芴—硫芴共聚物的电子结构和光电性质的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Theoretical Investigation on Electronic Structure and Optical Properties of Polyfluorene by Copolymerization with Dibenzothiophene
  • 作者:刘彬
  • 论文级别:硕士
  • 学科专业名称:物理化学
  • 中文关键词:聚合物 ; DFT ; 光电性质
  • 学位年度:2006
  • 导师:封继康
  • 学科代码:070304
  • 学位授予单位:吉林大学
  • 论文提交日期:2006-06-01
摘要
本论文利用密度泛函理论对对两个系列的低聚物和高聚物的发光材料进行了一系列的研究。从分子理性设计角度,通过化学计算给出了聚合物的平衡基态几何结构、前线轨道、电离能、电子亲合势、能带带隙、吸收光谱和最低激发态的几何构型及发射光谱等详细信息,为发光材料的实验研究提供了有价值的理论依据,为进一步探索优质高效的发光材料作出了重要贡献。
    我们研究了在芴(fluorene)的2,8位引入硫芴(dibenzothiophen)对聚芴的电子和光电性质的影响。
    我们利用低聚物性质随重复单元数的倒数(1/n)呈线性变化的规律,将低聚物的性质外推得到高聚物的相应性质。外推所得结果与实验值符合很好。计算结果表明:增加共轭体系能够使体系能隙变窄,吸收和发射光谱红移。增加聚合物中基团硫芴的含量,能隙变宽,吸收和发射光谱蓝移。
    芴和硫芴共聚形成的两系列聚合物(PF30T)n、(PF50T)n,其结构相对聚芴发生较大的扭曲,致使原有共轭性变弱,可以提高HOMO-LUMO能隙,吸收和发射光谱的最大吸收和发射波长变短,光谱发生蓝移。电离能和电子亲和势升高,能带带隙变宽。与芴的低聚物相比,较难形成空穴,较易接受电子,本文研究了芴和硫芴的共聚物的电发光性质。结果显示共聚物的吸收光谱、能隙及最低激发能与实验结果符合得很好,是很好的蓝光材料。
Since electroluminescent phenomenon of Poly-phenylenevinylene(PPV) are reported by Cambrige University in 1990. Because the dissolublepolymers have many strongpoints such as easy to be deal with, flexile,membranous and their energy gaps can be adjusted by chemicaltechnologies, people come to realize and interest in them. During fourteenyears, many kinds of conjugated polymers have been studied for theelectroluminescence, such as PPV, poly thiophene (PTh), polyperinaphthalene (PPP), polyfluorene and their ramifications and so on. Theirspectra can spread all over the visible spectrum by chemical structuremodification. There are two different approaches to modify the band gaps ofthe conjugation polymers. One is adding groups at the phenyl or methyleneof the backbone, the other is restricting the movement of electrons in themain chain. Additionally, the proper methods to enlarge the band gaps ofpolymers and decrease the effective conjugation length are insertingunconjugated groups in the polymer chain or block the conjugation for
    conjugated backbone between the luminescent cells, such as insertingpolyester and polyurethane. Therefore, we can select the proper luminescentstaple to decide the absorption and emitting wavelength.What more, there are two different theoretical approaches to evaluatethe band gaps of polymers. One is the polymer approach in which theperiodic structures are assumed for infinite polymers. Another one, theoligomer extrapolation technique, has acquired the increasing popularity inthis field, however. In this approach, a sequence of increasing longeroligomers is calculated, and extrapolation to infinite chain length isfollowed. A distinct advantage of this approach is that it can provide theconvergence behavior of the structural, electronic and spectral properties ofpolymers. In practice, both the oligomer extrapolation and the polymerapproaches are generally considered to be complementary to each other inunderstanding of the properties of polymers. However, we can't observe orcalculate precise polymer band gap directly. So the oligomer extrapolationis the main way to get the polymer band gap, which is the topic of thepresent work. Here we studied two fluorene-based copolymers polyfluorene,(PF30T)n and (PF50T)n using density functional methods and semiclassicalmodels.The ground-state geometries of oligomers were fully optimized usingthe density functional theory (DFT), B3LYP/6-31G, as implemented inGaussian 03. The results of the optimized structures for the oligomericmolecules of the (PF30T)n (n=1~4) and (PF30T)n (n=1~4) show that thestructural changes softly with increasing chain length in the series of(PF30T)n, as well as (PF50T)n. And it suggests that we can describe the
