm is proposed that takes the difference of the square sum of the high frequency of wavelet coefficients to be no larger than zero. Compared with denoising method using common thresholding, the proposed method in this paper not only eliminates the noise effectively, e. g. the PSNR is no less than 40 dB, but preserves the character of various smoothness and prevents from over-denoising phenomenon obviously.
     One of the Tamura textural parameters and the power spectrum of Fourier transform are used to evaluate the contrast and direction of the nonwoven texture, and the results are compared with the ones of the six images of VisTex database. In this research, the texture analysis model of nonwovens is established, and two feature extraction methods are explored deeply based on energy features L1 and L2 of wavelet coefficients and the two control parameters of generalized Gaussian density model, i.e. the scale and shape parameter,κandζ, which can describe and portray the texture of nonwoven image at different scales and from various directions. Additionally, the recognition accuracy R of 1-neighhour classifier is considered as an evaluation parameter of the discrimination of the texture features extracted with the 2 schemes.
     Finally, with the two types of texture features, the robust Bayesian neural network is implemented to recognize the visual quality of 625 nonwoven samples belonging to 5 different grades. In this part, the structure and design of robust Bayesian neural network, weight optimization, outlier probability estimation and model selection are researched in system, especially the optimization of weights with UCMINF (An Algorithm for Unconstrained, Nonlinear Optimization) algorithm, the structure design method based on inference principle of small samples and structural risk minimization principle, and the optimal model selection with recognition accuracy and the evidence framework theory are also introduced in details, respectively. In the aspects of structure design and model selection of robust Bayesian neural network, the criterion of maximum risk and the standard that combines the reorganization accuracy and log-evidence are explored initiatively. For example, when decomposed at 4 levels with coif3 wavelet base and twelve L1 energy features are used as inputs of the optimal robust Bayesian neural network with 3 hidden neurons, the recognition accuracy of 125 test samples is 99.2%.
     The research results from the 625 samples from 5 different indicate that the method for visual quality reorganization of nonwovens based on wavelet texture and robust Bayesian neural network has high accuracy and robustness, which is feasible and valid.
引文
1. B. Pourdeyhimi. Nonwovens and Traditional Textile Know-How[J]. Textile World, 2004. 154(8): 42-45.
    2. B. Pourdeyhimi, S. K. Batra. Implications for the Nonwovens Industry[J]. Textile Progress, 2000, 30(2): 51-67.
    3. K. Mcintyre. Nonwovens in China: Capitalizing on Growth[J]. Nonwovens Industry, 2009, 40(10): 1-5.
    4. K. Mcintyre. Will It Ever Happen? Nonwovens-the Fabrics of Our Lives[J]. Nonwovens Industry, 2009, 40(12): 8-9.
    5. K. Mcintyre. Stage of the Industry[J]. Nonwoven Industry, 2009, 40(12): 44-47.
    6. P. N. Britton, Arthur J. Sampson, C. F. Elliott, JR, H. W. Graben, W. E. Gettys. Computer Simulation of the Mechanical Properties of Nonwoven Fabrics[J]. Textile Research Journal, 1983, 53(6): 363-368.
    7. R. K. Aggarwal, W. R. Kennon, I. Porat. A Scanned-laser Technique for Monitoring Fibrous Webs and Nonwoven Fabrics[J]. Journal of the Textile Institute, 1992, 83(3): 386-398.
    8. S. V. Patel, S. B. Warner. Modeling the Bending Stiffness of Point Bonded Nonwoven Fabrics[J]. Textile Research Journal, 1994, 64(9): 507-513.
    9. B. G. Xu, Y. L. Ting. Measuring Structural Characteristics of Fiber Segments in Nonwoven Fabrics[J]. Textile Research Journal, 1995, 65(1): 41-48.
    10. R. H. Gong, A. Newton. Image-analysis Techniques Part 2: The Measurement of Fiber Orientation in Nonwoven Fabrics[J]. Journal of the Textile Institute, 1996, 87(2): 371-388.
    11. R. Veerabadran, H. A. Davis, S. K. Batra, A. C. Bullerwell. Devices for On-Line Assessment of Nonwovens’Basis Weights and Structures[J]. Textile Research Journal, 1996, 66(4): 257-264.
    12. B. Pourdeyhimi, R. Ramanathan, R. Dent. Measuring Fiber Orientation in Nonwovens, Part 1: Simulation[J]. Textile Research Journal, 1996, 66(11): 713-722.
    13. B. Pourdeyhimi, R. Ramanathan, R. Dent. Measuring Fiber Orientation in Nonwovens, Part 2: Direct Tracking. Textile Research Journal, 1996, 66(12): 747-753.
    14. Z. Yan, R. R. Bresee. Characterizing Nonwoven-web Structure by Using Image-analysis Techniques Part 5: Analysis of Shot in Meltblown Webs[J]. Journal of Textile Institute, 1998, 89(2): 320-336.
    15. M. M. Schoppe. A Poisson Model of Nonwoven Fiber Assemblies in Compression at High Stress[J]. Textile Research Journal, 1998, 68(5): 371-384.
    16. A. Cherkassky. Analysis and Simulation of Nonwoven Irregularity and Nonhomogeneity[J]. Textile Research Journal, 1998, 68(4): 242-253.
    17. S. Bais-Singh, B. C. Goswami. Predicting the Biaxial Tensile Deformation Behavior of Spunhond Nonwovens[J]. Textile Research Journal, 1998, 68(3): 219-227.
    18. S. Bais-Sigh, Sherrill B. Biggers, B. C. Goswami. Finite Element Modeling of the Nonuniform Deformation of Spun-Bonded Nonwovens[J]. Textile Research Journal, 1998, 68(5): 327-342.
    19. B. Pourdeyhimi, R. Dent, A. Jerbi, S. Tanaka, A. Deshpande. Measuring Fiber Orientation in Nonwovens, Part 5: Real Webs[J]. Textile Research Journal, 1999, 69(3): 185-192.
    20. I. Krucinska, S. Krucinski. Evaluating Fibrous Architecture of Nonwoven with Computer-Assisted Microscopy 1[J]. 1999, Textile Research Journal, 69(5): 363-369.
    21. F. Thorr, J. Y. Drean, D. Adolphe. Image Analysis Tools to Study Nonwovens[J]. Textile Research Journal, 1999, 69(3): 162-168.
    22. B. Pourdeyhimi, R. Dent. Measuring Fiber Diameter Distribution in Nonwovens[J]. Textile Research Journal, 1999, 69(4): 233-236.
    23. A. Cherkassky, B. Kit, I. Porat. Two-Dimensional Analysis of Card Web Irregularity[J]. Textile Research Journal, 2000, 70(10): 901-909.
    24. N. Mao, S. J. Russell. Directional Permeability in Homogeneous Nonwoven Structures Part 1: The Relationship between Directional and Fiber Orientation[J]. Journal of the Textile Institute, 2000, 91(2): 235-243.
    25. N. Mao, S. J. Russell. Directional Permeability in Homogeneous Nonwoven Structures Part 2: Permeability in Idealised Structures[J]. Journal of the Textile Institute, 2000, 91(2): 244-258.
    26. S. H. Jeong, S. H. Kim, C. J. Hong. The Evaluation of Evenness of Nonwovens Using Image Analysis Method[J]. Fiber and Polymers, 2001, 2(3): 164-170.
    27. B. Pourdeyhimi, Ludovic Kohel. Area-Based Strategy for Determining Web Uniformity. TextileResearch Journal, 2002, 72(12): 1065-1072.
    28. B. Pourdeyhimi, H. S. Kim. Measuring Fiber Orientation in Nonwovens: The Hough Transform[J]. Textile Research Journal, 2002, 72(9): 803-809.
    29. R. Chhabra. Nonwoven Uniformity Measurements using Image Analysis[J]. International Nonwovens Journal, 2003, Spring, 43- 50.
    30. H. Yokura, M. Niwa. Objective Hand Measurement of Nonwoven Fabrics Used for Top Sheets of Disposable Diapers[J]. Textile Research Journal, 2003, 73(8): 705-712.
    31. N. Mao, S. J. Russell. Modeling Permeability in Homogeneous Three-Dimensional Nonwoven Fabrics[J]. Textile Research Journal, 2003, 73(11): 939-944.
    32. Y. Termonia. Lattice Model for the Drape and Bending Properties of Nonwovens Fabrics[J]. Textile Research Journal, 2003, 73(1): 74-78.
    33. A. Watanabe, M. Miwa, T. Yokoi, A. A. Merati. Predicting the Penetrating Force and Number of Fibers Caught by a Needle Barb in Needle Punching[J]. Textile Research Journal, 2004, 74(5): 417-425.
    34. M. Miao, H. E. Glassey. An Experimental Study of the Needled Nonwoven Process Part 1: Fiber Geometry Before Needle Punching[J]. Textile Research Journal, 2004, 74(4): 329-332.
    35. I. H. Sul, K. H. Hong, H. Shim, T. J. Kang. Surface Roughness Measurement of Nonwoven Using Three-dimensional Profile Data[J]. Textile Research Journal, 2006, 76(11): 828-834.
    36. A. Rawal. A Cross-plane Permeability Model for Needle-punched Nonwoven Structures. Journal of Textile Institute, 2006, 97(6): 527-532.
    37. H. C. Lien, C. H. Liu. A Method of Inspecting nonwoven Basis Weight Using the Exponential Law of Absorption and Image Processing[J]. Textile Research Journal, 2006, 76(7): 547-558.
    38. L. Kohel, X. Y. Zeng, L. Q. Li. Digital Image Analysis to Determine Pore Size Distribution of Nonwoven Fabrics[C]. IMACS Multiconference on“Computational Engineering in Systems Applications”(CEASA), China, Beijing, October4-6, 145-149.
    39. M. Dimassi, L. Koehl, X. Y. Zeng. Modeling of the Pore Network by Image Processing: Application to the Nonwoven Material[C]. IMACS Multiconference on“Computational Engineering in Systems Applications”(CESA), China, Beijing, October 4-6, 171-177.
    40. M. Latifi, H. Vahedi Tafreshi, B. Pourdeyhimi. A Note on an Optical Method to Evaluate Fiber Dispersion in Wet-laid Nonwoven Process[J]. Textile Research Journal, 2008, 78(6): 518-823.
    41. V. K. Kothari, Gaurav Agarwai. Determination of Pore Size Parameters and Its Distribution on Hydroentangled Fabrics by Image Processing[J]. Journal of the Textile Institute, 2008, 99(4): 317-324.
    42. A. Wiegmann. Effective Properties of Nonwoven Textiles from Microstructure Simulations[C]. Progress in Industrial Mathematics at ECMI 2006, 2008, 708-712.
    43. E. Shim, B. Pourdeyhimi, M. Latifi. Three-dimensional Analysis of Segmented Pie Bicomponent Nonwovens[J]. Journal of the Textile Institute, 2009, DOI: 10.1080/00405000903357938.
    44. A. Cherkassky, A. Weinberg. Objective Evaluation of Textile Fabric Appearance Part 1: Basic Principles, Protrusion Detection, and Parameterization[J]. Textile Research Journal, 2010, 80(3): 226-235.
    45. P. Payvandy, M. Yousefzadeh, M. Latifi. A Note on Neurofractal-based Defect Recognition and Classification in Nonwoven Web Images[J]. Journal of Textile Institute, 2010, 101(1): 46-51.
    46.赵广兴,严灏景.利用微波法检测非织造布的各向异性[J].中国纺织大学学报, 16(4): 90-96.
    47.孔令学,胡企贤,佘风华.非织造布纤维网的取向度研究[J].中国纺织大学学报, 1995, 21(4): 111-116.