    basic structures of the polymers as their oligomers. The character ofstructure in the (PF50T)n is dramatically twisted in compared with(PF30T)n.ZINDO and TD-DFT/B3LYP calculations of the lowestexcitation energies and the maximal absorption wavelengths (λabs) were thenperformed at the optimized geometries of the ground states. The lowestexcitation energies and the maximal absorption wavelengths show excellentlinearity in our plots. Band gaps of the corresponding polymers wereobtained by extrapolating HOMO-LUMO gaps and the lowest excitationenergies to infinite chain length, as well as the maximal absorptionwavelengths of the polymers. The extrapolation results of Egs and λabs are ingood agreement with the experimental data. The results of each methodindicate the same conclusion that the decreasing of the conjugation in thebackbone of (PF50T)n broadens its band gap. The broader band gap of(PF30T)n causes its shorter maximal absorption wavelengths, comparedwith (PF50T)n.The excited geometries were optimized by ab initioCIS/3-21G and the emission spectra were computed based on the excitedgeometries. The changes of the structures during the excitation can beprefigured from the characters of front orbitals. The structure will be tightwhen the antibonding changes into bonding, otherwise, the bond length willincrease when the bonding changes into antibonding. All of IPs and EAsinvolved in this paper are the energies' difference between the ions andmolecules. We employed the linear extrapolation technique in this research.The linearity between the calculated IPs, EAs, energy gap, maximalabsorption wavelengths of the oligomers and the reciprocal chain length isexcellent for both homologous series of oligomers. Thus, these values of the
    polymers can be obtained by extrapolating the resultant linear relationshipto infinite chain length. In all cases, the energy required to create a hole inthe polymer is ~6eV, while the extraction of an electron from the anionrequires ~1.3eV. The ionization potentials of (PF50T)n are higher then thatof (PF30T)n and electron affinities of it are lower than that of (PF30T)n.This suggests that the (PF50T)n appears to trap and give the electron moreefficiently, compared with (PF30T)n. On all accounts, the rigid twist in thestructure of (PF50T)n result in the conjugation decreasing and it is easy toadd an electron and difficult to ionize compared with (PF30T)n. To theimportance, it results in a broader band gap and shorter maximal absorptionand emission wavelengths in the spectra for (PF50T)n than (PF30T)n.Theenergy band gap broaded, and the spectra blue-shifted.The excited geomertries,the emission spectra are investigated.The theoretic-cal study shows that by modification of chemical structures could greatlymodulate and improve the electronic and optical properties of light-emittingand contribute to orientate the sysnthesis efforts and help understand thestructure-properties relation of these conjugated material.
引文
1. Pope M, Kallmann H P, Magnante P, Electroluminescence in organic crystals, J. Chem. Phys., 1963, 38, 2042