    48.吴兆平,李艰,陈建敏,严灏景.非织造土工布几何结构与孔径分布计算[J].上海工程技术大学学报, 1997, 11(3): 23-27.
    49.许正军,陈瑞琪.图象分析法在非织造布纤维取向评定中的应用动态[J].非织造布, 1998, 2: 38-41.
    50.杨易.纺粘法非织造布厚薄均匀度在线检测与自动控制系统[D].天津:天津工业大学, 2000.
    51.周胜,储才元,严灏景.基于激光散射强度测量非织造布面密度的实验研究[J].中国纺织大学学报, 2000, 26(6): 105-110.
    52.周胜,储才元.非织造布纤维取向测定原理与方法综述[J].中国纺织大学学报, 1998, 24(6): 95-98.周胜,储才元,严灏景.基于激光散射原理的非织造布取向结构测定研究[J].纺织学报, 2000, 21(6): 332-334.
    53.周胜,储才元,严灏景.激光散射法测定非织造布纤维取向分布和面密度的研究[J].产业用纺织品, 2002, 3: 15-24.
    54.陆燕萍,储才元,周胜.激光散射法在线检测非织造布面密度的探讨[J].产业用纺织品, 2002, 20(141): 22-28.
    55.李翔,王石夫,王铁明.显微镜物质分析系统在非织造布检验中的应用[J].非织造布, 2002,10(4): 37-39.
    56.杨旭红.非织造材料(纤维网)形态结构的表征与分形模拟[D].苏州:苏州大学, 2003.
    57. X. M. Wang, Q. F. Ke. A Technique for Acquiring Distinct Microscopic Images of Thin Nonwoven Webs[J]. AATCC Review, 2005, 5(1): 31-33.
    58. H. Y. Lai, J. H. Lin, C. K. Lu, S. C. Yao. An Image Analysis for Inspecting Nonwoven Defect[J]. International Nonwoven Journal, 2005, Fall: 39-50.
    59.王丽,陈廷,陈霞.基于图像处理的非织造纤维直径的检测[J] .测试技术学报, 2008, 22(3): 278-282.
    60. T. Chen, C. Zhang, L. Q. Li, X. Chen. Simulating the Drawing Spunbonding Nonwoven Process using an Artificial Neural Network Technique[J]. Journal of Textile Institute, 99(5): 479-488.
    61. C. C. Huang, T. F. Liu. Image Inspection of Nonwoven Defects Using Wavelet Transforms and Neural Networks[J]. Fibers and Polymers, 2008, 9(5): 633-638.
    62.赵博.纺黏非织造牵伸器喷射流场理论模型的建立[J].聚酯工业, 2009, 22(5): 5-9.
    63.赵博.纺粘非织造窄狭缝牵伸器喷射流场的研究与分析[J].合成技术及应用, 2009, 24(3): 39-44.
    64.王丽,陈霞,陈廷.基于图像处理的非织造布纤维取向分布测量[J].东华大学学报(自然科学版), 2009, 35(1): 84-89.
    65.吉连英,郭法文,刘丽芳.利用分形理论和模拟技术求解非织造布空隙分形维数的新方法[J].产业用纺织品, 2009, 9: 17-20.
    66.高晓艳.静电纺纤维/非织造布复合过滤材料的结构性能与模拟[D].苏州:苏州大学, 2009.
    67. J. L. Liu, B. Q. Zuo, P. Vroman, B. Rabenasolo, X. Y. Zeng. Visual Quality Recognition of Nonwovens based on Wavelet Transform and LVQ Neural Network[C]. Proceeding of the 39th Conference on Computers & Industrial Engineering (CIE39), 2009, July 6-8, Troyes, France. 2009, pp1885-1890.
    68. J. L. Liu, B. Q. Zuo, X. Y. Zeng, P. Vroman, B. Rabenasolo. Nonwoven Uniformity Identification using Wavelet Texture Analysis and LVQ Neural Network[J]. Expert Systems with Application, 2010, 37(3): 2241-2246.
    69. J. L. Liu, Baoqi Zuo, P. Vroman, B. Rabenasolo, X. Y. Zeng, L. Bai. Visual Quality Recognition of Nonwovens using Wavelet Texture Analysis and Robust Bayesian Neural Network[J]. Textile Research Journal, 2010, DOI:10.1177/0040517509357650.
    70. http://www.isravision.com/likecms.php?site=index.html&dir=isra&function=set_lang&lang=chinesisch
    71. http://www.lenzing-instruments.com/products/nis-200
    72. http://www.i2s-linescan.com/pageseditos,110,leftV_C66C2A77.html
    73. http://www.zjusy.com/?product_detail_21.html
    74. http://www.china-inspect.com/show_products.asp?id=253
    75. http://trj.sagepub.com
    76. http://www.informaworld.com/smpp/title~db=all~content=t778164490
    77. http://web.ebscohost.com/ehost/search?vid=6&hid=103&sid=b65deb3b-ff98-4bee-a7ed-652a1cae7a1e%40sessionmgr112
    78. http://springer.lib.tsinghua.edu.cn/home/main.mpx
    79. http://www.sciencedirect.com/
    80. http://ieeexplore.ieee.org/Xplore/dynhome.jsp
    81. http://dlib.cnki.net/kns50/Navigator.aspx?ID=1
    82. http://dlib.cnki.net/kns50/Navigator.aspx?ID=2 http://dlib.cnki.net/kns50/Navigator.aspx?ID=9
    1. B. Jawerth, W. Sweldens. An Overview of Wavelet Based Multiresolution Analyses[J]. SIAM Review, 1993, 36: 377-412.
    2. G. Strang. Wavelet Transforms versus Fourier Transforms[J]. Bulletin of the American Mathematical Society, 1993, 28(2): 288-305.
    3. I. Daubechies. Orthonormal bases of Compactly Supported wavelets[J]. Communications on Pure and Applied Mathematics, 1988, 41(7): 909-996.
    4. S. G. Mallat. A Theory for Multiresolution Decomposition: The Wavelet Presentation[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1989, 11(7): 647-693.
    5. C. K. Chui, J. Z Wang. A Cardinal Approach to Wavelets. Proceedings of the American Mathematical Society, 1992, 113(3): 785-793.
    6. C. K. Chui. An Introduction to Wavelets. Academic Press Professional, Inc. San Diego, CA, USA,1992. ISBN:0-12-174584-8
    7. Yves Meyer. Wavelets and Operators. Press Syndicate of the University of Cambridge, London, UK, 1992. ISBN: 0521458692
    8.邓东皋,彭立中.小波分析[J].数学进展,1991,20(3): 294-310.
    9.王建忠.小波理论及其在物理和工程中的应用[J].数学发展, 1992, 21(3): 289-316.
    10. I. Daubechies. Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics, Philadelphia, USA, 1992. ISBN: 7-118-03381-2
    11. G.V. Welland. Beyond Wavelets. Academic Press, California, USA, 2003. ISBN:0127432736
    12. S.M. Mallat. Multiresolution approximations and wavelet orthonormal bases of L2(R) [J]. Transactions of the American Mathematical Society, 1989, 315(1): 69-87.
    13. T. W. Consortium, E. Fabes. Basic Properties of Wavelets[J]. Journal of Fourier Analysis and Application, 1998, 4: 575-594.
    14. T. X. Cai, J. H. Shen. Boundedness is Redundant in a Theorem of Daubechies[J]. Applied and Computational Harmonic Analysis, 1999, 6(3): 400-404.
    15. J. A. Lian. Orthogonality Criterial for Multi-scaling Functions[J]. Applied and Computational Harmonic Analysis, 1998, 5(3): 277-311.
    16. B. Han, Q. Mo. Symmetric MRA Tight Wavelet Frames with Three Generators and High Vanishing Moments[J]. Applied and Computational Harmonic Analysis, 2005, 18(1): 67-93.
    17. C. K. Chui, W. J. He, J. St?ckler. Compactly Supported Tight and Sibling Frames with Maximum Vanishing Moments[J]. Applied and Computational Harmonic Analysis, 2002, 13(3): 224-262.
    18. P. L. Butzer, A. Fischer, K. Rückforth. Scaling Functions and Wavelets with Vanishing Monments[J]. Computers & Mathematics with Applications, 1994, 27(3): 33-39.
    19. M. Skopina. On Construction of Multivariate Wavelets with Vanishing Moments[J]. Applied and Computational Harmonic Analysis, 2006, 20(3): 375-390.
    20. A. Fischer, R. Q. Jia. On Wavelets and Prewavelets with Vanishing Moments in Higher Dimensions[J]. Journal of Approximation Theory, 1997, 90(1): 46-74.
    21. Q. Y. Sun, Z. Y. Zhang. M-Band Scaling Function with Filter Having Vanishing Moments Two and Minimal Length[J]. Journal of Mathematical Analysis and Applications, 1998, 222(1): 225-243.
    22. S. Mallat, W. L. Hwang. Singularity Detection and Processing with Wavelets [J]. IEEE Transactions on Information Theory, 1992, 38(2): 617-643.
    23. I. Daubechies. The wavelet transform, time-frequency localization and signal analysis[J]. IEEE Transactions on Information Theory, 1990, 36(5): 961-1005.
    24. H. H. Wang, L. Z. Peng. Parameterizations of Univariate Wavelet Tight Frames with Short Support[J]. Communications in Nonlinear Science and Numerical Simulation, 2006, 11(6): 663-677.
    25. C. K. Chui, W. J. He, J. St?ckler. Nonstationary Tight Wavelet Frames Part 1: Bounded Intervals[J]. Applied and Computational Harmonic Analysis, 2004, 17(2): 141-197.
    26. I. Daubechies, Bin Han, Amos Ron, Zuowei Shen. Framelets: MRA-based Constructions of Wavelet Frames[J]. Applied and Computational Harmonic Analysis, 2003, 14(1): 1-46.
    27. C. K. Chui, W. J. He, J. St?ckler. Compactly Supported Tight and Sibling Frames with Maximum Vanishing Moments[J]. Applied and Computational Harmonic Analysis, 2002, 13(3): 224-262.
    28. Ch. S. Sastry, A. K. Pujari, B. L. Deekshatulu, C. Bhagvati. A Wavelet Based Multiresolution Algorithm for Rotation Invariant Feature Extraction[J]. Pattern Recognition Letters, 2004, 25(16): 1845-1855.
    29. S. S. Goh, Z. Y. Lim, Z. W. Shen. Symmetric and Antisymmetric Tight Wavelet Frames[J]. Applied and Computational Harmonic Analysis, 20(3):411-421.
    30. B. Han, Q. Mo. Symmetric MRA Tight Wavelet Frames with Three Generators and High Vanishing Moments[J]. Applied and Computational Harmonic Analysis, 2005, 18(1): 67-93.
    31. A. Chambolle, R. A. DeVore, N. Y. Lee, B. J. Lucier. Nonlinear Wavelet Image Processing: Variational Problems, Compression, and Noise Removal Through Wavelet Shrinkage[J]. IEEE Transactions on Image Processing, 1998, 7(3): 319-335.
    32.樊启斌,小波分析.武汉大学出版社,武汉, 2008. ISBN: 978-7-307-06584-0.
    33. R. A. DeVore, B. J. Lucier. Fast Wavelet Techniques for Near-optimal Image Processing[C]. MILCOM’92, IEEE Military Communications Conference Record, San Diego, California, October 11-14, 1992, IEEE, Piscataway, NJ, 1992: 1129-1135.
    34. A. Cohen, I. Daubechies, P. Vial. Wavelets on the Interval and Fast Wavelet Transforms[J]. Applied and Computational Harmonic Analysis, 1993, 1(1): 54-81.
    35. H. Choi, R. G. Baraniuk. Multiple Wavelet Basis Image Denoising using Besov Ball Projections[J]. IEEE Signal Processing Letters, 2004, 11(9), 717-720.