    2. Tang C. W., Vanslyke S. A., Organic electroluminescent diodes, Appl. Phys. Lett., 1987, 51, 913
    3. Burroughes J. H., Bradley D.D.C, Brown A. R., et al., Light-emitting diodes based on conjugated polymer, Nature, 1990,347, 539
    4. Braun D., Heeger A. J., Visible light emission from semiconducting polymer diodes, Appl. Phys. Lett., 1991, 58, 1982
    5. Patil A. O., Heeger A. J., Wudl F, Optical properties of conducting polymers, Chem. Rev., 1988, 88, 183
    6. Michel Bellete?te, Serge Beaupre′, Jimmy Bouchard, Pierre Blondin, Mario Leclerc, andGilles Durocher, Theoretical and Experimental Investigations of the Spectroscopic and Photophysical Properties of Fluorene-Phenylene and Fluorene-Thiophene Derivatives: Precursors of Light-Emitting Polymers, J. Phys. Chem. B 2000, 104, 9118
    7. Jian Pei, Wang-Lin Yu, and Wei Huang, Alan J. Heeger, A Novel Series of Efficient Thiophene-Based Light-Emitting ConjugatedPolymers and Application in Polymer Light-Emitting Diodes Macromolecules 2000, 33, 2462
    8. Sung-Ho Jin, Hye-Jin Park, Jin Young Kim, Kwanghee Lee, Sang-Phil Lee, Doo-Kyung Moon,Hyung-Jong Lee, and Yeong-Soon Gal, Poly(fluorenevinylene) Derivative by GilchPolymerization for Light-Emitting Diode Applications, Macromolecules 2002, 35, 7532
    9. Sang Ho Lee, Toshikazu Nakamura,and Tetsuo Tsutsui, Synthesis and Characterization of Oligo(9,9-dihexyl-2,7-fluoreneethynylene)s: For Application as BlueLight-Emitting Diode, Organic Letter, 2001, 3(13), 2005
    10. Rajendra Rathore, Sameh H. Abdelwahed, and Ilia A. Guzei, Synthesis, Structure, and Evaluation of the Effect of Multiple Stacking on theElectron-Donor Properties of e-Stacked Polyfluorenes, J. Am. Chem. Soc. 2003, 125, 8712
    11. Michael F. Pepitone, Kalya Eaiprasertsak, Stephen S. Hardaker, and Richard V. Gregory, Synthesis of 2,5-Bis [(3,4-ethylenedioxy) thien-2-yl]-3-Substituted Thiophenes, Organic Letter, 2003, 5(18), 3229
    12. Anne Donat-Bouillud, Isabelle Le′vesque, Ye Tao, and Marie D'Iorio, Serge Beaupre′, Pierre Blondin, Maxime Ranger, Jimmy Bouchard, and Mario Leclerc, Light-Emitting Diodes from Fluorene-Based e-Conjugated Polymers, Chem. Mater. 2000, 12, 1931
    13. James M. Tour and Ruilian Wu, Synthesis and UV-Visible Properties of Soluble a-ThiopheneOligomers. Monomer to Octamer, Macromolecules 1992, 25, 1901
    14. Yanhou Geng, Sean W. Culligan, Anita Trajkovska, Jason U. Wallace, andShaw H. Chen, Monodisperse Oligofluorenes Forming Glassy-Nematic Films for Polarized Blue Emission, Chem. Mater. 2003,
    15, 542
    15. Hong Meng, Zhenan Bao, Andrew J. Lovinger, Bo-Cheng Wang, and Anthony M. Mujsce, High Field-Effect Mobility Oligofluorene Derivatives with High Environmental Stability, J. Am. Chem. Soc. 2001, 123, 9214
    16. Salbeck J., Bunsenges B., Splitting of 2D Waves of Excitation in a Direct Current Electric Field, J. Phys. Chem., 1996, 100, 1666
    17. Salaneck W. R., Stafstrom S., Bredas J-L., Conjugated Polymer Surfaces andInterfaces, Cambridge University Press, Cambridge, 1996
    18. Soujanya Tirapattur, Michel Bellete? te, Nicolas Drolet, Mario Leclerc, and Gilles Durocher, Spectral and Photophysical Properties of Fluorene-Based Polyesters in Solution and in the Solid State, Macromolecules 2002, 35, 8889
    19. Sung Y. Hong, Dong Y. Kim ,Chung Y. Kim, Roald Hoffmann, Origin of the Broken Conjugation in m-Phenylene Linked Conjugated Polymers, Macromolecules 2001, 34, 6474
    20. Bao-Hu Wang, Jie Yin, Min Zhao Xue, Julin wang, Gaoyu Zhong, Xunmin Ding, Dibenzothiophene-5,5-dioxide-containing PPV based copolymer as green-blue electroluminexcent material, Synthetic Metals 2003, 132,191
    21. Eunhee Lim, Byung-Jun Jung, and Hong-Ku Shim, Synthesis and Characterization of a New Light-Emitting Fluorene-Thieno [3,2-b] thiophene-Based Conjugated Copolymer, Macromolecules 2003, 36, 4288
    22. Friend R. H., Denton G. J., Halls J. J. M., et al, Electronic Processes of Conjugated Polymers in Semiconductor Device Structures Synth. Met., 1997, 84, 463
    23. Diaz-Garcia M A, Hide F, Schwartz B J, et al, Plastic lasers: Semiconducting polumers as a new class of solid-state laser materials , Synth. Met., 1997, 84, 455
    24. Gang Zeng, Wang-Lin Yu, Soo-Jin Chua, and Wei Huang, Spectral and Thermal Spectral Stability Study for Fluorene-Based Conjugated Polymers, Macromolecules 2002, 35, 6907
    25. Shigehiro Yamaguchi, Kohei Tamao, Cross-coupling reactions in the chemistry of silole-containing-π-conjugated oligomers and polymers, Journal of Organometallic Chemistry ,2002,653 ,223
    26. Hayden, L. M.;Kim, W.-K.;Chafin, A. P.;Lindsay, G. A.;Synthesis and Nonlinear Optical Properties of a New Syndioregic Main-Chain Hydrazone Polymer, Macromolecules, 2001, 34(17), 1493
    27. Mitsuishi, M.;Tanuma, T.;Matsui, J.;Chen, J.;Miyashita, T;In Situ Monitoring of Photo-Cross-Linking Reaction of Anthracene Chromophores in Polymer Langmuir-Blodgett Films by an Integrated Optical Waveguide Technique, Langmuir,(Communication),2001;17(24), 7449
    28. 李晓常,孙景志,马於光,沈家骢,聚合物半导体电致发光显示器件,高等学校化学学报,1999,20,309
    29. T. Yamamoto., K. Iwama., H. Shibata., S. Kamiya., Tech. Digest, Phosphor Res. Soc. 197nd Meeting , 1983. (in Japanese)
    30. Soon-Ki Kwon, Yun-Hi Kim, and Sung Chul Shin, Synthesis and Characterization of Poly(aryl ether) Containing Diphenylanthraceneand Benzoxazolyl-phenylene as Emitting Chromophore, Bull. Korean Chem. Soc. 2002, 23(1),17
    31. H.Nakako, Y. Mayahara, R.Nomura, M.Tabata, Masuda, T, Effect of Chiral Substituents on the Helical Conformation of Poly(propiolic esters), Macromolecules,2000, 33(11), 3978
    32. Hempenius, M. A.,Vancso, G. J.,Synthesis of a Polyanionic Water-Soluble Poly (ferrocenylsilane), Macromolecules, (Communication), 2002,35(7), 2445
    33. H.D.Burrows, J. Seixas de Melo, C.Serpa, L.G Arnaut, M.da G. Miguel, A.P.Monkman, I.Hamblett, S.Navaratnam, S1~>T1 intersystem crossing in -conjugated organic polymers, J. Chem. Phy., 2001, 115, 9601
    34. J. B. Foresman, M. Head-Gordon, J. A. Pople et al. An ab initio study of hydrated chloride ion complexes: Evidence of polarization effects and nonadditivity, J. Chem. Phys., 1987, 87, 5892
    35. A. S.Lee, V.Butun, M.Vamvakaki, S. P.Armes, J. A.Pople, A. P.Gast, Structure of pH-Dependent Block Copolymer Micelles: Charge and Ionic Strength Dependence, Macromolecules, 2002, 35(22), 8540
    36. H. Zhang, K. Balasubramanian, Electronic structure of the group V tetramers (P4–Bi4), J. Chem. Phys, 1992, 97, 3437;Spectroscopic constants and potential energy curves for 15 electronic states of Ag2, J. Chem.,1993, 98, 7092
    37. M. W. Wong, M. J. Frisch, K. B. Wiberg, Solvent effects. 1. The mediation of electrostatic effects by solvents, J. Am. Chem. Soc. 1991, 113, 4776