    36. H. Choi, R. Baraniuk. Multiple Basis Wavelet Denoising using Besov Projections[C]. Proceedingsof 1999 International Conference on Image Processing, CICIP 99: 595-599.
    37. D. L. Donoho, I. M. Johnstone. Spatial Adaptation by Wavelet Shrinkage[J]. Biometrika, 1994, 81(3): 425-455. F. Abramovich, T. Sapatinas, B. W. Silverman. Wavelet thresholding via a Bayesian approach [J]. Journal of the Royal Statistical Society, 1998, 60(4): 725-749.
    38.李旭超.小波域图像降噪概述[J].中国图象图形学报,2006:11(9):1201-1209.
    1. R. M. Haralick, K. Shanmugam, I. Dinstein. Textural Features for Image Classification[J]. IEEE Transactions on Systems, Man and Cybernetics, 1973,3(6): 610-621.
    2. M. Varma, A. Zisserman. Unifying statistical texture classification frameworks [J]. Image and Vision Computing, 2004, 22: 1175-1183.
    3. D. S. Wickramanayake, E. A. Edirsinghe, H. E. Bez. Transform domain texture synthesis [J]. Signal Processing: Image Communication, 2008, 23: 1-13.
    4.陈书海,傅录祥.实用数字图像处理[M].科学出版社,北京,2005. ISBN: 7-03-014946-7.
    5. H. Tamura, S. Mori, T. Yamawaki. Texture Features Corresponding to Visual Perception[J]. IEEE Transactions on Systems, Man and Cybernetics, 1978, 8(6): 460-473.
    6. S. R. Fountain, T. N. Tan. Efficient Rotation Invariant Texture Features for Content-based Image Retrieval[J]. Pattern Recognition, 1998, 31(11): 1725-1732.
    7. F. Ni, Z. Fu, Q. X. Cao, Yanzheng Zhao. Image Processing Method for Eyes Location based on Segmentation Texture[J]. Sensors and Actuators A: Physical, 2008, 143(2): 439-451.
    8. M. H. Bharati, J. Jay Liu, J. F. MacGregor. Image texture analysis: methods and comparisons[J]. Chemometrics and Intelligent Laboratory Systems, 2004, 72: 57-71.
    9. W. Y. Ma, B. S. Manjunath. A Comparison of Wavelet Transform Features for Texture Image Annotation [C]. Proceedings on International Conference on Image Processing 1995, 1995, 2: 256-259.
    10. B. S Manjunath, W. Y. Ma. Texture Feature for Browsing and Retrieval of Image Data [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(8): 837-842.
    11. A. Laine, J. Fan. Texture Classification by Wavelet Packet Signatures[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(11): 1186-1191.
    12. T. Chang, C.-C. Jay Kuo. Texture Analysis and Classification with Tree-Structured Wavelet Transform[J]. IEEE Transactions on Image Processing, 1993, 2(4): 429-441.
    13. A. Mojsilvi?, M. V. Popovi?, D. M. Rackov. On the Selection of an Optimal Wavelet Basis for Texture Characterization[J]. IEEE Transactions on Image Proccessing,2000,9(12): 2043-2050.
    14. R. R. Coifman, M. V. Wickerhauser. Entropy-Based Algorithms for Best Basis Selection[J]. IEEE Transaction on Information Theory, 1992, 38(2): 713-718.
    15. V. DeBrunner, M. Kadiyala. Effect of Wavelet Bases in Texture Classification Using a Tree-Structured Wavelet Transform[C]. 1999 Conference Record of the Thirty-Third Asilomar Conference on Signals, Systems and Computers, 1999,2:1292-1296.
    16. V. DeBrunner, M. Kadiyala. Texture Classsification Using Wavelet Transform[C]. 1999 42nd Midwest Symposium on Circuits and Systems. 1999, 2: 1053-1056.
    17. S. Arivazhagan, L. Ganesan. Texture Classification using Wavelet Transform[J]. Pattern Recognition Letters, 2003, 24: 1513-1521.
    18. G. Van de Wouwer, P. Scheunders, D. Van Dyck. Statistical Texture Characterization from Discrete Wavelet Representation[J]. IEEE Transactions on Image Processing, 1999, 8(4): 592-598.
    19. M. H. Bharati, J. J. Liu, J. F. MacGregor. Image texture analysis: methods and comparisons[J]. Chemometrics and Intelligent Laboratory Systems, 2004, 72: 57-71.
    20. S. Mallat. A Theory for Multiresolution Signal Decomposition: The Wavelet Represenation[J]. IEEE Transactions Pattern Analysis and Machine Intelligence, 1989, 11(7): 674-693.
    21. S. C. Chang, B. Yu, M. Vetterli. Adaptive Wavelet Thresholding for Image Denoising and Compression[J]. IEEE Transactions on Image Processing, 2000, 9(9): 1532-1546.
    22. S. C. Kim, T. J. Kang. Texture Classification and Segmentation using Wavelet Packet Frame and Gaussian Mixture Model[J]. Pattern Recognition, 2007, 40: 1207-1221.
    23. J. Portilla, Eero P. Simoncelli. A Parametric Texture Model Based on Joint Statistics of Complex Wavelet Coefficients[J]. International Journal of Computer Vision, 2000, 40(1): 49-71.
    24. R. Krupiński, J. Purczyński. Approximated Fast Estimator for the Shape Parameter of Generalized Gaussian Distribution[J]. Signal Processing, 2006, 86:205-211.
    25. S. S. Fan, Y. Lin. A Fast Estimation Method for the Generalized Gaussian Mixture Distribution on Complex Images[J]. Computer Vision and Image Understanding, 2009, 113: 839-853.
    26. K. Sharifi, A. Leon-Garcia. Estimation of Shape Parameter for Generalized Gaussian Distributions in Subband Decompositions of Video[J]. IEEE Transactions on Circuits and Systems for Video Technology, 1995, 5(1): 52-56.
    27. S. Kasaei, M. Deriche, B. Boashash. An Efficient Quantization Technique for Wavelet Coefficients of Fingerprint Images[J]. Signal Processing, 1997, 62: 361-366.
    28. S. J. Sun, Q. Wu, G. H. Li. Detection of Image Composition Based on a Statistical Model for Natural Images[J]. Acta Automatica Sinica, 2009, 35(12): 1564-1568.
    29. Z. Y. He, X. G. You, Y. Y. Tang. Writer Identification using Global Wavelet-based Features[J]. Neurocomputing, 2008, 71: 1832-1841.
    30. Z. Y. He, X. G. You, Y. Yuan. Texture Image Retrieval Based on Non-tensor Product Wavelet Filter Banks[J]. Signal Processing, 2009, 89: 1501-1510.
    31. Y. L. Qiao, C. H. Zhao, C. Y. Song. Complex Wavelet based Texture Classification[J]. Neurocomputing, 2009, 72: 3957-3963.
    32. A. Loza, D. Bull, N. Canagarajah, A. Achim. Non-Gaussian Model-based Fusion of Noisy Images in the Wavelet Domain[J]. Computer Vision and Image Understanding, 2010, 114: 54-65.
    33. V. D. Lecce, A. Guerriero. An Evaluation of the Effectiveness of Image Features for Image Retrieval[J]. Journal of Visual Communication and Image Representation, 1999, 10: 351-362.
    34. X. P. Hu, L. Dempere-Marco, E. Roy Davies. Bayesian feature evaluation for visual saliencyestimation[J]. Pattern Recognition, 2008, 41: 3302-3312.
    35. Y. J. Zhao, Q. S. Ni, Z. Z. Wang. Computational Features Evaluation for RNA Secondary Structure Prediction[C]. Proceedings of 2009 BMEI’09 2nd International Conference Biomedical Engineering and Informatics. TianJin, China, 17-19, October, 2009. 2009: 1-5.
    36. Y. Rubner, J. Puzicha, C. Tomasi, J. M. Buhmann. Empirical Evaluation of Dissimilarity Measures for Color and Texture[J]. Computer Vision and Image Understanding, 2001, 84: 25-43.
    37. Y. Z. Du, C. Belcher, Z. Zhou, R. Ives. Feature Correlation Evaluation Approach for Iris Feature Quality Measure[J]. Signal Processing, 2010, 90: 1176-1187.
    38. A. Jain, D. Zongker. Feature Selection: Evaluation, Application, and Small Sample Performance[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(2): 153-158.
    39. L. Fürst, S. Fidler, A. Leonardis. Selecting Features for Object Detection using an AdaBoot-compatible Evaluation Function[J]. Patter Recognition Letters, 2008, 29: 1603-1612.
    40. S. K. Pal, R. K. De, J. Basak. Unsupervised Feature Evaluation: A Neuro-Fuzzy Approach[J]. IEEE Transaction on Neural Networks, 2000, 11(2): 366-376.
    41. S. B. Tan. An Effective Refinement Strategy for KNN Text Classifier[J]. Expert System with Applications, 2006, 30: 290-298.
    42. I. Hmeidi, B. Hawashin, E. El-Qawasmeh. Performance of KNN and SVM Classifiers on Full Word Arabic Articles[J]. Advanced Engineering Informatics, 2008, 22: 106-111.
    43. A. Asikainen, M. Kolehmainen, J. Ruuskanen, K. Tuppuraninen. Structured-based Classification of Active and Inactive Estrogenic Compounds by Decision Tree, LVQ and KNN Methods[J]. Chemosphere, 2006, 62: 658-673.
    44. C. Y. Yang, J. J. Chou. A Comparative Evaluation Approach for the Classification of Rotifers with Modified Non-parametric KNN[J]. Image and Vision Computing, 2005, 23: 427-439.
    45. S. Dragovic, A. Onjia. Classification of Soil Samples according to Geographic Origin using Gamma-ray Spectrometry and Pattern Recognition Methods[J]. Applied Radiation and Isotopes, 2007, 65: 218-224.
    46. Y. Q. Xu, T. Y. Fu, W. C. Lee, J. Winter. Processing k Nearest Neighbor Queries in Location-aware Sensor Networks[J]. Signal Processing, 2007, 87: 2861-2881.
    47. F. Keinosuke. Introduction to Statistical Pattern Recognition (2nd Edition), Elsevier Academic Press, New York, 1999, ISBN-13: 978-0122698514.
    1. D. J C MacKay. Probable networks and plausible predictions-a review of practical Bayesian methods for supervised neural networks[J]. Network: Computation in Neural Systems, 1995, 6: 469-505.
    2. C. M. Bishop. Neural Networks for Pattern Recognition[M]. Oxford University Press Inc. New York, USA, 1995. ISBN: 0198538642.
    3. H. Ney. On the Probabilistic Interpretation of Neural Network Classifiers and Discriminative Training Criteria[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 2(2): 107-119.
    4. S. Y. Chen, W. Wang, H. van Zuylen. A Comparison of Outlier Detection Algorithms for ITS data[J]. Expert Systems with Applications, 2010, 37(2): 1169-1178.
    5. J. Larsen, L. N. Andersen, M. Hintz-Madsen, L. K. Hansen. Design of Robust Neural Network Classifiers[C]. Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing. 1998, 2: 1205-1208.
    6. S. Sigurdsson, J. Larsen, L. K. Hansen, P. A. Philipsen, H. C. Wulf. Outlier Estimation and Detection Application to Skin Lesion Classification[C]. Proceedings of the 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’02), 2002, 1: 1049-1052.
    7.阎平凡,张长水.人工神经网络与模拟进化计算(第二版)[M].清华大学出版社,北京,2005.?ISBN:7302106630.
    8. R. M. Neal. Bayesian Learning for Neural Networks[M]. Spring-Verlag New York, Inc. New York, USA, 1996. ISBN-10: 0387947248.