    38. M. W. Wong, K. B. Wiberg, M. J. Frisch, Solvent effects. 2. Medium effect on the structure, energy, charge density, and vibrational frequencies of sulfamic acid, J. Am. Chem. Soc. 1992, 114, 523
    39. James, R. Sheats;Homer Antoniadis;Mark Hueschen;Willian Leonard;Heff Niller;Ron Moon;Daniel Roitman;Andrew Stocking. Organic Electroluminescet Devices, Science 1996, 273, 884
    40. Yang Z, Karasz F E, Geise H J, Intrinsically soluble copolymers with well-defined alternating substituted p-phenylenevinylene and ethylene oxide blocks, Macromolecules, 1993, 26, 6570
    41. 尹五生,聚(对苯乙炔)共轭聚合物发光二极管的研究进展,功能材料,1997,28(2),122
    42. 刘承美,罗利玲,谭晓明,谢洪泉,PPV 类电致发光聚合物研究进展,高分子材料科学与工程,1999,15, 13
    43. 王海侨,曾繁涤,黄德修,电致发光共轭高聚物的合成,功能材料,1999, 30(1),9
    44. Kido J, Ongawa K, Okuvama K, Bright blue electroluminescence from poly(N-vinylcarbazole), Appl. Phys. Lett., 1993, 63, 2627
    45. M.Thakur, R.Swamy, J.Titus, Quadratic Electrooptic Effect in a Nonconjugated Conductive Polymer, Macromolecules (Communication), 2004, 37(8), 2677
    46. Heischkel Y, Schmidt H-W, Macromol. Chem. Phys., 1998, 199, 869
    47. Wilson, J. N.;Windscheif, P. M.;Evans, U.;Myrick, M. L.;Bunz, U. H. F, Band Gap Engineering of Poly(p-phenyleneethynylene)s: Cross-Conjugated PPE-PPV Hybrids, Macromolecules;(Communication);2002;35(23);8681
    48. C. J.Neef, J. P. Ferraris, MEH-PPV: Improved Synthetic Procedure and Molecular Weight Control, Macromolecules,2000,33(7), 2311-2314
    49. Hosokawa C, Kawasaki N, Sakamoto S, Kusumoto T, Bright blue electroluminescence from hole transporting polycarbonate, Appl. Phys. Lett., 1992, 61, 2503
    50. Yang Z, Sokolik I, Karasz F E, A soluble blue-light-emitting polymer, Macromolecules, 1993, 26, 1188
    51. L. Liao, Y. Pang, F. E. Karasz, , Comparison of Optical Properties between Blue-Emitting Poly(m-phenylenevinylene) and PPV Block Copolymer, Macromolecules, 2002,35(14), 5720
    52. E.Diez-Barra, J. C. Garcia-Martinez, S.Merino, R.del Rey, J. Rodriguez-Lopez, P. Sanchez-Verdu, J. Tejeda, Synthesis, Characterization, and Optical Response of Dipolar and Non-Dipolar Poly(phenylenevinylene) Dendrimers, . J.Org. Chem., 2001;66(17), 5664
    53. M.Ferreira, C. J. L.Constantino, C. A.Olivati, M. L.Vega, D. T.Balogh, R. F. Aroca, R. M.Faria, Oliveira, O. N., Jr, Langmuir and Langmuir-Blodgett Films of Poly [2-methoxy-5-(n-hexyloxy)-p-phenylenevinylene], Langmuir, 2003, 19(21), 8835
    54. N. Matsumi, T.Umeyama, Y.Chujo, Synthesis of Poly(cyclodiborazane)s Bearing a Disilanylene Unit and Their Optical and Electrochemical Properties, Macromolecules;(Communication), 2001, 34(11), 3510
    55. J.Yi, S. H.Goh, Wee, A. T. S., Miscibility and Interactions in Poly(methylthiomethyl methacrylate)/Poly(p-vinylphenol) Blends, Macromolecules, 2001, 34(26), 9208
    56. L.-O. Palsson, R.Beavington, M. J. Frampton, J. M.Lupton, S. W.Magennis, J. P. J. Markham, J. N. G.Pillow, P. L.Burn, I. D. W Samuel, Synthesis and Excited State Spectroscopy of Tris(distyrylbenzenyl)amine-cored Electroluminescent Dendrimers, Macromolecules, 2002, 35(21), 7891
    57. S.Besson, C.Ricolleau, T.Gacoin, C.Jacquiod, J.-P.Boilot, A New 3D Organization of Mesopores in Oriented CTAB Silica Films, J. Phys. Chem. B. (Communication), 2000, 104(51), 12095
    58. A.Huignard, T.Gacoin, J.-P. Boilot, Synthesis and Luminescence Properties of Colloidal YVO4:Eu Phosphors, Chem. Mater., 2000, 12(4), 1090

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700