    9. Z. Chen, S. Haykin. On different Facets of Regularization Theory[J]. Neural Computation, 2002, 14: 2791-2846.
    10. R. Russell. Pruning Algorithms-A Survey[J]. IEEE Transactions on Neural Networks, 1993, 4(5): 740-747.
    11. J. Ni. Q. Song. Dynamic pruning algorithm for multilayer perceptron based neural control systems[J]. Neurocomputing, 2006, 69: 2097-2111.
    12. M. Hintz-Madsen, L. Kai Hansen, J. Larsen, M. W. Pedersen, M. Larsen. Neural Classifier Construction using Regularization, Pruning and Test Error Estimation[J]. Neural Network, 1998, 11, 1659-1670.
    13. P. M. Williams. Bayesian regularization and pruning using a Laplace prior[J]. Neural Computation, 1995, 7(1): 117-143.
    14. S. Dreiseitl, L. Ohno-Machado. Logistic Regression and Artificial Neural Network Classification Models: A Methodology Review[J]. Journal of Biomedical Informatics, 2002, 35: 352-359.
    15. M. Bianchini, M. Gori. Optimal learning in artificial neural networks: A review of theoretical results[J]. Neurocomputing, 1996, 13: 313-346.
    16. H. H. Yang, N. Murata, S. I. Amari. Statistical Inference: Learning in Artificial Neural Networks[J]. Trends in Cognitive Sciences, 1998, 2(1): 4-10.
    17. H. B. Nielsen. UCMINF-An Algorithm for Unconstrained, nonlinear optimization[T], Technical Report, IMM, Technical University of Denmark. 2000.
    18. Y. Liu. Unbiased Estimate of Generalization Error and Model Selection in Neural Network[J].Neural Networks, 1995, 8(2): 215-219.
    19. M. Anthony. On the Generalization Error of Fixed Combinations of Classifiers[J]. Journal of Computer and System Sciences, 2007, 73: 725-734.
    20. W. W. Y. Ng, D. S. Yeung, M. Firth, E. C. C. Tsang, X. Z. Wang. Feature Selection using Localized Generalization Error for Supervised Classification Problems using RBFNN[J]. Pattern Recognition, 2008, 41: 3706-3719.
    21. W. W. Y. Ng, A. Dorado, D. S. Yeung, W. Pedrycz, E. Izquierdo. Image Classification with the Use of Radial Basis Function Neural Networks and the Minimization of the Localized Generalization Error[J]. Pattern Recognition, 2007, 40: 19-32.
    22. N. Yildirim, F. Ak?ay, H. Okur, D. Yildirim. Parameter estimation of nonlinear models in biochemistry: a comparative study on optimization methods[J]. Applied Mathematics and Computation , 2003,140: 29-36.
    23.刘毅,?王海清,?李平.?采用Brent优化的核学习单步预测控制算法[J].控制理论与应用, 2009, 26[1]: 107-110.
    24. D. J. C. Mackay. A Practical Bayesian Framework for Backpropagation Networks[J]. Neural Computation, 1992, 4: 448-472.
    25. M. Xu, G. M. Zeng, X. Y. Xu, G. H. Huang, R. Jiang, W. Sun. Application of Bayesian regularized BP neural network model for trend analysis, acidity and chemical composition of precipitation in north Carolina[J]. Water, Air, and Soil Pollution, 2006, 172: 167-184.
    26. H. H. Thodberg. A Review of Bayesian Neural Networks with an Application to Near Infrared Spectroscopy[J]. IEEE Transactions on Neural Networks, 1996, 7(1): 56-72.
    27. Y. Zhang, W. E. Leithead, D. J. Leith, L. Waishe. Log-det Approximation based on Uniformly Distributed Seeds and Its Application to Gaussian Process Regression[J]. Journal of Computational and Applied Mathematics, 2008, 220: 198-214.
    28. I. Gronau, S. Moran, I. Yavneh. Towards Optimal Distance Functions for Stochastic Substitution Models[J]. Journal of Theoretical Biology, 2009, 260: 294-307.
    29. E. Baake, A. V. Haeseler. Distance Measures in Terms of Substitution Processes[J]. Theoretical Population Biology, 1999, 55: 166-175.
    30. W. D. Penny, S. J. Roberts. Bayesian Neural Networks for Classification: How Useful is the Evidence Framework?[J]. Neural Networks, 1999, 12: 877-892. D. Husmeier,
    31. W. D. Penny, S. J. Roberts. An Empirical Evaluation of Bayesian Sampling with Hybrid Monte Carlo for Training Neural Network Classifiers[J]. Neural Networks, 1999, 12: 677-705.
    32. A. Verikas, M. Bacauskiene. Using Artificial Neural Networks for Process and System Modelling[J]. Chemometrics and Intelligen Laboratory Systems, 2003, 67: 187-191.
    33. H. S. Hippert, D. W. Bunn, R. C. Souza. Large Neural Networks for Electricity Load Forecasting: Are they Overfitted?[J]. International Journal of Forecasting, 2005, 21: 425-434.
    34. Y. C. Xie, D. Lord, Y. L. Zhang. Predicting Motor Vehicle Collisions using Bayesian Neural Network Models: An Empirical Analysis[J]. Accident Analysis and Prevention, 2007, 39: 922-933.
    35. S. G. Tzafestas, P. J. Dalianis, G. Anthopoulos. On the Overtraning Phenomenon of Backpropagation Neural Networks[J]. Mathematics and Computers in Simulation, 1996, 40: 507-521.
    36. J. J. Vega, R. Reynoso, H. Carrillo Calvet. Effect of Signal Noise on the Learning Capability of an Artificial Neural Network[J]. Nuclear Instruments and Methods in Physics Research Section A, 2009, 606: 693-699.
    37. M. T. Vakil-Baghmisheh, N. Pave?i?. Traning RBF Networks with Selective Backprogation[J]. Neurocomputing, 2004, 62: 39-64.
    38. V. N. Vapnik. Statistical Learning Theory[M]. John Wiley&Sons, Inc. USA, New York. 1998.
    39. G. M. Foody, A. Mathur, C. Sanchez-Hernandez, D. S. Boyd. Training Set Size Requirements for the Classification of a Specific Class[J]. Remote Sensing of Environment, 2006, 101: 1-14.
    40. D. R. B. Stockwell, A. Townsend Peterson. Effect of Sample Size on Accuracy of Species Distribution Models[J]. Ecological Modelling, 2002, 148: 1-13.
    41. B. Amirikian, H. Nishimura. What Size Network is Good for Generalization of a Specific Task of Interest?[J]. Neural Networks, 1994, 7(2): 321-329.
    42. S. C. Kak. On Generalization by Neural Networks[J]. Information Sciences, 1998, 111: 293-302.
    43. D. Partridge. Network Generalization Differences Quantified[J]. Neural Networks, 1995, 8(4): 263-271.
    44. J. G. Polhill, M. K. Weir. An Approach to Guaranteeing Generalization in Neural Networks[J]. Neural Networks, 2001, 14: 1035-1048.
    45. Z. O. Wang, T. Zhu. An Efficient Learning Algorithm for Improving Generalization Performance of Radial Basis Function Neural Networks[J]. Neural Networks, 2000, 13: 545-553.
    46. S. Rudolph. On topology, Size and Generalization of Non-linear Feed-forward Neural Networks[J]. Neurocomputing, 1997, 16: 1-22.
    47. M. Al-Rawi. A Neural Network to Solve the Hybrid N-parity: Learning with Generalization Issues[J]. Neurocomputing, 2005, 68: 273-280.
    48. S. Issanchou, J. P. Gauchi. Comuter-aided optimal designs for improving neural network generalization[J]. Neural Networks, 2008, 21(7): 945-950.
    49. A. K. Jain, R. P. W. Duin, J. C. Mao. Statistical Pattern Recognition: A Review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(1): 4-37.
    50. P. Koiran, E. D. Sontag. Neural Networks with Quadratic VC Dimension[J]. Journal of Computer and System Sciences, 1997, 54: 190-198.
    51. I. Guyon, J. Makhoul, R. Schwartz, V. Vapnik. What Size Test Gives Good Error Rate Estimates?[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(1): 52-64.
    52. E. Bax. Validation of Average Error Rate over Classifiers[J]. Pattern Recognition Letters, 1998, 19: 127-132.
    53. P. Koiran, E. D. Sontag. Vapnik-Chervonenkis Dimension of Recurrent Neural Networks[J]. Discrete Applied Mathematics, 1998, 86: 63-79.
    54. H. J. Sussmann. Uniqueness of the Weight for Minimal Feedforword Nets with a Given Input-output Map[J]. Neural Networks, 1992, 5: 589-594.
    55. V. Kurkova. Functionally Equivalent Feedforword Neural Networks[J]. Neural Computation, 19994, 6: 543-558.
    56. G. A. Carpenter. Neural-network Models of Learning and Memory: Leading Questions and an Emerging Framework[J]. Trends in Cognitive Sciences, 2001, 5(3): 114-118.
    57. I. D. Zaharakis, A. D. Kameas. Modeling Spiking Neural Networks[J]. Theoretical Computer Science, 2008, 395: 57-76.
    58. Q. M. Cheng. Application of Weights of Evidence Method for Assessment of Flowing Well in the Greater Toronto Area, Canada[J]. Natural Resources Research, 2004, 13(2): 77-86.
    59. K. Hagiwara, K. Fukumizu. Relation between Weight Size and Degree of Over-fitting in Neural Network Regression[J]. Neural Networks, 2008, 21(1): 48-58.
    60. K. T. Kelly. Ockham’s Razor, Empirical Complexity, and Truth-finding efficiency[J]. Theoretical Computer Science, 2007, 383: 270-289.
    61. M. R. Forster. Key Concepts in Model Selection: Performance and Generalizability[J]. Journal of Mathematical Psychology, 2000, 44: 205-231.
    62. A. Kukla. Amplification and Simplification as Modes of Theoretical Analysis in Psychology[J]. New Ideas in Psychology, 1995, 13(3): 201-217.
    63. D. V. Sridhar, E. B. Bartlett, R. C. Seagrave. An Information Theoretic Approach for Combining Neural Network Process Models[J]. Neural Networks, 1999, 12: 915-926.
    64. Y. Asai, A. Guha, A. E. P. Villa. Deterministic Neural Dynamics Transmitted through Neural Networks[J]. Neural Networks, 2008, 21: 799-809.
    65. D. V. Sridhar, E. B. Bartlett, R. C. Seagrave. Information Theoretic Subset Selection for Neural Network Models[J]. Computer & Chemical Engineering, 1998, 22: 613-626.
    66. H. C. Yuan, F. L. Xiong, X. Y. Huai. A Method for Estimating the Number of Hidden Neurons in Feed-forward Neural Networks based on Information Entropy[J]. Computers and Electronics in Agriculture, 2003, 40: 57-64.
    67. Z. Z. Zhang, X. M. Ma, Y. X. Yang. Bounds on the Number of Hidden Neurons in Three-layer Binary Neural Networks[J]. Neural Networks, 2003, 16: 995-1002.
    68. M. Han, J. Yin. The Hidden Neurons Selection of the Wavelet Networks using Support Vector Machines and Ridge Regression[J]. Neurocomputing, 2008, 72: 471-479.
    69. S. C. Kim, T. J. Kang. Texture Classification and Segmentation using Wavelet Packet Frame and Gaussian Mixture Model[J]. Pattern Recognition, 2007, 40: 1207-1221.
    70. K. Huang, S. Aviyente. Information-theoretic Wavelet Packet Subband Selection for Texture Classification[J]. Signal Processing, 2006, 86: 1410-1420.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700